
Cooperative Convex Optimization in

Networked Systems: Augmented Lagrangian

Algorithms with Directed Gossip

Communication
Dus̆an Jakovetić, João Xavier, and José M. F. Moura?

Abstract

We study distributed optimization in networked systems, where nodes cooperate to find the optimal

quantity of common interest, x = x?. The objective function of the corresponding10 optimization

problem is the sum of private (known only by a node,) convex, nodes’ objectives and each node

imposes a private convex constraint on the allowed values of x. We solve this problem for generic

connected network topologies with asymmetric random link failures with a novel distributed, decentralized

algorithm. We refer to this algorithm as AL–G (augmented Lagrangian gossiping,) and to its variants

as AL–MG (augmented Lagrangian multi neighbor gossiping) and AL–BG (augmented Lagrangian

broadcast gossiping.) The AL–G algorithm is based on the augmented Lagrangian dual function. Dual

variables are updated by the standard method of multipliers, at a slow time scale. To update the primal

variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL–G uses

unidirectional gossip communication, only between immediate neighbors in the network and is resilient

to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL–

BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and

data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations

the effectiveness on two applications: l1–regularized logistic regression for classification and cooperative

spectrum sensing for cognitive radio networks.

Keywords: Distributed algorithm, convex optimization, augmented Lagrangian, gossip communication

Copyright (c) 2011 IEEE. Personal use of this material is permitted. However, permission to use this material for any other
purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The first and second authors are with the Instituto de Sistemas e Robótica (ISR), Instituto Superior Técnico (IST), 1049-001
Lisboa, Portugal. The first and third authors are with the Department of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, PA 15213, USA (e-mail: [djakovetic,jxavier]@isr.ist.utl.pt, moura@ece.cmu.edu, ph: (412)268-6341, fax:
(412)268-3890.) This work is partially supported by: the Carnegie Mellon|Portugal Program under a grant from the Fundação
de Ciência e Tecnologia (FCT) from Portugal; by FCT grants CMU-PT/SIA/0026/2009 and SFRH/BD/33520/2008 (through the
Carnegie Mellon/Portugal Program managed by ICTI); by ISR/IST plurianual funding (POSC program, FEDER); by AFOSR
grant # FA95501010291; and by NSF grant # CCF1011903. Dus̆an Jakovetić holds a fellowship from FCT.

I. INTRODUCTION

Recently, there has been increased interest in large scale networked systems including networks of

agents, wireless ad-hoc networks, and wireless sensor networks (WSNs.) Typically, these systems lack a

central unit, and the inter-node communication is prone to random failures (e.g., random packet dropouts

in WSNs.) In this paper, we consider a generic computational model that captures many applications in

networked systems. With this model, nodes cooperate to find the optimal parameter (scalar or vector) of

common interest, x = x?, e.g., the optimal operating point of the network. Each node i has a private

(known only at node i) cost function of x, e.g., a loss at node i if operating at x. The total cost is the

sum over the individual nodes’ costs. Also, each node imposes a private constraint on the allowed values

of x (e.g., allowed operating points at node i.) Applications of this computational model include resource

allocation in wireless systems [1], distributed estimation in wireless sensor networks, [2], and distributed,

cooperative spectrum sensing in cognitive radio networks, [3], [4].

More formally, nodes cooperatively solve the following optimization problem:

minimize
∑N

i=1 fi(x)

subject to x ∈ Xi, i = 1, ..., N
. (1)

Here N is the number of nodes in the network, the private cost functions fi : Rm → R are convex, and

each fi(·) is known locally only by node i. The sets Xi are private, closed, convex constraint sets. We

remark that (1) captures the scenario when, in addition to private constraints, there is a public constraint

x ∈ X (where X is a closed, convex set,) just by replacing Xi with Xi ∩X .

