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Abstract

Simultaneous localization and tracking (SLAT) in sensor networks aims to determine the positions

of sensor nodes and a moving target in a network, given incomplete and inaccurate range measurements

between the target and each of the sensors. One of the established methods for achieving this is to

iteratively maximize a likelihood function (ML) of positions given the observed ranges, which requires

initialization with an approximate solution to avoid convergence towards local extrema. This paper

develops methods for handling both Gaussian and Laplacian noise, the latter modeling the presence of

outliers in some practical ranging systems that adversely affect the performance of localization algorithms

designed for Gaussian noise. A modified Euclidean Distance Matrix (EDM) completion problem is solved

for a block of target range measurements to approximately set up initial sensor/target positions, and the

likelihood function is then iteratively refined through Majorization-Minimization (MM). To avoid the

computational burden of repeatedly solving increasingly large EDM problems in time-recursive operation,

an incremental scheme is exploited whereby a new target/node position is estimated from previously

available node/target locations to set up the iterative ML initial point for the full spatial configuration.

The above methods are first derived under Gaussian noise assumptions, and modifications for Laplacian

noise are then considered. Analytically, the main challenges to overcome in the Laplacian case stem

from the non-differentiability of `1 norms that arise in the various cost functions. Simulation results
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show that the proposed algorithms significantly outperform existing localization methods in the presence

of outliers, while providing comparable performance for Gaussian noise.

I. INTRODUCTION

This work addresses the problem of tracking a single target from distance-like measurements taken by

nodes in a sensor network whose positions are not precisely known. The goal is to estimate the positions

of all sensors and of the target, given partial or no a priori information regarding the spatial configuration

of the network. As the ability to track a target is a key component in several scenarios of wireless sensor

networks, methods that avoid the need for careful calibration of sensor positions are practically relevant.

In this section we describe the proposed approach, outline the main contributions, and review some

relevant literature. The latter includes other SLAT methods and Sensor Network Localization (SNL)

methods, which are actually more directly related to our approach.

In [1], [2] SLAT is formulated in a Bayesian framework that exploits the connections with the well-

studied problem of simultaneous localization and mapping (SLAM) in robotics. The a posteriori probabil-

ity density function of sensor/target positions and calibration parameters is recursively propagated in time

as new target sightings become available. The observations in [1] are true range measurements obtained

through a combination of transmitted acoustic and radio pulses. Some alternatives to range include

pseudorange and bearing information estimated from camera images [2] or the (somewhat unreliable)

Received Signal Strength (RSS) of radio transmissions [3]. In [4] the SLAT problem is also formulated

in a Bayesian framework as a general state evolution model under a binary proximity model and solved

in a decentralized way using binary sensor networks. Another SLAT-like approach using localization

techniques (calibration) is presented in [5], where positions and orientations of unknown sources and

sensors are centrally obtained via ML based on time-of-arrival and angle-of-arrival measurements.

In our approach target dynamics are not accounted for; therefore the SLAT problem may be thought of

as a special type of SNL, with a limited set of intersensor measurements, for a network comprising the

original set of nodes and the sensed target positions. We resort to EDM methods based on Semidefinite

Programming (SDP), which were previously adopted for static SNL (see [6] and references therein).

EDM completion for SLAT is discussed in [3], although the authors pursued an alternative approximate

completion approach based on a variant of Multidimensional Scaling (MDS). Underwater and underground

scenarios with uncertainty in anchor positions are considered in [7], and edge-based SDP is proposed to

reduce the computational complexity of SNL. In [8] static SNL is formulated as a problem of ML phase

retrieval.
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In addition to centralized SNL approaches such as [6]–[8], enumerated above, a wealth of results are

available on distributed approaches for scenarios where the existence of a central node is inconvenient,

e.g., due to congested communications in its vicinity or excessive vulnerability of the whole infrastructure

to failure of that single node [3], [9]–[13]. A two-step approach based on second-order cone programming

relaxation with inaccurate anchor positions is introduced in [9]. In [11] a weighted least-squares algorithm

with successive refinement provides both position estimates and their covariances in partially connected

scenarios. A distributed weighted MDS method with majorization approximations is applied in [12]. The

cost function and the majorization technique are similar to those used in this paper for ML iterative

refinement under Gaussian noise, but initialization relies on prior estimates of sensor positions.

This paper focuses on centralized SLAT based on plain ML estimation. We propose a two-stage

approach consisting of a startup phase whose main goal is to obtain an outline of the network configuration

from a block of measurements (as in [1], we will often use the term batch for such a block, or to qualify

the associated processing algorithms), followed by an updating phase where new target sightings are

incrementally assimilated as they become available, while improving all previously determined locations.

Each phase consists of an initialization step to calculate approximate locations, followed by an iterative

refinement step of the likelihood function using Majorization-Minimization (MM) [14]. Local convergence

to undesirable extrema in ML methods due to poor initialization is thus alleviated.

During startup the initialization step solves an EDM completion problem for range data from multiple

target sightings, which requires little a priori knowledge of sensor/target positions. The updating phase,

carried out for each new target sighting after startup, aims to bypass the need for EDM initialization

with increasingly large matrices as time progresses and more range measurements become available.

Initialization in this phase uses source localization algorithms that fix all previously estimated positions

and attempt to determine the location for the most recently observed target. The computational load of

this simplified recursive initialization scheme remains constant with time.

Table I provides a high-level description of our SLAT algorithm. Detailed expressions for the various

operations are derived below for Gaussian and Laplacian noise. We highlight the following contributions

of our work:

SLAT with modest prior knowledge: We emphasize the development of a SLAT method with modest

prior assumptions on the sensor/target positions. This is achieved mainly by casting SLAT as an SNL or

source localization problem during initialization in the startup and updating phases, respectively, which

admit accurate convex relaxations where local extrema are absent. Anchors are still needed in refinement

steps to eliminate fundamental translation and rotation ambiguities in the likelihood function. By contrast,
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in the published Bayesian formulations of SLAT a tacit assumption is made that the prior is sufficiently

concentrated around the true locations to circumvent local convergence issues.

Coherent ML framework with moderate complexity: Our startup/time-recursive updating approach

was proposed in [15] for Gaussian noise, using cost functions for the initialization steps that match

squared observations with squared estimated ranges. These discrepancies with respect to the likelihood

function are eliminated in the present paper, allowing for both the initialization and ML refinement steps

to operate with cost functions that match plain (non-squared) ranges, and leading to improved robustness

under strong measurement noise [16]. This is attained with a similar complexity to the methods in [15].

