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Abstract—We establish the large deviations asymptotic perfor-
mance (error exponent) of consensus+innovations distributed de-
tection over random networks with generic (non-Gaussian) sensor
observations. At each time instant, sensors 1) combine theirs with
the decision variables of their neighbors (consensus) and 2) assim-
ilate their new observations (innovations). This paper shows for
general non-Gaussian distributions that consensus+innovations
distributed detection exhibits a phase transition behavior with
respect to the network degree of connectivity. Above a threshold,
distributed is as good as centralized, with the same optimal asymp-
totic detection performance, but, below the threshold, distributed
detection is suboptimal with respect to centralized detection. We
determine this threshold and quantify the performance loss below
threshold. Finally, we show the dependence of the threshold and
of the performance on the distribution of the observations: the
asymptotic performance of distributed detectors over the same
random network with different observations’ distributions, for
example, Gaussian, Laplace, or quantized, may be different,
even though the asymptotic performance of the corresponding
centralized detectors is the same.

Index Terms—Chernoff information, consensus+innova-
tions, distributed detection, information flow, large deviations,
non-Gaussian distributions, performance analysis, random net-
work.

I. INTRODUCTION

C ONSIDER a distributed detection scenario where sen-
sors are connected by a generic network with intermit-

tently failing links. The sensors perform consensus+innovations

Manuscript received November 17, 2011; revised April 03, 2012 and
July 07, 2012; accepted July 08, 2012. Date of publication July 31, 2012;
date of current version nulldate. The associate editor coordinating the re-
view of this manuscript and approving it for publication was Dr. Ta-Sung
Lee. The work of D. Bajović, D. Jakovetić, J. Xavier, and B. Sinopoli was
partially supported by the Carnegie-Mellon/Portugal Program managed by
ICTI through Grants CMU-PT/SIA/0026/2009, SFRH/BD/33517/2008 and
SFRH/BD/33518/2008 and the Fundação para a Ciência e Tecnologia by Grant
PTDC/EEA-CRO/104243/2008; and by ISR/IST plurianual funding (POSC
program, FEDER). The work of D. Jakovetić and J. M. F. Moura was partially
supported by the NSF Grants CCF-1011903 and CCF-1018509, and by the
AFOSR Grant FA95501010291. D. Bajović and D. Jakovetić hold fellowships
from the Carnegie-Mellon/Portugal Program.
D. Bajović and D. Jakovetić are with the Institute for Systems and

Robotics (ISR), Instituto Superior Técnico (IST), Technical University of
Lisbon, Lisbon, Portugal. They are also with the Department of Electrical
and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA,
USA (e-mail: dbajovic@andrew.cmu.edu; djakovet@andrew.cmu.edu; dra-
gana@isr.ist.utl.pt; djakovetic@isr.ist.utl.pt).
J. M. F. Moura and B. Sinopoli are with the Department of Electrical and

Computer Engineering, CarnegieMellon University, Pittsburgh, PA 15213USA
(e-mail: moura@ece.cmu.edu; brunos@ece.cmu.edu).
J. Xavier is with the Institute for Systems and Robotics (ISR), Instituto Su-

perior Técnico (IST), Technical University of Lisbon, Lisbon, Portugal (e-mail:
jxavier@isr.ist.utl.pt).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2012.2210885

distributed detection; in other words, at each time , each sensor
updates its local decision variable by: 1) sensing and
processing a new measurement to create an intermediate vari-
able; and 2) weight averaging it with its neighbors’ intermediate
decision variables. We showed in [1] that, when the sensor ob-
servations are Gaussian, the consensus+innovations distributed
detector exhibits a phase transition. When the network con-
nectivity is above a threshold, then the distributed detector is
asymptotically optimal, i.e., asymptotically equivalent to the
optimal centralized detector that collects the observations of all
sensors.
This paper establishes the asymptotic performance of

distributed detection over random networks for generic,
non-Gaussian sensor observations. We adopt as asymptotic
performance measure the exponential decay rate of the Bayes
error probability (error exponent). We show that phase tran-
sition behavior emerges with non-Gaussian observations and
demonstrate how the optimality threshold is a function of
the log-moment generating function of the sensors’ observa-
tions and of the number of sensors . This reveals a very
interesting interplay between the distribution of the sensor ob-
servations (e.g., Gaussian or Laplace) and the rate of diffusion
(or connectivity) of the network (measured by a parameter

defined in Section II): for a network with
the same connectivity, a distributed detector with say, Laplace
observations distributions, may match the optimal asymptotic
performance of the centralized detector, while the distributed
detector for Gaussian observations may be suboptimal, even
though the centralized detectors for the two distributions,
Laplace and Gaussian, have the same optimal asymptotic
performance.
For distributed detection, we determine the range on the

detection threshold for which each sensor achieves exponen-
tially fast decay of the error probability (strictly positive error
exponent), and we find the optimal that maximizes the error
exponent. Interestingly, above the critical (phase transition)
value for the network connectivity , the optimal detector
threshold is , mimicking the (asymptotically) optimal
threshold for the centralized detector. However, below the
critical connectivity, we show by a numerical example that the
optimal distributed detector threshold might be non zero.
Brief review of the literature. A large body of work on dis-

tributed detection considers fusion center (FC)-based architec-
tures, e.g., [2]–[7], and, recently, [8], [9]: [8] selects a subset of
sensors that optimizes detection performance at the FC; [9] op-
timizes the local linear precoding of the sensors’ messages to
the FC, to optimize detection performance subject to a transmit
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power constraint. References [10]–[13] study consensus-based
detection. Consensus+innovations estimation is considered by
[14]–[18], while different variants of consensus+innovations
detection are studied in [19]–[25].We analyze here running con-
sensus, the variant in [21].
Reference [21] considers asymptotic optimality of running