This paper proposes a novel augmented Lagrangian (AL) primal-dual distributed algorithm for solv-

ing (1), which handles private costs fi(·), private constraints Xi, and is resilient to random communication

failures. We refer to this algorithm as AL–G (augmented Lagrangian gossiping.) We also consider two

variants to AL–G, namely, the AL–MG (augmented Lagrangian multiple neighbor gossiping) and the AL–

BG (augmented Lagrangian broadcast gossiping.) The AL–G and AL–MG algorithms use unidirectional

gossip communication (see, e.g., [5]). For networks with reliable communication (i.e., no failures,) we

propose the simplified AL–BG algorithm with reduced communication, reduced computation, and lower

data storage cost. Our algorithms update the dual variables by the standard method of multipliers, [6],

synchronously, at a slow time scale, and update the primal variables with a novel, Gauss-Seidel type (see,

e.g., [7]) randomized algorithm with asynchronous gossip communication, at a fast time scale. Proof of

convergence for the method of multipliers (for the dual variables update) is available in the literature,

e.g., [6]. However, our algorithms to update primal variables (referred to as P–AL–G (primal AL gossip),

P–AL–MG and P–AL–BG) are novel, a major contribution of this paper is to prove convergence of the

3

P–AL–G, for private constraints, under very generic network topologies, random link failures, and gossip

communication. The proof is then adapted to P–AL–MG and P–AL–BG.

The AL-G (and its variants AL-MG and AL-BG) algorithms are generic tools that fit many applications

in networked systems. We provide two simulation examples, namely, l1–regularized logistic regression for

classification and cooperative spectrum sensing for cognitive radio networks. These simulation examples:

1) corroborate convergence of the proposed algorithms; and 2) compare their performance, in terms of

communication and computational cost, with the algorithms in [8], [9], [4], [3].

Comparison with existing work. We now identify important dimensions of the communication and

computation models that characterize existing references and that help to contrast our paper with the

relevant literature. Optimization algorithms to solve (1), or problems similar to (1), in a distributed

way, are usually either primal-dual distributed algorithms or primal subgradient algorithms. Optimization

constraints on problem (1) can either be: no constraints (Xi = Rm); public constraints (Xi = X); and

private constraints Xi. The underlying communication network can either be static (i.e., not varying

in time,) or dynamic (i.e., varying in time.) A dynamic network can be deterministically or randomly

varying. Link failures can be symmetric or asymmetric; that is, the random network realizations can be

symmetric or, more generally, asymmetric graphs, the latter case being more challenging in general. The

communication protocol can either be synchronous, or asynchronous, i.e., of gossip type, [5]. We next

review the existing work with respect to these four dimensions.

Primal subgradient algorithms. References [10], [8], [11], [9] and [12] develop primal subgradient

algorithms, with [10], [8], [11], [9] assuming synchronous communication. References [11] and [9]

consider a deterministically varying network, with [11] for the unconstrained problem and [9] for public

constraints. References [8] and [10] consider random networks; reference [8] is for public constraints,

while [10] assumes private constraints. Both references [10] and [8] essentially handle only symmetric

link failures, namely, they use local weighted averaging as an intermediate step in the update rule

and constrain the corresponding averaging matrix to be doubly stochastic. In practice, these translate

into requiring symmetric graph realizations, and, consequently, symmetric link failures. Reference [12]

presents a primal subgradient algorithm for unconstrained optimization and static network and uses the

gossip communication protocol. Finally, reference [13] studies a generalization of problem (1), where the

objective function
∑N

i=1 fi(x) is replaced by g
(∑N

i=1 fi(x)
)

; that is, an outer public, convex function g(·)

is introduced. The optimization problem in [13] has public constraints, the communication is synchronous,

and the network is deterministically time varying. Reference [13] proposes a distributed algorithm where

each node i, at each time step k, updates two quantities: an estimate of the optimal solution xi(k), and

April 15, 2011 DRAFT

4

an estimate of the quantity (1/N)
∑N

j=1 fj(xi(k)), by communicating with immediate neighbors only.

When the algorithm in [13] is applied to (1), it reduces to the primal subgradient in [9].

Primal-dual algorithms. As far as we are aware, primal-dual algorithms have been studied only for

static networks. For example, references [4], [3] consider a special case of (1), namely, the Lasso (least-

absolute shrinkage and selection operator) type problem. They propose the AD-MoM (alternating direction

method of multipliers) type primal-dual algorithms for static networks, synchronous communication, and

no constraints. Reference [14] applies AD-MoM to various statistical learning problems, including Lasso,

support vector machines, and sparse logistic regression, assuming a parallel network architecture (all nodes

communicate with a fusion node,) synchronous communication, and no link failures.