Localization for Gaussian and Laplacian noise models: In addition to the Gaussian case, this work

develops startup and updating algorithms for Laplacian noise, to model the presence of outliers in some

practical ranging systems that adversely affect the performance of localization algorithms designed for

Gaussian noise [1], [17]. Our proposed methods for the initialization steps are novel and relevant for SNL

and source localization applications. In particular, for startup initialization we develop EDM completion

methods that depart from related approaches [6], [18] in which squared range measurements are matched.

The details of our cost functions are different for Gaussian and Laplacian noise models, but in both cases

we gain robustness to range errors relative to more standard EDM methods by matching plain distances.

With regard to the updating phase, we use the SLCP method proposed in [19] for the initialization step

under Gaussian noise. SLCP is a 2D source localization algorithm which matches plain ranges using a

formulation in the complex plane to attain an accurate convex relaxation as an SDP. Under Laplacian

noise we present a novel source localization algorithm using `1 norms that we designate by SL`1.

We address Laplacian noise by replacing `2 norms with `1 norms for various optimization subproblems

that are initially formulated under the assumption of Gaussian noise, and then performing suitable

manipulations to write these in a form that is amenable to general-purpose solvers. In [17] `1 norms

are also used to handle outliers, but the proposed method is very different from the one developed here,

as it relies on linear programming to identify the outliers, and then removes them from consideration

when computing the source location. In our work all measurements are kept, as the modulus of range

differences that appears in cost functions ensures that outlier terms do not overwhelm the remaining ones

if the proportion of outliers remains small. Another approach for handling outliers is presented in [20],

where the Huber cost function interpolates between `1 and `2 norms. This function is minimized via

iterative majorization techniques with a priori information on sensor positions.

The remainder of the paper is organized as follows. In Section II, the SLAT problem is introduced.
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Section III presents estimation methods for range measurements corrupted by Gaussian noise, namely,

EDM initialization, iterative likelihood refinement by MM, and time-recursive updating through incre-

mental estimation of target/sensor positions. Section IV develops similar methods for Laplacian noise.

Section V provides simulation results for the performances of startup and updating algorithms under both

types of measurement noise. Lastly, Section VI summarizes the main conclusions.

Throughout, both scalars and individual position vectors in (2D) space will be represented by lowercase

letters. Matrices and vectors of concatenated coordinates will be denoted by boldface uppercase and

lowercase letters, respectively. The superscript T (H) stands for the transpose (Hermitian) of the given

real (complex) vector or matrix. Below, Im is the m×m identity matrix and 1m is the vector of m ones.

For symmetric matrix X, X � 0 means that X is positive semidefinite.

II. PROBLEM FORMULATION

The network comprises sensors at unknown positions {x1, x2, . . . , xn} ∈ R2, a set of reference sensors

(anchors) at known positions {a1, a2, . . . , al} ∈ R2, and unknown target positions {e1, e2, . . . , em} ∈ R2.

A central processing node has access to range measurements between target positions and all sen-

sors/anchors, namely,

dij = ‖xi − ej‖+ wij , dkj = ‖ak − ej‖+ wkj ,

where wij and wkj denote noise terms. A practical system that provides such range measurements is

used, e.g., in [1].

a) SLAT Under Gaussian Noise: If disturbances are Gaussian, independent and identically dis-

tributed (i.i.d.), then maximizing the likelihood for the full batch of observations is equivalent to mini-

mizing the cost function

ΩG(x) =
∑
i,j

(‖xi − ej‖ − dij)2 +
∑
k,j

(‖ak − ej‖ − dkj)2. (1)

The set of unknown sensor and target positions is concatenated into column vector x ∈ R2(n+m), the

argument of ΩG. The goal of our SLAT approach is to find the set of coordinates in x which minimizes

(1).

b) SLAT Under Laplacian Noise: When the disturbances are Laplacian and i.i.d., thus heavier tailed

than Gaussian, maximizing the likelihood amounts to minimizing the cost function

ΩL(x) =
∑
i,j

|‖xi − ej‖ − dij |+
∑
k,j

|‖ak − ej‖ − dkj |. (2)
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TABLE I: Summary of the proposed SLAT algorithm
Goal: Given incomplete and inaccurate range measurements, find sensor and target positions which (locally) maximize the

likelihood function (1) for Gaussian noise or (2) for Laplacian noise

Startup phase (Batch algorithms)

1) Collect a block of range measurements for target sightings at times t = 1, . . . , T

2) Initialization step: Solve EDM completion problem using (8) or (20)

3) Factorize EDM matrix to get spatial coordinates

4) Refinement step: Improve the likelihood of sensor/target positions by iterative MM using (12) or (25)

Updating phase (Time-recursive algorithms)

1) Collect range measurements for a new target sighting at time t > T

2) Initialization step: Solve source localization problem for new target position using (16) or (35)

3) Refinement step: Repeat likelihood refinement as in startup

When compared with (1), the absence of squares in the summation terms of (2) renders the function less

sensitive to outlier measurements dij with large deviations from the true ranges.

Since the Euclidean distance metric in both problem setups is invariant to global rotation, translation,

and reflection, so are the functions ΩG and ΩL in the absence of anchors.

To remove most of those ambiguities1 in the solutions, a minimum of l = 3 non collinear anchors must

be considered. As in many other ML problems, the functions ΩG and ΩL are in general nonconvex and

multimodal, hence their (approximate) minimization proceeds in two steps: initialization and refinement.

The former provides suitable initial points, through EDM completion (startup) or source localization (up-

dating), for target/sensor positions which tend to avoid convergence towards undesirable local minimizers

of the ensuing iterative refinement algorithms based on MM or weighted-MM.

In Sections III and IV we develop algorithms for the operations listed in the algorithm overview of

Table I under Gaussian and Laplacian noise, respectively.

III. SLAT UNDER GAUSSIAN NOISE

This section develops algorithms for EDM initialization, MM refinement, and time-recursive estimation

in SLAT under the assumption that measurement noise is i.i.d. and Gaussian. First, a basic formulation

of EDM completion with squared distances is provided to form the basis for the initialization methods

described in Sections III-B and IV-A.

1Some geometrical configurations for sensor and target positions have intrinsic rotation/reflection ambiguities for range-based

localization that cannot be resolved by anchors.
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A. EDM with Squared Distances

The basic EDM completion problem, described below, operates on squared ranges [21], [22]. Even

though it is not matched to the likelihood function (1), it is useful for benchmarking in Section V, as its

performance is representative of other popular SNL methods [6], [18] and the SLAT approach of [15].