consensus, but in a framework that is very different from ours.
Reference [21] studies the asymptotic performance of the dis-
tributed detector where the means of the sensor observations
under the two hypotheses become closer and closer (vanishing
signal to noise ratio (SNR)), at the rate of , where is the
number of observations. For this problem, there is an asymp-
totic, non-zero, probability of miss and an asymptotic, non-zero,
probability of false alarm. Under these conditions, running con-
sensus is as efficient as the optimal centralized detector, [26],
as long as the network is connected on average. Here, we as-
sume that the means of the distributions stay fixed as grows.
We establish, through large deviations, the rate (error exponent)
at which the error probability decays to zero as goes to in-
finity. We show that connectedness on average is not sufficient
for running consensus to achieve the optimality of centralized
detection; rather, phase transition occurs, with distributed be-
coming as good as centralized, when the network connectivity,
measured by , exceeds a certain threshold.
We distinguish this paper from our prior work on the perfor-

mance analysis of running consensus. In [27], we studied de-
terministically time varying networks and Gaussian observa-
tions, and in [28], we considered a different consensus+inno-
vations detector with Gaussian observations and additive com-
munication noise. Here, we consider random networks, non-
Gaussian observations, and noiseless communications. Refer-
ence [1] considers random networks and Gaussian, spatially
correlated observations. In contrast, here the observations are
non-Gaussian spatially independent. We proved our results in
[1] by using the quadratic nature of the Gaussian log-moment
generating function. For general non-Gaussian observations,
the log-moment generating function is no longer quadratic, and
the arguments in [1] no longer apply; we develop a more gen-
eral methodology that establishes the optimality threshold in
terms of the log-moment generating function of the log-likeli-
hood ratio. We derive our results from generic properties of the
log-moment generating function like convexity and zero value at
the origin. Finally, while [1] and our other prior work considered
zero detection threshold , here we extend the results to
generic detection thresholds . Our analysis reveals that, when

is above its critical value, the zero detector threshold
is (asymptotically) optimal. When is below the crit-

ical value, we compute the optimal detector threshold ,
which may be non-zero in general.
Our analysis shows the impact of the distribution of the sensor

observations on the performance of distributed detection: dis-
tributed detectors (with different distributions of the sensors
observations) can have different asymptotic performance, even
though the corresponding centralized detectors are equivalent,
as we will illustrate in detail in Section IV.
Paper outline. Section II introduces the network and sensor

observations models and presents the consensus+innovations
distributed detector. Section III presents and proves our main re-
sults on the asymptotic performance of the distributed detector.

For a cleaner exposition, this section proves the results for (spa-
tially) identically distributed sensor observations. Section IV il-
lustrates our results on several types of sensor observation dis-
tributions, namely, Gaussian, Laplace, and discrete valued dis-
tributions, discussing the impact of these distributions on dis-
tributed detection performance. Section V extends our main re-
sults to non-identically distributed sensors’ observations. Fi-
nally, Section VI concludes the paper.
Notation. We denote by: the -th entry of a matrix
; the -th entry of a vector ; , 1, and , respectively, the
identity matrix, the column vector with unit entries, and the -th
column of ; the ideal consensusmatrix ;

the vector (respectively, matrix) -norm of its vector (re-
spectively, matrix) argument; the Euclidean (re-
spectively, spectral) norm of its vector (respectively, matrix) ar-
gument; the -th largest eigenvalue; and the ex-
pected value and probability operators, respectively; the in-
dicator function of the event ; the product measure of
i.i.d. observations drawn from the distribution with measure ;

and the first and the second derivatives of the func-
tion at point .

II. PROBLEM FORMULATION

This section introduces the sensor observations model, re-
views the optimal centralized detector, and presents the con-
sensus+innovations distributed detector. The section also re-
views relevant properties of the log-moment generating func-
tion of a sensor’s log-likelihood ratio that are needed in the se-
quel.

A. Sensor Observations Model

We study the binary hypothesis testing problem versus
. We consider a network of sensors where is the

observation of sensor at time , and ,
Assumption 1: The sensors’ observations are inde-

pendent and identically distributed (i.i.d.) both in time and in
space, with distribution under hypothesis and under
:

(1)

Here and are mutually absolutely continuous, distinguish-
able measures. The prior probabilities and

are in .
By spatial independence, the joint distribution of the obser-

vations of all sensors

(2)

at any time is under and under . Our main re-
sults in Section III are derived under Assumption 1. Section V
extends them to non-identical (but still independent) sensors’
observations.

B. Centralized Detection, Log-Moment Generating Function
(LMGF), and Optimal Error Exponent

The log-likelihood ratio of sensor at time is and given
by
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where, , is 1) the probability density function cor-
responding to , when is an absolutely continuous random
variable; or 2) the probability mass function corresponding to ,
when is discrete valued.
Under Assumption 1, the log-likelihood ratio test for time

observations from all sensors, for a threshold is:1

(3)

Log-moment generating function (LMGF). We introduce
the LMGF of and its properties that play a major role in
assessing the performance of distributed detection. Let

denote the LMGF for the log-likelihood ratio under hy-
pothesis :

(4)

In (4), replaces , for arbitrary , and
, due to the spatial and temporal identically distributed

observations, see Assumption 1.
Lemma 1: Consider Assumption 1. For and in (4) the

following holds:
(a) is convex;
(b) , for , ,

and , ;
(c) satisfies:

(5)