In this paper, rather than subgradient type, we provide and develop a AL primal-dual algorithm for the

optimization (1) with private costs and private constraints, random networks, and asynchronous gossip

communication. In contrast with existing work on primal-dual methods, for example, [4], [3], our AL–G

handles private constraints, random networks, asymmetric link failures, and gossip communication.1

Paper organization. Section II introduces the communication and computational model. Section III

presents the AL–G algorithm for the networks with link failures. Section IV proves the convergence of

the AL–G algorithm. Section V studies the variants to AL–G, the AL–MG, and AL–BG algorithms.

Section VI provides two simulation examples: 1) l1–regularized logistic regression for classification;

and 2) cooperative spectrum sensing for cognitive radios. Finally, section VII concludes the paper. The

Appendix proves convergence of AL–MG and AL–BG.

II. PROBLEM MODEL

This section explains the communication model (the time slotting, the communication protocol, and

the link failures,) and the computation model (assumptions underlying the optimization problem (1).)

Network model: Supergraph. The connectivity of the networked system is described by the bidirectional,

connected supergraph G = (N , E), where N is the set of nodes (with cardinality |N | = N) and E is

the set of bidirectional edges {i, j} (|E| = M). The supergraph G is simple, i.e., there are no self-edges.

Denote by Ωi ⊂ N , the neighborhood set of node i in G, with cardinality di = |Ωi|. The integer di

is the (supergraph) degree of node i. The supergraph G models and collects all (possibly unreliable)

communication channels in the network; actual network realizations during the algorithm run will be

directed subgraphs of G. We denote the directed edge (arc) that originates in node i and ends in node

j either by (i, j) or i → j, as appropriate. The set of all arcs is: Ed = {(i, j) : {i, j} ∈ E}, where

1AL–G algorithm uses asynchronous gossip communication, but it is not completely asynchronous algorithm, as it updates
the dual variables synchronously, at a slow time scale (as details in Section IV.)

April 15, 2011 DRAFT

5

|Ed| = 2M . We assume that the supergraph is known, i.e., each node knows a priori with whom it can

communicate (over a possibly unreliable link.)
Optimization model. We summarize the assumptions on the cost functions fi(·) and f(·), f(x) :=∑N

i=1 fi(x), and the constraint sets Xi in (1):

Assumption 1 We assume the following for the optimization problem (1):

1) The functions fi : Rm → R are convex and coercive, i.e., fi(x)→∞ whenever ‖x‖ → ∞.

2) The constraint sets Xi ⊂ Rm are closed and convex, and X := ∩Ni=1Xi is nonempty.

3) (Regularity condition) There exists a point x0 ∈ ri (Xi), for all i = 1, ..., N .

Here ri (S) denotes the relative interior of a set S ⊂ Rm (see [15]). We will derive the AL–G algorithm to

solve (1) by first reformulating it (see ahead eqn. (2),) and then dualizing the reformulated problem (using

AL dual.) Assumption 1.3 will play a role to assure strong duality. This will be detailed in subsection

III-A. Note that Assumption 1.3 is rather mild, saying only that the intersection of the Xi’s, i = 1, ..., N ,

is “large” enough to contain a point from the relative interior of each of the Xi’s. Denote by f? the

optimal value and X ? =
{
x? ∈ X :

∑N
i=1 fi(x

?) = f?
}

the solution set to (1). Under Assumptions 1,

f? is finite, and X ? is nonempty, compact, and convex, [16]. The model (1) applies also when Xi = Rm,

for i’s in a subset of {1, ..., N}. The functions fi(·), f(·) need not be differentiable; f(·) satisfies an

additional mild assumption detailed in Section IV.

We now reformulate (1) to derive the AL–G algorithm. Start by cloning the variable x ∈ Rm and

attaching a local copy of it, xi ∈ Rm, to each node in the network. In addition, introduce the variables

yij ∈ Rm and yji ∈ Rm, attached to each link {i, j} in the supergraph. To keep the reformulated problem

equivalent to (1), we introduce coupling constraints xi = yij , (i, j) ∈ Ed and yij = yji, {i, j} ∈ E. The

reformulated optimization problem becomes:

minimize
∑N

i=1 fi(xi)

subject to xi ∈ Xi, i = 1, ..., N,

xi = yij , (i, j) ∈ Ed
yij = yji, {i, j} ∈ E.