A partial pre-distance matrix D is a matrix with zero diagonal entries and with certain nonnegative

elements equal to the squares of observed distances, Dij = d2
ij . The remaining elements are considered

free. The nearest EDM problem is to find an EDM E that is nearest in the least-squares sense to matrix

D, when the free variables are not considered and the elements of E satisfy Eij = ‖yi − yj‖2 for a set

of points yi. The geometry and properties of EDM (a convex cone) have been extensively studied in the

literature [21], [22]. The nearest EDM problem in 2D space is formulated as

minimize
∑

i,j∈O(Eij − d2
ij)

2

E

subject to E ∈ E

E(A) = A

rank(JEJ) = 2,

(3)

where

J =
(
Iρ −

1
ρ
1ρ1ρT

)
, ρ = m+ n+ l,

is a centering operator which subtracts the mean of a vector from each of its components. In (3), O is the

index set for which range measurements are available. The constraint E(A) = A, where A is the index

set of anchor/anchor distances and Aij = ‖ai − aj‖2 is the corresponding EDM submatrix, enforces the

known a priori spatial information. Matrix E belongs to the EDM cone E if it satisfies the properties

Eii = 0, Eij ≥ 0, −JEJ � 0. (4)

The rank constraint in (3) ensures that the solution is compatible with a constellation of sensor/anchor/target

points in R2. Extraction of the set yi from E is described below. Problem (3) is also known as the penalty

function approximation [21] due to the form of the cost function ϕ1(E) =
∑

i,j(Eij−d2
ij)

2. By expressing

(3) in terms of full matrices and dropping the rank constraint, a compact relaxed SDP formulation is

obtained as
minimize ‖W � (E−D)‖2F

E

subject to E ∈ E , E(A) = A,

(5)
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where W is a mask matrix with zeros in the entries corresponding to free elements of Dij = d2
ij and

ones elsewhere. When combined with the Hadamard product �, the Frobenius norm ‖.‖F replaces the

summation in (3) over the observed index set O. From here on, we will call this method EDM with

squared ranges (EDM-SR).

B. Startup Initialization: EDM with Plain Distances

Instead of trying to match squared distances, we can apply EDM completion to plain distances as

minimize
∑

i,j(
√
Eij − dij)2

E

subject to E ∈ E , E(A) = A

rank(JEJ) = 2.

(6)

For this method the penalty function is ϕ2(E) =
∑

i,j(
√
Eij − dij)2, which more closely resembles the

terms in the likelihood function (1), and (6) is thus expected to inherit some of the robustness properties

of ML estimation. Expanding the objective function in (6) results in

minimize
∑

i,j(Eij − 2
√
Eijdij + d2

ij)

E

subject to E ∈ E , E(A) = A

rank(JEJ) = 2.

(7)

A relaxed SDP is obtained by introducing an epigraph-like variable T and dropping the rank constraint

minimize
∑

i,j(Eij − 2Tijdij)

E,T

subject to T 2
ij ≤ Eij

E ∈ E , E(A) = A.

(8)

From here on, we will call this method EDM with plain ranges (EDM-R).

Note that the solutions of the initialization techniques described here and in Sections III-A and IV-A

are distance matrices. Detailed explanations of how to estimate the spatial coordinates of the sensors

and target positions from EDM and the usage of anchors are given in [15]. The basic idea is to use

a linear transformation to obtain the Gram matrix YTY from the EDM matrix E, from which spatial

coordinates Y are extracted by singular value decomposition (SVD) up to a unitary matrix. The anchors

are then used to estimate the residual unitary matrix by solving a Procrustes problem. As discussed in

[15], observation noise can significantly disrupt the estimated sensor/target coordinates through EDM

May 4, 2011 DRAFT



8

completion and rank truncation, and it was found that much more accurate results are obtained by using

those as a starting point for likelihood maximization. Next, MM algorithms are proposed for iterative

likelihood maximization.

C. Refinement Steps: Majorization-Minimization

The key idea of MM is to find, at a certain point xt, a simpler function that has the same function

value at xt and anywhere else is larger than or equal to the objective function to be minimized. Such a

function is called a majorization function. By minimizing the majorization function we obtain the next

point of the algorithm, while decreasing the cost function [14]. The detailed derivation of MM is given

in [15], and is summarized below for the reader’s convenience. Define two convex functions as

fij(x) = ‖xi − ej‖, gkj(x) = ‖ak − ej‖. (9)

Expanding f and g in (1) and using first-order conditions on convexity [21],

ΩG(x) ≤
∑
i,j

(
f2
ij(x)− 2dij

(
fij(xt) + 〈∇fij(xt), (x− xt)〉

)
+ d2

ij

)
+
∑
k,j

(
g2
kj(x)− 2dkj

(
gkj(xt) + 〈∇gkj(xt), (x− xt)〉

)
+ d2

kj

)
,

(10)

where 〈u, v〉 = uT v, we get the proposed majorization function on the right side of (10), which is

quadratic in x and easily minimized. The MM iteration

xt+1 = arg min
x

∑
i,j

(
f2
ij(x)− 2dij〈∇fij(xt),x〉

)
+
∑
k,j

(
g2
kj(x)− 2dkj〈∇gkj(xt),x〉

)
(11)

turns out to be obtained as the solution of the following linear system of equations∑
i,j

MT
ijMij +

∑
k,j

NT
j Nj

xt+1 =
∑
i,j

dij∇fij(xt) +
∑
k,j

dkj∇gkj(xt)−
∑
k,j

Nja
T
k , (12)

where the selection matrices Mij and Nj are defined in Appendix C and

∇fij(xt) =
MT

ijMijxt

‖Mijxt‖
, ∇gkj(xt) =

NT
j (ak + Njxt)
‖ak + Njxt‖

.

D. Updating Initialization: Recursive Position Estimation using SLCP

Suppose that a batch of observations have been processed and a new target position is to be estimated.

We could repeat MM refinement with EDM-R initialization acting on an expanded batch that concate-

nates all previous range measurements and those for the new target sighting. However, this would be

computationally expensive due to the EDM completion step. Also, previously estimated positions would
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be ignored and could not contribute to computational complexity reduction. To alleviate the load we

propose a simple methodology to obtain a good initial point for MM which avoids the EDM step. This

consists of fixing the previous positions at their estimated values and only estimating the new target

position. More precisely, we minimize

ΨG(y) =
n+l∑
i=1

(‖bi − y‖ − di)2, (13)

where y is the new target position, bi denotes the previously estimated position of a sensor or anchor,

and di is the corresponding range measurement. We propose SLCP [19] to minimize (13), and briefly

summarize the method below.