Proof: For a proof of (a) and (b), see [29]. Part (c) follows
from the definitions of and , which we show here for the
case when the distributions and are absolutely continuous
(the proof for discrete distributions is similar):

We further assume that the LMGF of a sensor’s observation
is finite.
Assumption 2: , .
In the next two remarks, we give two classes of problems

when Assumption 2 holds.
Remark I: We consider the signal+noise model:

(6)

Here is a constant signal and is a zero-mean ad-
ditive noise with density function supported on ; we
rewrite , without loss of generality, as ,

1In (3), we re-scale the spatio-temporal sum of the log-likelihood ratios
by dividing the sum by . Note that we can do so without loss of generality,

as the alternative test without re-scaling is: with

where is a constant. Then, the Appendix shows that As-
sumption 2 holds under the following mild technical condition:
either one of (7) or (8) and one of (9) or (10) hold:

(7)

(8)

(9)

(10)

In (8) and (10), we can also allow either (or both) to
equal 1, but then the corresponding is in . Note that

need not be symmetric, i.e., need not be equal to
. Intuitively, the tail of the density behaves reg-

ularly, and grows either like a polynomial of arbitrary fi-
nite order in , or slower, like a power , , or like
a logarithm . The class of admissible densities
includes power laws , , or the exponential fami-
lies , , with: 1) the
Lebesgue base measure ; 2) the polynomial, power, or loga-
rithmic potentials ; and 3) the canonical set of parameters

, [30].
Remark II: Assumption 2 is satisfied if has arbitrary

(different) distributions under and with the same, com-
pact support; a special case is when is discrete, supported
on a finite alphabet.
Centralized detection: Asymptotic performance.We con-

sider briefly the performance of the centralized detector that will
benchmark the performance of the distributed detector. Denote
by , It can be shown [31] that

and . Now, consider the centralized detector
in (3) with the constant thresholds , for all , and denote by:

(11)

respectively, the probability of false alarm, probability of miss,
and Bayes (average) error probability. In this paper, we adopt
theminimum Bayes error probability criterion, both for the cen-
tralized and later for our distributed detector, and, from now on,
we refer to it simply as the error probability. A standard The-
orem (Theorem 3.4.3., [31]) says that, for any choice of

, the error probability decays exponentially fast to zero
in . For , the error probability does not converge
to zero at all. To see this, assume that is true, and let .
Then, by noting that , for all , we have that

as
, by the central limit theorem.

Denote by , the Fenchel-Legendre transform
[31] of :

(12)
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It can be shown [31] that is nonnegative, strictly convex
(unless is an almost sure constant), , for
, and , [31]. We now state the result on the

centralized detector’s asymptotic performance.
Lemma 2: Let Assumption 1 hold, and consider the family

of centralized detectors (3) with the constant threshold
Then, the best (maximal) error exponent:

is achieved for the zero threshold and equals
where
The quantity is referred to as the Chernoff informa-

tion of a single sensor observation Lemma 2 says that
the centralized detector’ error exponent is times larger than
an individual sensor’s error exponent. We remark that, even if
we allow for time-varying thresholds , the error expo-
nent cannot be improved, i.e., the centralized detector
with zero threshold is asymptotically optimal over all detec-
tors. We will see that, when a certain condition on the network
connectivity holds, the distributed detector is asymptotically op-
timal, i.e., achieves the best error exponent , and the zero
threshold is again optimal. However, when the network connec-
tivity condition is not met, the distributed detector is no longer
asymptotically optimal, and the optimal threshold may be non
zero.

Proof of Lemma 2: Denote by the LMGF for the
log-likelihood ratio for the observations of all sen-
sors at time . Then, , by the i.i.d. in space
assumption on the sensors’ observations. The Lemma now fol-
lows by the Chernoff lemma (Corollary 3.4.6, [31]):

C. Distributed Detection Algorithm

We now consider distributed detection when the sensors co-
operate through a randomly varying network. Specifically, we
consider the running consensus distributed detector proposed in
[21]. Each sensor maintains its local decision variable ,
which is a local estimate of the global optimal decision variable

in (3). Note that is not locally available. At each
time , each sensor updates in two ways: 1) by incor-
porating its new observation to make an intermediate de-
cision variable ; and 2) by exchanging
the intermediate decision variable locally with its neighbors and
computing the weighted average of its own and the neighbors’
intermediate variables.
More precisely, the update of is as follows:

(13)

Here is the (random) neighborhood of sensor at time
(including ), and are the (random) averaging weights.
The sensor ’s local decision test at time is:

(14)

i.e., (respectively, ) is decided when (respec-
tively, ).
Write the consensus+innovations algorithm (13) in

vector form. Let and
. Also, collect the averaging

weights in the matrix , where, clearly,
if the sensors and do not communicate at time

step . The algorithm (13) becomes:

(15)

Network model. We state the assumption on the random av-
eraging matrices .
Assumptions 3: The averaging matrices satisfy the fol-

lowing:
(a) The sequence is i.i.d.
(b) is symmetric and stochastic (row-sums equal 1 and

) with probability one, .
(c) There exists , such that, for any realization ,

, , and, whenever ,
.

(d) and are mutually independent over all and
.