(2)

The variables xi and yij may be interpreted as virtual nodes in the network (see Figure 1.) Physically,

the variables xi, yij , j ∈ Ωi are maintained by (physical) node i. The virtual link between nodes xi and

yij is reliable (non-failing,) as both xi and yij are physically maintained by node i. On the other hand,

the virtual link between yij and yji may be unreliable (failing,) as this link corresponds to the physical

link between nodes i and j.

April 15, 2011 DRAFT

6

Fig. 1. Illustration of the reformulation (2) for a chain supergraph with N = 3 (physical) nodes.

The optimization problems (1) and (2) are equivalent because the supergraph is connected. The

optimal value for (2) is equal to the optimal value for (1) and equals f?; the set of solutions to (2)

is
{
{x?i }, {y?ij} : x?i = x?, ∀i = 1, ..., N, y?ij = x?, ∀(i, j) ∈ Ed, for somex? ∈ X ?

}
.

Time slotting. As we will see in section III, the AL–G algorithm (and also its variants AL–MG and

AL–BG in section V) is based on the AL dual of (2). The AL–G operates at 2 time scales: the dual

variables are updated at a slow time scale, and the primal variables are updated at a fast time scale.

Thus, accordingly, the time is slotted with: 1) slow time scale slots {t}; and 2) fast time scale slots {k}.

Fast time scale slots (for the primal variables update) involve asynchronous communication between the

nodes in the network and are detailed in the next paragraph. At the end of each t-slot, there is an idle

time interval with no communication, when the dual variables are updated. The dual variables update at

each node requires no communication.

Fast time scale slots {k} and asynchronous communication model. We now define the fast time scale

slots {k} for the asynchronous communication and the primal variables update. We assume the standard

model for asynchronous communication [5], [17]. Each node (both physical and virtual) has a clock that

ticks (independently across nodes) according to a λ-rate Poisson process. Denote the clocks of xi and

yij by T xi and T yij , respectively. If T xi ticks, a virtual communication from yij , ∀j ∈ Ωi, to xi, follows.

With the AL–G algorithm, this will physically correspond to the update of the variable xi, as we will

see later. If the clock T yij ticks, then (virtual) node yij transmits to yji (physically, node i transmits to

node j.) We will see later that, after a (successful) communication yij → yji, the update of yji follows.

We also introduce a virtual clock T that ticks whenever one of the clocks T xi , T yij , ticks; the clock T

ticks according to a (N + 2M)–rate Poisson process. Denote by τk, k = 1, 2, ... the times when the k-th

tick of T occurs. The time is slotted and the k-th slot is [τk−1, τk), τ0 = 0, k = 1, 2, ...2

Random link failures. Motivated by applications in wireless networked systems, we allow that transmis-

sions yij → yji may fail. (Of course, the transmissions through the virtual links yij → xi do not fail.) To

formally account for link failures, we define the N×N random adjacency matrices A(k), k = 1, 2, ...; the

matrix A(k) defines the set of available physical links at time slot k. We assume that the link failures are

2For notation simplicity, at the beginning of each t–slot, we reset τ0 to zero, and we start counting the k–slots from k = 1.

April 15, 2011 DRAFT

7

temporally independent, i.e., {A(k)} are independent identically distributed (i.i.d.) The entries Aij(k),

(i, j) ∈ Ed, are Bernoulli random variables, Aij(k) ∼ Bernoulli(πij), πij = Prob (Aij(k) = 1) > 0,

and Aij(k) ≡ 0, for (i, j) /∈ Ed. We allow Aij(k) and Alm(k) to be correlated.3 At time slot k, at

most one link (i, j) ∈ Ed is activated for transmission. If it is available at time k, i.e., if Aij(k) = 1,

then the transmission is successful; if the link (i, j) is unavailable (Aij(k) = 0,) then the transmission is

unsuccessful. We assume naturally that the Poisson process that governs the ticks of T and the adjacency

matrices A(k), k = 1, 2, ... are independent. Introduce the ordering of links (i, j) ∈ Ed, by attaching a

distinct number l, l = 1, ..., 2M , to each link (i, j); symbolically, we write this as l ∼ (i, j). Introduce

now the random variables ζ(k), k = 1, 2, ..., defined as follows: 1) ζ(k) = i, if the k-th tick of T comes

from T xi ; 2) ζ(k) = N + l, l ∼ (i, j), if the k-th tick of T comes from T yij and Aij(k) = 1; and 3)

ζ(k) = 0, otherwise. It can be shown that ζ(k), k = 1, 2, ..., are i.i.d. The random variables ζ(k) define

the order of events in our communication model. For example, ζ(1) = N + l, l ∼ (i, j), means that, at

time slot k =1, the virtual node yij successfully transmitted data to the virtual node yji. We remark that

Prob (ζ(k) = s) is strictly positive, ∀s = 0, 1, ..., N + 2M . This fact will be important when studying

the convergence of AL–G.