Minimization of (13) can be expressed equivalently as (see Appendix D)

minimize
∑n+l

i=1 ‖y − yi‖2

y, yi

subject to ‖bi − yi‖ = di i = 1, . . . , n+ l.

(14)

Geometrically, y is a point that minimizes the sum of squared distances to a set of circles with center

bi and radius di. If we fix yi, (14) becomes an unconstrained optimization problem in y whose solution

is readily obtained as the center of mass of the constellation. The reduced problem can be compactly

described in the complex plane as

minimize ‖ 1
n+l11Ty − y‖2

y,θ

subject to y = b + Rθ,

(15)

where θ =
[
ejφ1 . . . ejφn+l

]T
∈ Cn+l, R = diag(d1, . . . , dn+l) ∈ R(n+l)×(n+l), and b ∈ Cn+l holds

the 2D coordinates b1, . . . , bn+l, expressed as complex numbers.

The primary goal of SLCP is to find the vector of phases θ. To this end, the cost function in (15) is

first expanded as a quadratic form in θ under the constraints |θi| = 1, and the non-constant terms then

manipulated into a sum of complex magnitudes −2|cHθ|+ 1
n+l |d

Tθ|2 for constant c, d. A relaxed SDP

formulation is obtained by introducing the new variable Φ = θθH and neglecting the associated rank-1

constraint. In standard epigraph form (variable t) this is written as

maximize t+ 1
n+ld

TΦd

Φ, t

subject to Φ � 0, φii = 1

4cHΦc ≥ t2.

(16)
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The solution of the optimization problem (16) is a positive semidefinite matrix from which the target

coordinates are estimated by SVD as described in [15]. Although Φ is not guaranteed to have rank 1, in

practice it very often has a clearly dominating singular value.

After an optimal target position is obtained, we return to the cost function (1) and iteratively refine all

estimates using (12). In SNL this incremental procedure could also be applied as new sensors become

available.

In a previous paper [15], the source localization method derived in [23], termed Squared-Range Least

Squares (SR-LS), was proposed for initialization during the updating phase. Note that in [23] squared

distances are matched, leading to a Trust Region optimization problem. However, as demonstrated in

[19], SLCP is a more accurate source localization method and its cost function (13) is better matched

to the likelihood function (1). This makes it more convenient for initialization of iterative refinement

algorithms, which will then require fewer iterations to converge and/or will be less likely to get trapped

in undesirable local extrema.

IV. SLAT UNDER LAPLACIAN NOISE

A. Startup Initialization: EDM with Ranges and `1-norm

Among the penalty function approximation methods, the `1-norm approximation is known to be robust

to outliers [21]. Therefore, the penalty function of the third SLAT startup initialization method is chosen

as ϕ3(E) =
∑

i,j |
√
Eij − dij |, and the associated optimization problem becomes

minimize
∑

i,j |
√
Eij − dij |

E

subject to E ∈ E , E(A) = A

rank(JEJ) = 2.

(17)

The terms |
√
Eij − dij | in the objective function for this problem are convex when

√
Eij − dij < 0, but

concave for
√
Eij − dij > 0. To obtain a convex approximation each of those terms is replaced by a

linear approximation

aijEij + bij , aij =
1√

Emax + dij
, bij = −

d2
ij√

Emax + dij
(18)

in part of the domain where it is concave, as shown in Figure 1. The two functions coincide for Eij = d2
ij

and Eij = Emax, where the constant Emax is a practical upper bound on (squared) range measurements.

Thus, we replace |
√
Eij−dij | by its convex envelope max{dij−

√
Eij , aijEij+bij} and use the epigraph
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Fig. 1: The value of |
√
Eij − dij | vs Eij , and the linear approximation of the concave part.

variable T to obtain
minimize

∑
i,j Tij

E,T

subject to max{dij −
√
Eij , aijEij + bij} ≤ Tij

E ∈ E , E(A) = A

rank(JEJ) = 2.

(19)

A relaxation of (19) after dropping the rank constraint is

minimize
∑

i,j Tij

E,T

subject to (dij − Tij)2 ≤ Eij
aijEij + bij ≤ Tij
E ∈ E , E(A) = A.

(20)

Note that the first constraint in (20) is not equivalent to dij −
√
Eij ≤ Tij , but rather to −

√
Eij ≤

dij − Tij ≤
√
Eij , which amounts to intersecting the original epigraph with the parabolic hypograph

dij+
√
Eij ≥ Tij . This preserves the convexity of the feasible set and does not change its lower boundary

for Eij ∈ [0, Emax], where the optimal point will be found. The constraint can now be readily expressed in

standard form without introducing additional variables, e.g., as an LMI or a second-order cone constraint

[24]  1 dij − Tij
dij − Tij Eij

 � 0 or

∥∥∥∥∥∥2(dij − Tij)

Eij − 1

∥∥∥∥∥∥ ≤ Eij + 1. (21)

This technique will be called EDM with ranges and `1-norm (EDM-R-`1).
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B. Refinement Steps: Weighted Majorization Minimization

Robustness to outliers in the cost function (2) for Laplacian noise is gained at the expense of differen-

tiability. To circumvent this shortcoming we resort to the well-known re-weighted least squares approach

[25], which replaces the minimization of (2) with a sequence of minimizations of smooth approximation

functions that converge to ΩL(x). Specifically, (2) is first written as

ΩL(x) =
∑
i,j

uij(‖xi − ej‖ − dij)2 +
∑
k,j

vkj(‖ak − ej‖ − dkj)2, (22)

with

uij =
1

|‖xi − ej‖ − dij |
, vkj =

1
|‖ak − ej‖ − dkj |

.

At time t the minimization function becomes Ωt
L(x), which has the same form of (22) but the functions

uij , vkj above are now replaced by constants based on the estimated positions after the previous iteration

utij =
1

|‖xti − etj‖ − dij |
, vtkj =

1
|‖ak − etj‖ − dkj |

. (23)

An inner optimization loop could now be used to minimize Ωt
L(x) for every t but, as shown in Appendix

A, a single iteration suffices to ensure convergence. With fixed utij , v
t
kj the same majorization technique

of Section III-C yields the weighted-MM iteration

xt+1 = arg min
x

∑
i,j

utij
(
f2
ij(x)− 2dij〈∇fij(xt),x〉

)
+
∑
k,j

vtkj
(
g2
kj(x)− 2dkj〈∇gkj(xt),x〉

)
. (24)

Thus, the new point is obtained by solving the linear system∑
i,j

utijM
T
ijMij +

∑
k,j

vtkjN
T
j Nj

xt+1 =
∑
i,j

utijdij∇fij(xt) +
∑
k,j

vtkjdkj∇gkj(xt)−
∑
k,j

vtkjNja
T
k ,

(25)

where ∇fij(xt), ∇gkj(xt), Mij and Nj are the same as in (12).