Condition (c) is mild and says that: 1) sensor assigns a non-
negligible weight to itself; and 2) when sensor receives a mes-
sage from sensor , sensor assigns a non-negligible weight to
sensor .
Define the matrices by:

(16)

It is easy to verify from (15) that equals:

(17)

Choice of threshold . We restrict the choice of threshold
to , , , where we recall

, Namely, is a stochastic matrix,
hence , for all , and thus . Also,

, for all , . Now, by iterating ex-
pectation:

and so , for all . Moreover, it can be shown
(proof is omitted due to lack of space) that converges in
probability to under . Now, a similar argument as with the
centralized detector in Section II-B shows that for ,
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the error probability with detector (13) and (14) does not con-
verge to zero when . We will show that, for any

, the error probability converges to 0 exponentially fast,
and we find the optimal that maximizes a certain lower
bound on the exponent of the error probability.
Network connectivity. From (17), we can see that the ma-

trices should be as close to as possible for enhanced
detection performance. Namely, the ideal (unrealistic) case
when for all , corresponds to the scenario
where each sensor is equivalent to the optimal centralized
detector. It is well known that, under certain conditions, the
matrices converge in probability to :

such that vanishes exponentially fast in
, i.e., , . The

quantity determines the speed of convergence of the matrices
. The closer to zero is, the faster consensus is. We refer

to as the network connectivity. We will see that the dis-
tributed detection performance significantly depends on . For-
mally, is given by:2

(18)
For the exact calculation of , we refer to [32]. Reference [32]
shows that, for the commonly used models of , gossip and
link failure (links in the underlying network fail independently,
with possibly mutually different probabilities), is easily com-
putable, by solving a certain min-cut problem. In general, is
not easily computable, but all our results (Theorem 5, Corollary
6, Corollary 11) hold when is replaced by an upper bound. An
upper bound on is given by , [32].
The following Lemma easily follows from (18).
Lemma 4: Let Assumption 3 hold. Then, for any

, there exists a constant
(independent of ) such that, for any :

III. MAIN RESULTS: ASYMPTOTIC ANALYSIS AND ERROR
EXPONENTS FOR DISTRIBUTED DETECTION

Section III-A establishes the asymptotic performance of con-
sensus+innovations distributed detection under identically dis-
tributed sensors’ observations; Section III-B proves the results.

A. Statement of Main Results

In this section, we analyze the performance of distributed
detection in terms of the detection error exponent, when the
number of observations (per sensor), or the size of the obser-
vation interval tends to . In particular, we show that there
exists a threshold on the network connectivity such that
if is above this threshold, each sensor in the network
achieves asymptotic optimality (i.e., the error exponent at each
sensor is the total Chernoff information equal to ). When

is below the threshold, we give a lower bound for the
error exponent. Both the threshold and the lower bound are

2It can be shown that the limit in (18) exists and that it does not depend on
for .

given solely in terms of the log-moment generating function
and the number of sensors . These findings are summarized
in Theorem 5 and Corollary 6 below.
Let , , and denote the probability

of false alarm, the probability of miss, and the error probability,
respectively, of sensor for the detector (13) and (14), for the
threshold equal to :

(19)

where, we recall, and are the prior probabilities. Also,
recall , in (12).
Theorem 5: Let Assumptions 1–3 hold and consider the

family of distributed detectors in (13) and (14) parameterized
by detection thresholds . Let be the zero of the
function:

(20)

and define , by

(21)

(22)

Then, for every , at each sensor , ,
we have:

(23)

where

Corollary 6: Let Assumptions 1–3 hold and consider the
family of distributed detectors in (13) and (14) parameterized
by the detector threshold . Then:
(a)

(24)

and the lower bound in (24) is maximized for the point
3 at which .

(b) Consider , and let:

(25)

3As we show in the proof, such a point exists and is unique.
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Fig. 1. Top: Illustration of the error exponent lower bounds and
in Theorem 5; Bottom: Illustration of the function in (37), and the quan-
tities in (21). We consider sensors and a discrete distribution of
over a 5-point alphabet, with the distribution under , and

under . We set here .

Then, when , each sensor with the
detector threshold set to , is asymptotically optimal:

(c) Suppose , for . Then,
, irrespective of the value of (even when

.)
Fig. 1 (top) illustrates the error exponent lower bounds

and in Theorem 5, while Fig. 1 (bottom) illustrates the
quantities in (21). (See the definition of the function in
(37) in the proof of Theorem 5.) Note that is the convex
envelope of the functions and ,
We consider sensors and a discrete distribution of
over a 5-point alphabet, with the distribution
under , and under . We set
here
Remark: Consider part (c) of Corollary 6. When

, for , it can be shown that ,
and , for all . This implies that
the point at which and are equal is necessarily zero,
and hence the optimal detector threshold , irrespec-
tive of the network connectivity (even when

.) This symmetry holds for the Gaussian and Laplace
distribution considered in Section IV.
Corollary 6 states that, when the network connectivity

is above a threshold, the distributed detector in (13) and (14)

is asymptotically equivalent to the optimal centralized de-
tector. The corresponding optimal detector threshold is .
When is below the threshold, Corollary 6 determines
what value of the error exponent the distributed detector can
achieve, for any given . Moreover, Corollary 6
finds the optimal detector threshold for a given ; can
be found as the unique zero of the strictly decreasing function

on , see the proof of
Corollary 6 by bisection on .
Corollary 6 establishes that there exists a “sufficient” con-

nectivity, say , so that further improvement on the con-
nectivity (and further spending of resources, e.g., transmission
power) does not lead to a pay off in terms of detection perfor-
mance. Hence, Corollary 6 is valuable in the practical design of
a sensor network, as it says how much connectivity (resources)
is sufficient to achieve asymptotically optimal detection.
Equation (24) says that the distribution of the sensor obser-

vations (through LMGF) plays a role in determining the per-
formance of distributed detection. We illustrate and explain by
examples this effect in Section IV.