The communication model in this paper, with static supergraph and link failures, is standard for

networked systems supported by wireless communication and static (non moving) nodes, see, e.g., [18],

[19]. The model needs to be modified for scenarios with moving nodes (e.g., mobile robots) where the

supergraph itself can be time varying. This is not considered here.

III. AL–G ALGORITHM (AUGMENTED LAGRANGIAN GOSSIPING)
This section details the AL–G algorithm for solving (1). In subsection III-A, we dualize (2) to form

the AL dual of problem (2). Subsection IV-B details the D–AL–G algorithm for the dual variable update,

at a slow time scale; subsection IV-C details P–AL–G to update the primal variables, at a fast time scale.

A. Dualization
We form the AL dual of the optimization problem (2) by dualizing all the constraints of the type

xi = yij and yij = yji. The dual variable that corresponds to the constraint xi = yij will be denoted by

µ(i,j), the dual variable that corresponds to the (different) constraint xj = yji will be denoted by µ(j,i),

and the one that corresponds to yij = yji is denoted by λ{i,j}. In the algorithm implementation, both

nodes i and j will maintain their own copy of the variable λ{i,j}–the variable λ(i,j) at node i and the

variable λ(j,i) at node j. Formally, we use both λ(i,j) and λ(j,i), and we add the constraint λ(i,j) = λ(j,i).

3With AL–MG algorithm, in Section VI, we will additionally require Aij(k) and Alm(k) be independent.

April 15, 2011 DRAFT

8

The term after dualizing yij = yji, equal to λ>{i,j}(yij − yji), becomes: λ>(i,j)yij − λ
>
(j,i)yji. The resulting

AL dual function La(·), the (augmented) Lagrangian L(·), and the AL dual optimization problem are,

respectively, given in eqns. (3), (4), and (5).

La
(
{λ(i,j)}, {µ(i,j)}

)
= min L

(
{xi}, {yij}, {λ(i,j)}, {µ(i,j)}

)
subject to xi ∈ Xi, i = 1, ..., N

yij ∈ Rm, (i, j) ∈ Ed

(3)

L
(
{xi}, {yij}, {λ(i,j)}, {µ(i,j)}

)
=

N∑
i=1

fi(xi) +
∑

(i,j)∈Ed

µ>(i,j) (xi − yij) (4)

+
∑

{i,j}∈E, i<j

λ>(i,j) yij − λ
>
(j,i) yji +

1
2
ρ
∑

(i,j)∈Ed

‖xi − yij‖2 +
1
2
ρ

∑
{i,j}∈E, i<j

‖yij − yji‖2

maximize La
(
{λ(i,j)}, {µ(i,j)}

)
subject to λ(i,j) = λ(j,i), {i, j} ∈ E

µ(i,j) ∈ Rm, (i, j) ∈ Ed

. (5)

In eqn. (4), ρ is a positive parameter. See [6] for some background on AL methods. The terms λ>(i,j) yij−

λ>(j,i) yji in the sum
∑
{i,j}∈E λ

>
(i,j) yij − λ

>
(j,i) yji are arranged such that i < j, for all {i, j} ∈ E. 4

Denote by d? the optimal value of the dual problem (5), the dual of (2). Under Assumption 1, the

strong duality between (2) and (5) holds, and d? = f?; moreover, the set of optimal solutions D? ={
{λ?(i,j)}, {µ

?
(i,j)} : La

(
{λ?(i,j)}, {µ

?
(i,j)}

)
= f?