In practice the weights utij and vtij must be modified to avoid the possibility of division by zero [26],

which in our case is achieved by saturating them at 105 when computing (24). Hence, truncating the

weights, which are the Huber thresholds, is equivalent to using the Huber function.

C. Updating Initialization: Recursive Position Estimation using SL`1

The ML source localization problem under Laplacian noise is equivalent to

minimize ΨL(y) =
∑n+l

i=1 |‖y − bi‖ − di|

y
(26)
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or
minimize (

∑n+l
i=1 |‖y − bi‖ − di|)2,

y
(27)

where y, bi and di are defined in Section III-D. We use ideas from [27] to express the minimization of

Ψ2
L as a weighted sum of squares.

Lemma IV-C.1. The following problem is equivalent to (27)

minimize minimize
∑n+l

i=1
(‖y−bi‖−di)2

λi

y λ ∈ Rn+l

subject to λi > 0, 1Tλ = 1.

(28)

A proof is given in Appendix B. As claimed in Section III-D and shown in Appendix D, the difference

between the true range and observed range is actually equivalent to the distance between the source

position and the closest point on the circle with center bi and radius di. An equivalent formulation is

therefore
minimize

∑n+l
i=1

‖y−yi‖2
λi

y, yi,λ

subject to ‖yi − bi‖ = di

λi > 0, 1Tλ = 1.

(29)

If we fix the yi and λi, the solution of (29) with respect to y is an unconstrained optimization problem

whose solution is readily obtained by invoking the optimality conditions
n+l∑
i=1

(y − yi)
λi

= 0 ⇒ y∗ =

∑n+l
i=1

yi

λi∑n+l
i=1

1
λi

. (30)

Geometrically, the first constraint of (29) defines circle equations, which can be compactly described in

the complex plane as yi = bi + die
jφi . We collect these into a vector y = b + Ru, where b and R are

defined as in Section III-D and u =
[
ejφ1 . . . ejφn+l

]T
∈ Cn+l. Using the optimal y, we get

minimize yHΠy = (b + Ru)HΠ(b + Ru)

λ,u

subject to λi > 0, 1Tλ = 1

|ui| = 1,

(31)
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where

Π =


1
λ1

0 0

0
. . . 0

0 0 1
λn+l

− 1∑n+l
i=1

1
λi


1
λ1

...
1

λn+l

[ 1
λ1

. . . 1
λn+l

]

= Λ−1 −Λ−11(1TΛ−11)−11TΛ−1,

(32)

with Λ = diag(λ1, . . . , λn+l).

Matrix Π resembles an orthogonal projector. Using the matrix inversion lemma2, it is seen to be the

limiting case Π = limσ→∞(Λ + σ11T )−1 and thus positive semidefinite. This format is more amenable

to analytic manipulations in optimization problems and will be used throughout this paper. The parameter

σ is taken as a sufficiently large constant (see Appendix B), although it could also be regarded as an

additional optimization variable to ensure adequate approximation accuracy.

We now introduce an epigraph variable t ∈ R in (31), i.e., we minimize over t and add the constraint

t−(b + Ru)HΠ(b + Ru) ≥ 0. Applying Schur complements the constraint may be successively written

as  t (b + Ru)H

b + Ru Π−1

 � 0 ⇔ Π−1 − (b + Ru)(b + Ru)H

t
� 0. (33)

The formulation becomes

minimize t

λ,u, t

subject to λi > 0, 1Tλ = 1

|ui| = 1

tΛ + tσ11T � (b + Ru)(b + Ru)H .

(34)

Finally, we define B = [b R], vH = [1 uH ], V = vvH , and we drop the rank-1 constraint on the new

variable V to obtain the relaxed SDP

minimize t

β,V, t

subject to βi > 0, 1Tβ = t

Vii = 1,V � 0

diag(β) + tσ11T � BVBH .

(35)

2(A+BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1.
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The solution of the optimization problem (35) includes the positive semidefinite matrix V from whose

first row or column u can be extracted directly3 to obtain y = b + Ru and the target coordinates from

(30).

As in Section III-D, after an optimal target position is obtained we return to the cost function (2) and

iteratively refine all the estimates using (25). Section V demonstrates in simulation that SL`1 is more

robust to outliers than the SLCP algorithm of Section III-D, as its cost function (26) is better matched

to the likelihood function (2).

V. NUMERICAL RESULTS

Example 1 [Comparison of Initialization Methods for the Startup Phase (EDM Completion)]:

To investigate the accuracy of the methods, we set a physical scenario containing four anchors, five

unknown sensors, and six target positions in a [0, 2] × [0, 2] area. Range measurements are corrupted

by additive spatio-temporally white noise with standard deviation σgaussian ∈ [0.005, 0.03]. This noisy

observation model may lead to near-zero or negative range measurements, in which case we follow

normal practice [6] and set them equal to a small positive constant (10−5 in our simulations). With the

chosen noise variances this occurs sufficiently seldom (up to 0.04% of measurements) for its impact on

estimation accuracy to be unimportant. Several algorithms are tested (EDM-SR, EDM-R, EDM-R-l1, MM

initialized by EDM-SR (EDM-SR+MM), MM initialized by EDM-R (EDM-R+MM) and MM initialized

by EDM-R-l1 (EDM-R-l1+MM)), and their performances are compared according to the total root mean

square error (RMSE) √√√√ 1
K

1
n+m

K∑
k=1

n+m∑
i=1

‖xi − x̂ki ‖2, (36)

where x̂ki denotes the i-th estimated sensor or target position in the k-th Monte Carlo run for the specific

noise realization. In each of K = 150 Monte Carlo runs, a random network is generated according to

the physical scenario described above. To assess the fundamental hardness of position estimation, error

plots for Gaussian noise also show the total Cramér-Rao Lower Bound (CRLB), calculated as√√√√ 1
K

1
n+m

K∑
k=1

trace(CRLBk) (37)

for each noise variance, where CRLBk denotes the k-th diagonal element of the matrix lower bound.