Proofs of the Main Results

We first prove Theorem 5.
Proof of Theorem 5: Consider the probability of false alarm

in (19). We upper bound using the exponential
Markov inequality [33] parameterized by :

(26)

Next, by setting , with , we obtain:

(27)

(28)

The terms in the sum in the exponent in (28) are conditionally
independent, given the realizations of the averaging matrices

, . Thus, by iterating the expectations, and
using the definition of in (4), we compute the expectation in
(28) by conditioning first on , :

(29)

Partition of the sample space. We handle the random matrix
realizations , , through a suitable partition of
the underlying probability space. Adapting an argument from
[1], partition the probability space based on the time of the last
successful averaging. In more detail, for a fixed , introduce
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the partition of the sample space that consists of the disjoint
events , , given by:

for , , and
. For simplicity of notation, we

drop the index in the sequel and denote event by ,
for . Intuitively, the smaller is, the closer

the product to is; if the event occurrs, then the
largest for which the product is still -close to equals
. We now show that is indeed a partition. We need the fol-
lowing simple Lemma. The Lemma shows that convergence of

is monotonic, for any realization of the matrices

Lemma 7: Let Assumption 3 hold. Then, for any realization
of the matrices :

Proof: Since every realization of is stochastic and
symmetric for every , we have that and
, and, so:

. Now, using the sub-multiplicative property
of the spectral norm, we get

To prove Lemma 7, it remains to show that ,
for any realization of . To this end, fix a realization of

. Consider the eigenvalue decomposition ,
where is the matrix of eigenvalues of
, and the columns of are the orthonormal eigenvectors. As
is the eigenvector associated with eigenvalue , we

have that where .
Because is stochastic, we know that

, and so .
We now show that is indeed a partition. Note first that

(at least) one of the events necessarily occurs. It
remains to show that the events are disjoint. We carry out
this by fixing arbitrary , and showing that, if the
event occurs, then , , does not occur. Suppose that
occurs, i.e., the realizations are such that

and . Fix any
Then, event does not occur, because, by Lemma 7,

Now, fix any Then, event
does not occur, because, by Lemma 7,

Thus, for any , if the event
occurs, then , for , does not occur, and hence the events
are disjoint.
Using the total probability law over , the expectation (29)

is computed by:

(30)

where, we recall, is the indicator function of the event .
The following lemma explains how to use the partition to
upper bound the expectation in (30).
Lemma 8: Let Assumptions 1–3 hold. Then:
(a) For any realization of the random matrices ,

:

(b) Further, consider a fixed in . If the event
occurred, then, for :

,

Proof: To prove part (a) of the Lemma, by convexity
of , the maximum of over the simplex

is achieved
at a corner point of the simplex. The maximum equals:

where we use the
property from Lemma 1, part (b), that . Finally, since
for any realization of the matrices , the set of
entries is a point in the simplex,
the claim of part (1) of the Lemma follows.
To prove part (b) of the Lemma, suppose that event oc-

curred. Then, by the definition of ,

Now, by Lemma 7:

for every . Then, by the equivalence of the 1-norm and the
spectral norm, it follows that:

Finally, since is convex (Lemma 1, part (a)), its maximum
in is attained at a boundary point
and the claim follows.
We now fix . Using the results from Lemma 4

and Lemma 8, we next bound the expectation in (30) as follows:

(31)

To simplify the notation, we introduce the function:

(32)
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We need the following property of .
Lemma 9: Consider in (32). Then, for every ,

the following holds:

Proof: Since is convex, for and for a fixed ,
we have that

Thus, for a fixed , is non-increasing, and the claim of
the Lemma follows.
We now bound the right hand side in (31). Rewrite

as : See equa-
tion (33) at the bottom of the page. The second inequality
follows by introducing and by enlarging the set for
from to the continuous interval . Taking the

and dividing by , from (27) and (33) we get:

(34)

Taking the when , the first two terms in the right
hand side of (34) vanish; further, changing the sign, we get a
bound on the exponent of that holds for every :

By Lemma 9, as , decreases to ; fur-
ther, letting , we get

(35)

The previous bound on the exponent of the probability of false
alarm holds for any . To get the best bound, we maximize
the expression on the right hand side of (35) over .
(We refer to Fig. 1, top and bottom, to help us illustrate the
bounds and for the discrete valued observations

over a 5-point alphabet.) More precisely, we calculate
from Theorem 5:

(36)

where
(37)

To calculate in (36), we need to find an optimizer
(if it exists) of the objective in (36); from the first order

optimality conditions, is a point that satisfies:

(38)

where denotes the subdifferential set of at . We
next characterize , for . Recall the zero of

from Theorem 5. The function in (37) equals: 1)
on ; 2) at
; and 3) on . Thus, by the rule

for the subdifferential of a pointwise maximum of two convex
functions, the subdifferential is:

for
for
for .

(39)

Geometrically, is the set of slopes of the tangent lines to
the graph of at the point (see Fig. 1, bottom). We next
find for any , by finding for
any . Geometrically, from Fig. 1, bottom, given a
slope , finding a corresponds to finding a point
at which a tangent line to the graph of has a slope Re-
call and from Theorem 5. We consider separately three
regions: 1) ; 2) ; and 3) .
For the first region, (38) reduces to finding such that

. Recall that , i.e., for , (38) holds
(only) for . Also, for , we have, by definition of
, that , i.e., (38) holds (only) for . Be-

cause is continuous and strictly increasing on ,
it follows that, for any , there exists a solution to
(38), it is unique, and lies in . Now, we calculate :

(40)

(41)

(33)
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where we used the fact that (because
), and the definition of the function in (12). We now

consider the second region. Fix . It is trivial to
verify, from (39), that is the solution to (38). Thus, we
calculate as follows:

(42)

(43)

where we used the fact that
. The proof for the third region is analogous to

the proof for the first region.
For a proof of the claim on the probability of miss

, we proceed analogously to (26), where in-
stead of , we now use (and, hence, the proof pro-
ceeds with ).