}
is nonempty. Denote by C := X1 ×X2 × ...×XN ×

(R)m(2M) the constraint set in (3), i.e., the constraints in (2) that are not dualized. Let x0 be a point

in ri(Xi), i = 1, ..., N (see Assumption 1.3.) Then, a point ({xi,0}, {yij,0}) ∈ C, where xi,0 = x0,

yij,0 = x0, belongs to ri(C), and it clearly satisfies all equality constraints in the primal problem (2);

hence, it is a Slater point, and the above claims on strong duality hold, [15]. We remark that strong

duality holds for any choice of ρ ≥ 0 (but we are interested only in the case ρ > 0,) and, moreover, the

set of dual solutions D? does not depend on the choice of ρ, provided that ρ ≥ 0 (see, e.g., [20], p.359.)

4For each link {i, j} ∈ E, the virtual nodes yij and yji (i.e., nodes i and j,) have to agree beforehand (in the network
training period) which one takes the + sign and which one takes the − sign in λ>(i,j) yij − λ>(j,i) yji. In eqn. (4), for sake of
notation simplicity, the distribution of + and − signs at each link {i, j} is realized by the order of node numbers, where a
distinct number in {1, ..., N} is assigned to each node. However, what matters is only to assign + to one node (say i) and −
to the other, for each {i, j} ∈ E.

April 15, 2011 DRAFT

9

B. Solving the dual: D–AL–G (dual augmented Lagrangian gossiping) algorithm

We now explain how to solve the dual problem (5). First, we note that (5) is equivalent to the uncon-

strained maximization of L′a
(
{λ{i,j}}, {µ(i,j)}

)
= minxi∈Xi,yij∈Rm L

′ ({xi}, {yij}, {λ{i,j}}, {µ(i,j)}
)
,

where the function L′
(
{xi}, {yij}, {λ{i,j}}, {µ(i,j)}

)
is defined by replacing both λ(i,j) and λ(j,i) in

L(·) (eqn. (4)) with λ{i,j}, for all {i, j} ∈ E. The standard method of multipliers for the unconstrained

maximization of L′a(·) is given by:

λ{i,j}(t+ 1) = λ{i,j}(t) + ρ sign(j − i)
(
y?ij(t)− y?ji(t)

)
, {i, j} ∈ E (6)

µ(i,j)(t+ 1) = µ(i,j)(t) + ρ
(
x?i (t)− y?ij(t)

)
, (i, j) ∈ Ed.

(
{x?i (t)}, {y?ij(t)}

)
∈ arg min L′

(
{xi}, {yij}, {λ{i,j}(t)}, {µ(i,j)(t)}

)
subject to xi ∈ Xi, i = 1, ..., N

yij ∈ Rm, (i, j) ∈ Ed.

(7)

Assigning a copy of λ{i,j} to both nodes i (the corresponding copy is λ(i,j)) and j (the corresponding

copy is λ(j,i)), eqn. (6) immediately yields an algorithm to solve (5), given by:

λ(i,j)(t+ 1) = λ(i,j)(t) + ρ sign(j − i)
(
y?ij(t)− y?ji(t)

)
, (i, j) ∈ Ed (8)

µ(i,j)(t+ 1) = µ(i,j)(t) + ρ
(
x?i (t)− y?ij(t)

)
, (i, j) ∈ Ed,

where (
{x?i (t)}, {y?ij(t)}

)
∈ arg min L

(
{xi}, {yij}, {λ(i,j)(t)}, {µ(i,j)(t)}

)
subject to xi ∈ Xi, i = 1, ..., N

yij ∈ Rm, (i, j) ∈ Ed.

(9)

(Note that
(
{x?i (t)}, {y?ij(t)}

)
is the same in (7) and (9).) According to eqn. (8), essentially, both nodes

i and j maintain their own copy (λ(i,j) and λ(j,i), respectively) of the same variable, λ{i,j}. It can be

shown that, under Assumption 1, any limit point of the sequence
(
{x?i (t)}, {y?ij(t)}

)
, t = 0, 1, ..., is

a solution of (2) (see, e.g., [7], Section 3.4); and the corresponding limit point of the sequence x?i (t),

t = 0, 1, ..., is a solution of (1).

Before updating the dual variables as in (8), the nodes need to solve problem (9), with fixed dual

variables, to get
(
{x?i (t)}, {y?ij(t)}

)
. We will explain in the next subsection (IV-C), how the P–AL–G

algorithm solves problem (9) in a distributed, iterative way, at a fast time scale {k}. We remark that

April 15, 2011 DRAFT

10

P–AL–G terminates after a finite number of iterations k, and thus produces an inexact solution of (9).