The CRLB for anchored and anchor-free localization using ranging information has been studied in

3Alternatively, u can be obtained by rank 1 factorization of the lower right submatrix of V corresponding to uuH , as in [6],

[18].
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[28]–[30] for different variance models of range estimation noise. For convenience, the CRLB for our

SLAT problem under Gaussian noise is rederived in Appendix C in terms of the notation adopted in this

paper. We do not prove the unbiasedness of our estimators, a mathematically challenging endeavor that

would be required to fully justify benchmarking against the CRLB. In our experimental results, however,

we found no clear evidence of bias for small noise levels, where convergence to undesirable extrema

of the cost functions is avoided. Figure 2a shows that plain EDM-R has better accuracy than EDM-SR

and EDM-R-l1, although the performance gap closes after iterative refinement by MM. Moreover, MM

initialized by the various methods nearly touches the CRLB except when the noise variance is large.

To compare the total RMSE of the algorithms in the presence of outliers, modified range measurements

are created according to a “selective Gaussian” model di = ‖ · ‖+wi+ |εi|, where εi is a white Gaussian

noise term with standard deviation σoutlier ∈ [0.4, 2]. The disturbance εi randomly affects only two range

measurements, whereas wi with σgaussian = 0.01 is present in all observations. This outlier generating

model deviates from the earlier Laplacian asssumption, but it is arguably representative of observed range

measurements in practical systems [8]. Numerical results under a pure Laplacian model will be presented

in Examples 3 and 4. In the presence of high noise and/or outliers, Fig. 2b shows that weighted-MM

refinement does not close the performance gap between EDM-R-l1, EDM-R and EDM-SR initialization

because in the latter cases the algorithms converge more often to local minima, thus producing a larger

total RMSE.

Example 2 [Uncertainty Ellipsoids]: To further examine the accuracy of MM and weighted-MM

with different initialization methods in the startup phase, we randomly generated two networks of 10

sensors, 4 anchors and 11 target positions. 100 Monte Carlo runs were used to find the mean and (1σ)

uncertainity ellipsoids of the positions estimated by the methods. The mean and uncertainity ellipsoids

for σgaussian = 0.025 and σgaussian = 0.02/σoutlier = 0.8 are shown in Figs. 3 and 4, respectively. Again,

outliers are randomly added to two range measurements in Fig. 4.

Without outliers (Fig. 3) using EDM-SR, EDM-R, or EDM-R-l1 as an initialization to MM makes the

uncertainity ellipsoids shrink dramatically after refinement, yielding very similar means and covariances.

These are only displayed in the detail view of Fig. 3b, as they are too small to be shown in Fig. 3a. In

the presence of outliers (Fig. 4), the uncertainity ellipsoids of EDM-SR+wMM are bigger than for other

methods and the means of the estimated positions are shifted. Since EDM-R-l1 and EDM-R initializations

converge to global extrema most of the time, the means of the positions estimated by weighted MM still

approach the true positions and their uncertainity ellipsoids are much smaller than for EDM-SR+wMM.

In the presence of outliers this example shows that EDM-R-l1+wMM is clearly superior to the other
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Fig. 2: Comparison of initialization and refinement methods in the startup phase of SLAT.
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TABLE II: RMSE of SL`1, SLCP, and SR-LS under Gaussian noise.

σgaussian SL`1 SLCP SR-LS

1e-3 1.5e-3 1.3e-3 1.8e-3

1e-2 1.31e-2 1.1e-2 1.32e-2

1e-1 0.1608 0.1247 0.1479

1 1.3778 1.2672 1.5351

methods.

A Note on Practical Computational Complexity of EDM Initialization: Our experiments were con-

ducted on a machine with an Intel Xeon 2.93 GHz Quad-Core CPU and 8 GB of RAM, using Matlab 7.1,

CVX 1.2 and Yalmip 3/SeDuMi 1.1 as a general-purpose SDP solver. CPU times are similar for EDM-

SR, EDM-R and EDM-R-`1, under 5 seconds for the example described above with n = 25 unknown

positions and empirically increasing with n4.5 for larger values of n (< 100). This gives a notion of what

network sizes are currently practical for the EDM initialization methods, while keeping in mind that CPU

times are known to be unreliable surrogates for intrinsic computational complexity due to dependencies

on factors such as machine hardware architecture, operating system, efficiency of numerical libraries,

and solver preprocessing. We did not attempt to formulate the EDM completion problems in the most

efficient way possible for the SDP solver. For MM-type iterative algorithms, extremely large problem

sizes can be efficiently handled using contemporary numerical algorithms and computing platforms. In

our experiments each iteration takes up to about 1 millisecond.

Example 3 [Comparison of Initialization Methods for the Updating Phase (Source Localization)]:

In this example several source localization algorithms are compared using five anchors. We performed

100 Monte Carlo runs, where in each run the anchor and source positions were randomly generated from

a uniform distribution over the square [−10, 10]× [−10, 10]. Table II lists the RMSE of source positions

under Gaussian noise, with standard deviations σgaussian = 10−3, 10−2, 10−1, and 1 for the methods SL`1,

SLCP, and SR-LS [23]. SL`1 uses σ = 106 for the “projector” Π = (Λ + σ11T )−1, which is a very

conservative value (see Appendix B).

To compare the algorithms in the presence of outliers, range measurements are created according to

di = ‖ · ‖ + vi, where vi is a Laplacian noise term with standard deviation σlaplace ∈ [0.2, 1.6]. Results

are also presented for the alternative selective Gaussian outlier generation model of Examples 1–2 with

σoutlier ∈ [0.5, 2] and σgaussian = 0.04, where outliers only affect measured ranges between the second
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Fig. 3: Mean and uncertainity ellipsoids in the startup phase with different initialization methods. No

outliers, σgaussian = 0.025.
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Fig. 4: Mean and uncertainity ellipsoids in the startup phase with different initialization methods. Selective

Gaussian outliers, σoutlier = 0.8/σgaussian = 0.02.
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TABLE III: RMSE of SL`1, SLCP, SR-LS, and USR-LSO in the presence of outliers.

σlaplace SL`1 SLCP SR-LS USR-LSO

0.2 0.2959 0.3246 0.3433 0.5007

0.4 0.4894 0.5562 0.5637 0.9123

0.8 1.3439 1.4453 1.4481 2.3643

1.6 2.5807 2.7221 3.4486 4.1156

(a) Laplacian noise

σoutlier SL`1 SLCP SR-LS USR-LSO

0.5 0.2352 0.2870 0.3800 0.5125

1.0 0.3773 0.4507 0.5812 0.9686

1.5 0.9427 1.0555 1.2429 2.0687

2.0 1.0471 1.0900 1.3681 2.3707

(b) Selective Gaussian noise

anchor and the source. Table III lists the RMSE of source positions for the algorithms SL`1, SLCP, SR-

LS, and USR-LSO (Unconstrained Squared-Range LS with Outliers) [17]. The latter uses basis pursuit

methods to detect the presence of outliers, subtracts them from measurements, and then estimates the

source position using unconstrained LS operating on squared ranges.