Proof of Corollary 6: We first prove part (a). Consider the
error probability in (19). By Lemma 1.2.15 in [31],
we have that:

where the last inequality is by Theorem 5; thus, the left in-
equality in (24). We now show the right inequality in (24), i.e.,

for all First, from the
expression for in Theorem 5, for , we have:

, and for any
. As the function is convex, we conclude that
, for all (The same conclusion holds under
by replacing with )

Analogously, it can be shown that for all ;
thus, , for all
We now calculate . Con-

sider the function . Using the def-
inition of in Theorem 5, and taking the subdifferential
of at any point , it is easy to show that

, for any subgradient , which im-
plies that is strictly increasing on . Similarly,
it can be shown that is strictly decreasing on .
Further, using the properties that and , we
have , and .
By the previous two observations, we have that is strictly
decreasing on , with and .
Thus, has a unique zero on . Now, the claim:

holds
trivially because is strictly increasing on ,

is strictly decreasing on , and and
intersect at . This completes the proof of part (a).
We now prove part (b). Suppose that

We show that, for :

(44)

(The last equality in (44) holds because
.)

We prove only the equality for in (44) as the equality for
follows similarly. Because , we have,

by the definition of in (37), that
Recall that , where is a point
for which (38) holds for . However, because

, and , it follows that
and ,

which proves (44).
Now, (44) means that . Further, ,

and, from part (a), is unique, and so has to be 0. This shows
that ,
and so, by part (a):

(45)

On the other hand,

(46)

because, by the Chernoff lemma [31], for any test (with
the corresponding error probability ,) we have that

. Combining (45) and
(46) yields’

Thus, the result in part (b) of the Lemma holds.

IV. EXAMPLES

This section illustrates our main results for several examples
of the distributions of the sensor observations. Section IV-A
compares the Gaussian and Laplace distributions, both with a
finite number of sensors and when . Section IV-B
considers discrete distributions with finite support, and, in more
detail, binary distributions. Finally, Section IV-C numerically
demonstrates that our theoretical lower bound on the error expo-
nent (24) is tight. Section IV-C also shows through a symmetric,
tractable example how distributed detection performance de-
pends on the network topology (sensors’ degree and link oc-
currence/failure probability.)

A. Gaussian Distribution Versus Laplace Distribution

Gaussian distribution. We now study the detection of a
signal in additive Gaussian noise; has the following
density:

.
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The LMGF is given by: The min-

imum of is achieved at , and the per sensor Cher-
noff information is

Applying Corollary 6 (b), we get the sufficient condition for
optimality:

(47)

Since , the two conditions from the Corollary
here reduce to a single condition in (24).
Now, let the number of sensors , while keeping the

total Chernoff information constant, i.e., not dependent on ;
that is, , Intu-
itively, as increases, we deploy more and more sensors over a
region (denser deployment), but, on the other hand, the sensors’
quality becomes worse and worse. The increase of is bal-
anced in such a way that the total information offered by all sen-
sors stays constant with . Our goal is to determine how the op-
timality threshold on the network connectivity de-
pends on . We can see from (47) that the optimality threshold
for the distributed detector in the Gaussian case equals:

(48)

Laplace distribution. We next study the optimality condi-
tions for the sensor observations with Laplace distribution. The
density of is:

.

The LMGF has the following form:

Again, the minimum is at ; the per sensor Chernoff

information is . The optimality
condition in (24) becomes:

(49)

Gaussian versus Laplace distribution. It is now interesting
to compare the Gaussian and the Laplace case under equal per
sensor Chernoff information . Fig. 2 (top) plots
the LMGF for the Gaussian and Laplace distributions, for
, , ,

and By (25), the optimality threshold
equals

Fig. 2. Top: LMGFs for Gaussian and Laplace distributions with equal per
sensor Chernoff informations, for ,

, , and Solid lines plot the

functions for the two distributions, while dashed lines plot the func-
tions . For both solid and dashed lines, the Gaussian distribution corre-
sponds to the more curved functions. The optimality threshold in (25) is given
by , as . Bottom: Lower bound on the error ex-
ponent in (24) and theMonte Carlo estimate of the error exponent versus
for the Gaussian and Laplace sensor observations: ,

, , and .

as , for both the Gaussian and Laplace distributions.
The threshold can be estimated from Fig. 2 (top): solid lines
plot the functions for the two different distributions,
while dashed lines plot the functions . For both solid
and dashed lines, the Gaussian distribution corresponds to the
more curved functions. We see that the threshold is larger for
the Gaussian case. This means that, for a certain range

, the distributed detector with Laplace sensors is
asymptotically optimal, while with Gaussian sensors the dis-
tributed detector may not be optimal, even though it uses the
same network infrastructure (same ) and has same per sensor
Chernoff information. (See also Fig. 2 (bottom) for another il-
lustration of this effect.)
We now compare the Gaussian and Laplace distributions

when , and we keep the Gaussian total Chernoff in-
formation constant with . Let the Laplace distribution
parameters vary with as:

We can show that, as , the total Chernoff information
as , and so the Gaussian and the Laplace

centralized detectors become equivalent. On the other hand, the
threshold for the Gaussian distributed detector is given by (48),
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while, for the Laplace detector, using (49) and a Taylor expan-
sion, we get that the optimality threshold is approximately:

Hence, the required to achieve the optimal error expo-
nent grows much slower with the Laplace distribution than with
the Gaussian distribution.