We will see that, after termination of the P–AL–G algorithm, an inexact solution for yji is available at

node i; denote it by yLji(t). Denote, respectively, by xFi (t) and yFij(t), the inexact solutions for xi and

yij at node i, after termination of P–AL–G. Then, the implementable update of the dual variables is:

λ(i,j)(t+ 1) = λ(i,j)(t) + ρ sign(j − i)
(
yFij(t)− yLji(t)

)
(10)

µ(i,j)(t+ 1) = µ(i,j)(t) + ρ
(
xFi (t)− yFij(t)

)
.

Note that the “inexact” algorithm in (10) differs from (8) in that it does not guarantee that λ(i,j)(t) =

λ(j,i)(t), due to a finite time termination of P–AL–G.

C. Solving for (9): P–AL–G algorithm

Given {λ(i,j)(t)}, {µ(i,j)(t)}, we solve the primal problem (9) by a randomized, block-coordinate,

iterative algorithm, that we refer to as P–AL–G. To simplify notation, we will write only λ(i,j) and

µ(i,j) instead of λ(i,j)(t), µ(i,j)(t). We remark that λ(i,j)(t), µ(i,j)(t) stay fixed while the optimization in

eqn. (9) is done (with respect to xi, yij .)

The block-coordinate iterative algorithm works as follows: at time slot k, the function in (4) is

optimized with respect to a single block-coordinate, either xi or yij , while other blocks are fixed. Such

an algorithm for solving (9) admits distributed implementation, as we show next. Minimization of the

function L
(
{xi}, {yij}, {λ(i,j)}, {µ(i,j)}

)
with respect to xi, while the other coordinates xj and yij are

fixed, is equivalent to the following problem:

minimize fi(xi) + (µi − ρ yi)
> xi + 1

2ρ di‖xi‖
2

subject to xi ∈ Xi
, (11)

where µi =
∑

j∈Ωi
µ(i,j) and yi =

∑
j∈Ωi

yij . Thus, in order to update xi, the node i needs only

information from its (virtual) neighbors. Minimization of the function L
(
{xi}, {yij}, {λ(i,j)}, {µ(i,j)}

)
with respect to yij , while the other coordinates xj and ylm are fixed, is equivalent to:

minimize µ>(i,j) (xi − yij) + λ>(i,j)sign(j − i) (yij − yji) + 1
2ρ‖xi − yij‖

2 + 1
2ρ‖yij − yji‖

2

subject to yij ∈ Rm.
(12)

Thus, in order to update yij , the corresponding virtual node needs only to communicate information with

its neighbors in the network, yji and xi. Physical communication is required only with yji (i.e., with

physical node j.) The optimization problem (12) is an unconstrained problem with convex quadratic cost

April 15, 2011 DRAFT

11

and admits the closed form solution:

yij =
1
2
yji +

1
2
xi +

1
2ρ
(
µ(i,j) − sign(j − i)λ(i,j)

)
. (13)

Distributed implementation. We have seen that the block-coordinate updates in eqns. (11) and (13) only

require neighborhood information at each node. We next give the distributed implementation of P–AL–G

(see Algorithm 1) using the asynchronous communication model defined in section II.

Algorithm 1 Algorithm with gossiping for solving (9) (P–AL–G)
1: repeat
2: Wait for the tick of one of the clocks T xj , T yij .
3: If clock T yij ticks, node i transmits to node j the current value of yij .

If node j successfully receives yij , it updates the variable yji according to the equation (13).
4: If clock T xi ticks, node i updates the variable xi by solving (11).
5: until a stopping criterion is met.

1) Simplified notation and an abstract model of the P–AL–G: We now simplify the notation and

introduce an abstract model for the P–AL–G algorithm, for the purpose of convergence analysis in

Section IV. Denote, in a unified way, by zi, the primal variables xi and yij , i.e., zi := xi, i = 1, ..., N ,

and zl := yij , l = N + 1, ..., N + 2M , (i, j) ∈ Ed. Then, we can write the function in (4), viewed as a

function of the primal variables, simply as L(z), L : Rm(N+2M) → R. Also, denote in a unified way the

constraint sets Ci := Xi, i = 1, ..., N , and Cl := Rm, l = N+1, ..., 2M+N (Cl, l = N+1, ..., N+2M ;

these sets correspond to the constraints on yij , (i, j) ∈ Ed.) Finally, define C := C1×C2× ...×CN+2M .