We conclude from Tables II and III that the relative accuracies of SL`1, SLCP, SR-LS, and USR-LSO

depend on the data generation model. For Gaussian noise the RMSE of SL`1 and SR-LS are about 20–

30% higher than that of SLCP, whereas in the presence of outliers the situation is reversed, and SL`1

becomes more accurate by at least 10%, relative to SLCP. This is because SLCP and SL`1 are better

matched with Gaussian and Laplacian modeling assumptions, respectively.

Note that SR-LS was shown in [23] to be more accurate than competing localization methods based

on semidefinite relaxation under Gaussian noise. The fact that both SL`1 and SLCP outperform it here

under a similar scenario indicates that these algorithms provide state-of-the-art localization accuracy in

their class. In the presence of outliers both our algorithms also outperform SR-LS and USR-LSO. The

somewhat disappointing results for USR-LSO are due to a combination of factors; the outlier detection

method does not always find spurious measurements, particularly under Laplacian noise; subtraction of

outliers sometimes fails to produce reasonable range estimates; the simple USR-LS algorithm used to

compute the source position was shown in [23] to be less accurate than other methods which retain more

constraints of the localization problem. Interestingly, the performance gap between SLCP and SL`1 is

actually larger for selective Gaussian outliers, whose generation model does not match the assumptions of

SL`1. Similarly to Fig. 2b, the differences in initialization accuracy using SLCP or SL`1 are large enough

to prevent closing of the RMSE gap after weighted MM refinement due to convergence to undesirable

extrema of the likelihood function.
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Example 4 [Global Assessment of the Updating Phase (Time-Recursive Algorithms)]: This example

assesses the performance of the full time-recursive procedure (updating phase), comprising SLCP or SL`1

initialization followed by refinement. The network scenario has 16 unknown sensors, 4 anchors and 10

target locations, all randomly positioned. A new target sighting (the 11th one) becomes available and is

processed incrementally, i.e., the position is estimated through SLCP or SL`1 by fixing all the remaining

ones, then all estimates are jointly refined. Results are benchmarked against refinement with full batch

initialization, which makes a fresh start to the process without using any previous knowledge at every

new target position to be estimated, solving different and increasingly large EDM completion problems

for ML initialization.

This type of incremental approach was used in [15] with the SR-LS algorithm of [23] and MM

refinement for Gaussian noise. SLCP is used here instead of SR-LS because, as shown in [19], it increases

the convergence speed of subsequent iterative methods and also alleviates the problem of convergence

to local extrema of the ML cost function by providing better initial points than SR-LS does. Figure

5 shows the evolution of the Gaussian cost function ΩG(x) during refinement after ranges to the 11th

target position are sensed (σgaussian = 0.04). The time-recursive (SLCP)+MM approach takes advantage

of previously estimated positions to start with a lower cost than batch (EDM-R)+MM, but it reaches the

same final error value.

The same network scenario is adopted in the presence of outliers. Figure 6 shows the evolution of cost

function ΩL(x) during refinement for Laplacian outliers (σlaplacian = 0.1), whose behavior is similar to

the Gaussian case of Fig. 5. In both Gaussian and Laplacian settings refinement yields similar accuracy

and convergence speed after batch or time-recursive initializations. Therefore, time-recursive updating is

seen to retain the essential features of our EDM-based approach to SLAT, namely, a very limited need

for a priori spatial information and fast convergence, at a fraction of the computational cost.

VI. CONCLUSION

In this paper, we have presented a ML-based technique to solve a SLAT problem using a two-phase

approach under Gaussian or Laplacian noise. A MM method is proposed to iteratively maximize the non-

convex likelihood function, for which a good initial point is required. To that end, we have investigated

two initialization schemes based on EDM completion and source localization (SLCP/SL`1) that bypass the

need for strong priors on sensor/target positions. After acquiring an initial block of range measurements

for the startup phase, a SNL method based on EDM completion was used to estimate the node positions

and some of the target locations. In our experiments this was accomplished reasonably fast (a few seconds)
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Fig. 5: Evolution of Gaussian cost function ΩG(x) during refinement for EDM-R+MM and SLCP+MM

approaches, with σgaussian = 0.04.
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for scenarios with up to about 30 unknown positions. As EDM completion is not scalable, after startup

we resorted to an alternative, lightweight, incremental initialization scheme as additional target range

measurements become available. The SLCP or SL`1 time-recursive methods fix the already estimated

positions whenever a new one is to be determined; afterwards all positions are given as initialization to

the likelihood refinement methods.

Simulation results showed that our method nearly attains the Cramér-Rao lower bound under moderate

Gaussian noise. In the presence of outliers, both EDM-R-`1 and SL`1 provide more accurate initial

position estimates than other existing methods. Moreover, when used as input to iterative refinement

methods they provide a good starting point that reduces the probability of convergence to undesirable

extrema, yielding improved overall estimation performance. Hence, with this methodology, we obtained

a processing structure that is robust to outliers and provides a scalable and accurate solution to the

SLAT problem. Importantly, the algorithms based on `1 norm optimization exhibited robust behavior in

simulation not only for Laplacian outliers, but also for an alternative outlier generation technique that

did not match the underlying Laplacian modeling assumptions.

APPENDIX A

CONVERGENCE OF WEIGHTED MAJORIZATION MINIMIZATION

To prove (local) convergence of the weighted MM iteration (24) the Laplacian cost function (2) is first

majorized at time t by

ΓtL(x) =
1
2

∑
i,j

{
utij(fij(x)− dij)2 +

1
utij

}
+

1
2

∑
k,j

{
vtkj(gkj(x)− dkj)2 +

1
vtkj

}
, (38)

where fij , gkj and utij , v
t
kj are defined in (9) and (23). The inequality ΩL(x) ≤ ΓtL(x) follows from

ΓtL(x)− ΩL(x) =
1
2

∑
i,j

{
utij(fij(x)− dij)2 +

1
utij
− 2|fij(x)− dij |

}
+

1
2

∑
k,j

{
vtkj(gkj(x)− dkj)2 +

1
vtkj
− 2|gkj(x)− dkj |

}
=

1
2

∑
i,j

{√
utij |fij(x)− dij | −

1√
utij

}2
+

1
2

∑
k,j

{√
vtkj |gkj(x)− dkj | −

1√
vtkj

}2
≥ 0.