B. Discrete Distributions

We now consider the case when the support of the sensor
observations under both hypotheses is a finite alphabet

. This case is of practical interest when, for
example, the sensing device has an analog-to-digital converter
with a finite range; hence, the observations take only a finite
number of values. Specifically, the distribution of , ,
, is given by:

(50)

Then, the LMGF under equals:

Note that is finite on . Due to concavity of ,
the argument of the Chernoff information

can, in general, be ef-
ficiently computed numerically, for example, by the Netwon
method (see, e.g., [34], for details on the Newton method.)

It can be shown, defining , that the Newton
direction, e.g., [34], equals:

Binary observations. To gain more intuition and obtain analyt-
ical results, we consider (50) with , i.e., binary sensors,
with , . Suppose fur-
ther that We can show that the negative of the per sensor
Chernoff information and the quantity are:

Further, note that:

(51)

Also, we can show similarly that:

(52)

Combining (51) and (52), and applying Corollary 6 (24), we get
that a sufficient condition for asymptotic optimality is:

From the equation above, we can further obtain a very simplified
sufficient condition for optimality:

(53)

The expression in (53) is intuitive. Consider, for example, the
case , so that the right hand side in (53) simplifies to:

. Let vary from to 1. Then, as increases, the
per sensor Chernoff information increases, and the optimal cen-
tralized detector has better and better performance (error expo-
nent.) That is, the centralized detector has a very low error prob-
ability after a very short observation interval . Hence, for larger
, the distributed detector needs more connectivity to be able to
“catch up” with the performance of the centralized detector. We
compare numerically Gaussian and binary distributed detectors
with equal per sensor Chernoff information, for sen-
sors, , , , and .
Binary detector requires more connectivity to achieve asymp-
totic optimality , while Gaussian detector requires

C. Tightness of the Error Exponent Lower Bound in (24) and
the Impact of the Network Topology

Assessment of the tightness of the error exponent lower
bound in (24). We note that the result in (24) is a theoret-
ical lower bound on the error exponent. In particular, the con-
dition is proved to be a sufficient, but
not necessary, condition for asymptotically optimal detection; in
other words, (24) does not exclude the possibility of achieving
asymptotic optimality for a certain value of smaller than

. In order to assess the tightness of (24) (for both the
Gaussian and Laplace distributions,) we perform Monte Carlo
simulations to estimate the actual error exponent and compare
it with (24). We consider sensors and fix the sensor ob-
servation distributions with the following parameters:

, , and
We vary as follows. We construct a (fixed)

geometric graph with sensors by placing the sensors uni-
formly at random on a unit square and connecting the sensors
whose distance is less than a radius. Each link is a Bernoulli
random variable, equal to 1 with probability (link online), and
equal to 0 with probability (link offline). The link oc-
currences are independent in time and space. We change by
varying from 0 to 0.95 in the increments of 0.05. We adopt
the Metropolis weights: whenever a link is online, we set

, where is the number of
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neighbors of sensor at time ; when a link is offline,
; and , where we

recall that is the neighborhood of sensor . We obtain an
estimate of the error probability at sensor and time
using 30,000 Monte Carlo runs of (13) per each hypothesis. We
then estimate the sensor-wide average error exponent as:

with That is, we estimate the error ex-
ponent as the average slope (across sensors) of the error prob-
ability curve in a semi-log scale. Fig. 2 (bottom) plots both
the theoretical lower bound on the error exponent in (24) and
the Monte Carlo estimate of the error exponent versus
for Gaussian and Laplace distributions. We can see that the
bound (24) is tight for both distributions. Hence, the actual dis-
tributed detection performance is very close to the performance
predicted by (24). Of course, above the optimality threshold,
(24) and the actual error exponent coincide and are equal to
the total Chernoff information. Also, we can see that the the-
oretical threshold by optimality and the threshold
value computed from simulation are very close. Finally, the dis-
tributed detector with Laplace observations achieves asymptotic
optimality for a smaller value of than the
distributed detector with Gaussian observations ,
even though the corresponding centralized detectors are asymp-
totically equivalent.
Impact of the network topology. We have seen in the pre-

vious two subsections how detection performance depends on .
In order to understand how depends on the network topology,
we consider a symmetric network structure, namely a regular
network. For this case, we can express as an explicit (closed
form) function of the sensors’ degrees and the link occurrence
probabilities. Recall that the smaller is, the better the network
connectivity.
Consider a connected regular network with sensors and

degree . Suppose that each link is a Bernoulli random
variable, equal to 1 with probability (link online) and 0 with
probability (link offline,) with spatio-temporally indepen-
dent link occurrences. Then, it can be shown [32] that equals:

(54)

This expression is very intuitive. When increases, i.e., when
the links are online more often, the network (on average) be-
comes more connected, and hence we expect that the network
connectivity increases (improves). This is confirmed by
(54): when increases, becomes smaller and closer to zero,
and hence increases. Further, when increases, the net-
work becomes more connected, and hence the network speed
again improves. Note also that is a
linear function of .
We now recall Corollary 6 to relate distributed detection per-

formancewith and . For example, for a fixed , the distributed
detection optimality condition becomes i.e., dis-
tributed detection is asymptotically optimal when the sensors’
degree is above a threshold. Further, because , it fol-
lows that, for a large value of and a small , even

the networks with a very large degree (say, ) do not
achieve asymptotic optimality. Intuitively, a large
means that the corresponding centralized detector decreases the
error probability so fast in that, because of the intermittent
link failures, the distributed detector cannot “catch up” with the
centralized detector. Finally, when , the optimality con-
dition becomes , i.e., distributed detection is asymptot-
ically optimal for any . This is because, when ,
the network is always connected, and the distributed detector
asymptotically “catches up” with an arbitrarily fast centralized
detector. In fact, it can be shown that an arbitrarily connected
network with no link failures achieves asymptotic optimality for
any value of (Such a network has [32], and
the network connectivity is .)

V. NON-IDENTICALLY DISTRIBUTED OBSERVATIONS

We extend Theorem 5 and Corollary 6 to the case of (indepen-
dent) non-identically distributed observations. First, we briefly
explain the measurement model and define the relevant quanti-
ties. As before, let denote the observation of sensor at
time , , .
Assumption A: The observations of sensor are i.i.d. in time,

with the following distribution:

(Here we assume that and are mutually absolutely con-
tinuous, distinguishable measures, for ). Further,
the observations of different sensors are independent both in
time and in space, i.e., for , and are inde-
pendent for all and .
Under Assumption A, the form of the log-likelihood ratio test

remains the same as under Assumption 1:

where the log-likelihood ratio at sensor , , is now:

and , is the density (or the probability mass) func-
tion associated with . We now discuss the choice of detector

thresholds . Let ,

where . We can show that, if ,
then any yields an exponentially fast decay of
the error probability, at any sensor. The condition
means that the network is connected on average, e.g., [35]; if
met, then, for all , as ,
(Proof is omitted for brevity.) Clearly, under identical sensors,

for any , and hence the range of detector thresh-
olds becomes the one assumed in Section II-C.
Denote by the LMGF of under hypothesis :

We assume finiteness of the LMGF’s of all sensors. Assumption
2 is restated explicitly as Assumption B.
Assumption B: For , , .
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The optimal centralized detector, with highest error exponent,
is the log-likelihood ratio test with zero threshold [31], its
error exponent is equal to the Chernoff information of the vector
of all sensors observations, and can be expressed in terms of the
LMGF’s as:

Here, is the minimizer of over . We are
now ready to state our results on the error exponent of the
consensus+innovation detector for the case of non-identically
distributed observations. We continue to use , ,
and to denote the false alarm, miss, and Bayes error
probabilities of the distributed detector at sensor .
Theorem 10: Let Assumptions A, B and 3 hold, and let, in

addition, Consider the family of distributed detec-
tors in (13) and (14) with thresholds . Then, at each
sensor :

(55)

where

(56)

(57)

Corollary 11: Let Assumptions A, B and 3 hold, and let, in
addition, Consider the family of distributed detec-
tors in (13) and (14) with thresholds . Then:
(a) At each sensor :

(58)

and the lower bound in (58) is maximized for the point
at which

(b) Consider , and let:

(59)

Then, when , each sensor with
the detector threshold set to , is asymptotically optimal:

Comparing Theorem 5 with Theorem 10, we can see that,
under non-identically distributed observations, it is no longer
possible to analytically characterize the lower bounds on the

error exponents, and . However, the objective
functions (in the variable ) in (56) and (57) are concave (by
convexity of the LMGF’s) and the underlying optimization
variable is a scalar, and, thus, and can be
efficiently found by a one dimensional numerical optimization
procedure, e.g., a subgradient algorithm [36].
The proof of Theorem 10 mimics the proof of Theorem 5;

we focus only on the steps that account for different sensors’
LMGF’s. The proof of Corollary 11 is omitted due to the lack
of space.

Proof of Theorem 10: First, expression (29) that upper
bounds the probability of false alarm for the case of
non-identically distributed observations becomes:

Next, we bound the sum in the exponent of the previous equa-
tion, conditioned on the event , for a fixed in ,
deriving a counterpart to Lemma 8.
Lemma 12: Let Assumptions A, B, and 3 hold. Then,
(a) For any realization of , :

(b) Consider a fixed in . If the event oc-
curred, then, for :

The remainder of the proof proceeds analogously to the proof
of Theorem 5.

VI. CONCLUSION

We analyzed the large deviations performance (error ex-
ponent) of consensus+innovations distributed detection over
random networks. The sensors’ observations have generic
(non-Gaussian) distribution, independent, not necessarily iden-
tical over space, and i.i.d. in time. Our results hold assuming
that the log-moment generating functions of each sensor’s
log-likelihood ratio are finite. We showed that the distributed
detector exhibits a phase transition behavior with respect to
the network connectivity, measured by , where is
the (exponential) rate of convergence in probability of the
product to the consensus matrix

. When is above the threshold, the dis-
tributed detector has the same error exponent as the optimal
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centralized detector. We further showed that the optimality
threshold depends on the type of the distribution of the sensor
observations. Numerical and analytical studies illustrated this
dependence for Gaussian, Laplace, and binary distributions of
the sensors’ observations.

APPENDIX

Proof of finiteness of the log-moment generating function
under (7)–(10). We now show that Assumption 2 holds, i.e.,
that is finite for any , if (7) and (9) hold. The other
combinations for finiteness of when 1) either (7) or (8);
and 2) either (9) or (10) hold can be shown similarly, and, hence,
for brevity, we do not consider these cases. Assume (the
case can be treated analogously), fix and consider:

(60)

where we use the fact that the density under is
, i.e., is the shifted density (of the noise)

under . With , (60) is rewritten as:

Now, by (7), for any , there exists , so
that

Further, we have that:

(61)

Also, for any , there exists , such that:

(62)

Now, combining (61) and (62), we obtain:

(63)

To upper bound the integral ,
we note that, by (63), we can choose large enough, so that:

for arbitrary . Thus,
we have:

Finiteness of the integral ,
using (9), can be proved in an analogous way. As is
arbitrary, we conclude that , .
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