(39)

It is easy to check that ΩL(xt) = ΓtL(xt), so ΓtL(x) has the properties of a true majorization function for

the iterate xt. Now the same technique used in (10) is applied to majorize (38) by a convex quadratic
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function of x, yielding

ΩL(x) ≤ 1
2

∑
i,j

{
utij
(
f2
ij(x)− 2dijfij(xt)− 2dij〈∇fij(xt), (x− xt)〉+ d2

ij

)
+

1
utij

}
+

1
2

∑
k,j

{
vtij
(
g2
kj(x)− 2dkjgkj(xt)− 2dkj〈∇gkj(xt), (x− xt)〉+ d2

kj

)
+

1
vtij

}
.

(40)

As before, equality holds for x = xt, so the right-hand side of (40) is still a valid majorization function.

Discarding constant terms the weighted MM iteration (24) results.

APPENDIX B

PROPERTIES OF SINGLE-SOURCE LOCALIZATION USING SL`1

Proof of Lemma IV-C.1: To streamline the notation we define Ki = |‖y − bi‖ − di|, and apply the

KKT condition to the inner optimization problem in (28) while fixing y. The Lagrangian function is

L(λ, γ) =
n+l∑
i=1

K2
i

λi
+ γ(1Tλ− 1). (41)

The KKT conditions are

dL

dλi
= −K

2
i

λ2
i

+ γ∗ = 0, 1Tλ = 1. (42)

Using (42), we find λ∗i = KiPn+l
i=1 Ki

as a solution of the inner optimization problem. Plugging the optimal

λ in the cost function of (28) yields (
∑

iKi)2, thus establishing the equivalence with (27).

Approximation accuracy of Π = limσ→∞(Λ + σ11T )−1: To decide how large σ should be, let us

first define Π(σ) = (Λ + σ11T )−1. The norm of the difference to the original definition of Π in (32) is

given by

‖Π−Π(σ)‖F = ‖Λ−11[(1TΛ−11)−1 − (1TΛ−11 + σ−1)−1]1TΛ−1‖F

=
1TΛ−21

(1TΛ−11)(σ1TΛ−11 + 1)
.

(43)

Now assume the most unfavorable case with identical λi = 1
n+l , such that

‖Π−Π(σ)‖F =
n+ l

σ(n+ l)2 + 1
≤ ε ⇒ σ ≥ 1

(n+ l)ε
− 1

(n+ l)2
. (44)

For ε = 10−4 and n+ l = 100, for example, this yields σ ≥ 102 − 10−4 ≈ 102, which is quite low and

does not raise any numerical issues in commonly available convex optimization solvers.
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APPENDIX C

DERIVATION OF CRLB FOR GAUSSIAN NOISE

The log of the joint conditional pdf for the SLAT problem is (up to an additive constant)

logf(d|x) = − 1
2σ2

∑
i,j

(‖xi − ej‖ − dij)2 +
∑
k,j

(‖ak − ej‖ − dkj)2
 , (45)

where, similarly to x, d denotes the concatenation of all range measurements. Let us define matrices Mij

and Nj that extract individual positions or their differences from the vector of concatenated coordinates4

x as follows

Mijx = xi − ej , Njx = −ej . (46)

Thus, (45) is rewritten as

log f(d|x) = − 1
2σ2

∑
i,j

(‖Mijx‖ − dij)2 +
∑
k,j

(‖ak + Njx‖ − dkj)2
 . (47)

The first derivative of (47) with respect to x is

∇x log f(d|x) = − 1
σ2

∑
i,j

(‖Mijx‖ − dij)
MT

ijMijx

‖Mijx‖
+
∑
k,j

(‖ak + Njx‖ − dkj)
NT
j (ak + Njx)
‖ak + Njx‖

 .

(48)

The second derivative of (47) with respect to x is

∇2
x log f(d|x) = − 1

σ2

∑
i,j

{
MT

ijMijxxTMT
ijMij

‖Mijx‖2
+
‖Mijx‖ − dij
‖Mijx‖

(
MT

ijMij −
MT

ijMijxxTMT
ijMij

‖Mijx‖2

)}

+
∑
k,j

{
NT
j (ak + Njx)(ak + Njx)TNT

j

‖ak + Njx‖2
+
‖ak + Njx‖ − dkj
‖ak + Njx‖

(
NT
j Nj −

NT
j (ak + Njx)(ak + Njx)TNT

j

‖ak + Njx‖2

)}
(49)

4If sensor positions xi and target positions ej are concatenated into vector x according to the order x1, . . . , xn, e1, . . . , em,

the selection matrices are explicitly given by

Mij =
h
zT

i ⊗ I2 −vT
j ⊗ I2

i
, Nj =

h
02×2n −vT

j ⊗ I2

i
,

where ⊗ denotes kronecker product, vector zi ∈ Rn has 1 in the i-th component and zeros elsewhere, and similarly for vj ∈ Rm.
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The Fisher information matrix, Fx, is obtained by taking the negative expected value of (49) with respect

to ranges as [16]

Fx = −Ed{∇2
x log f(d|x)} =

1
σ2

∑
i,j

MT
ijMijxxTMT

ijMij

‖Mijx‖2
+
∑
k,j

NT
j (ak + Njx)(ak + Njx)TNT

j

‖ak + Njx‖2

 .

(50)

The CRLB matrix in (37) is taken as the inverse of Fx.

APPENDIX D

EQUIVALENCE OF (13) AND (14)

We write (14) as

minimize minimize
∑n+l

i=1 ‖y − yi‖2

y yi

subject to ‖bi − yi‖ = di i = 1, . . . , n+ l.

(51)

Given y, the inner optimization problem is separable. Defining ηi = yi−bi

di
it can be solved for y1, . . . ,

yn+l by individually solving the subproblems

minimize ‖y − diηi − bi‖2 = ‖y − bi‖2 + d2
i ‖ηi‖2 − 2diηTi (y − bi)

ηi

subject to ‖ηi‖ = 1,

(52)

or, equivalently,
maximize ηTi (y − bi)

ηi

subject to ‖ηi‖ = 1,

(53)

The optimal solution of (53) is clearly given by ηi = y−bi

‖y−bi‖ , leading to an optimal cost in (52) ‖y −

bi‖2 + d2
i − 2di‖y − bi‖ = (‖y − bi‖ − di)2. Substituting the sum of these optimal costs for i = 1, . . . ,

n+ l back into (51) yields an unconstrained problem whose cost function is given by (13).
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