Thus, the optimizations in (11) and (13) are simply minimizations of L(z) with respect to a single (block)

coordinate zl, l = 1, ..., 2M +N . Recall the definition of ζ(k), k = 1, 2, ... in section II. Further, denote

Pi := Prob (ζ(k) = i) > 0, i = 0, 1, 2, ..., 2M + N . Then, it is easy to see that the P–AL–G algorithm

can be formulated as in Algorithm 2.

Finally, we summarize the overall primal-dual AL–G algorithm in Algorithm 3.

Algorithm 2 AL–G algorithm at node i
1: Set t = 0, λ(i,j)(t = 0) = 0, µ(i,j)(t = 0) = 0, j ∈ Ωi

2: repeat
3: Run P–AL–G (cooperatively with the rest of the network) to get xFi (t), yFij(t) and yLji(t), j ∈ Ωi

4: Update the dual variables, λ(i,j)(t), µ(i,j)(t), j ∈ Ωi, according to eqn. (8).
5: Set t← t+ 1
6: until a stopping criterion is met.

Remark. With AL–G, the updates of the primal variables, on a fast time scale k, are asynchronous

and use gossip communication, while the updates of the dual variables, on a slow time scale t, are

synchronous and require no communication. Physically, this can be realized as follows. Each (physical)

April 15, 2011 DRAFT

12

node in the network has a timer, and the timers of different nodes are synchronized. At the beginning

of each (slow time scale) t-slot, nodes start the gossip communication phase and cooperatively run the

P–AL–G algorithm. After a certain predetermined time elapsed, nodes stop the communication phase

and, during an idle communication interval, they update the dual variables. After the idle time elapses,

the nodes restart the communication phase at the beginning of the new t-slot.

Choice of ρ. It is known that, under Assumption 1, the method of multipliers (6) converges (i.e., any

limit point of the sequence x?i (t), t = 0, 1, ..., is a solution of (1)) for any choice of the positive parameter

ρ, [21], Theorem 2.1. It converges also if a sequence ρt+1 ≥ ρt is used, [22], Proposition 4. See [6],

4.2.2, for a discussion on the choice of ρ. The method of multipliers still converges if we use different

parameters ρ = ρ(λ(i,j),t), ρ = ρ(µ(i,j),t), for each of the variables λ(i,j), µ(i,j). This corresponds to

replacing the quadratic terms ρ ‖xi − yij‖2 and ρ ‖yij − yji‖2 in eqn. (4) with ρ(µ(i,j),t) ‖xi − yij‖2 and

ρ(µ(i,j),t) ‖yij − yji‖2, respectively. See reference [23] for details. (We still need ρ(λ(i,j),t) ≈ ρ(λ(j,i),t).)

Equation (11) becomes5

minimize fi(xi) +
(
µi −

∑
j∈Ωi

ρ(λ(i,j),t) yij

)>
xi + 1

2

(∑
j∈Ωi

ρ(µ(i,j),t)

)
‖xi‖2

subject to xi ∈ Xi
(14)

and equation (13) becomes

yij =
ρ(λ(i,j),t)

ρ(λ(i,j),t) + ρ(µ(i,j),t)
(xi + yji) +

µ(i,j) − sign(j − i)λ(i,j)

ρ(λ(i,j),t)+ρ(µ(i,j),t)
. (15)

One possibility for adjusting the parameters ρ(µ(i,j),t) and ρ(λ(i,j),t) in a distributed way is as follows.

Each node i adjusts (updates) the parameters ρ(λ(i,j),t), ρ(µ(i,j),t), j ∈ Ωi. We focus on the parameter

ρ(λ(i,j),t); other parameters are updated similarly. Suppose that the current time is t. Node i has stored

in its memory the constraint violation at the previous time t− 1 that equals ε(λ(i,j),t−1) = ‖yFij(t− 1)−

yLji(t − 1)‖. Node i calculates the constraint violation at the current time ε(λ(i,j),t) = ‖yFij(t) − yLji(t)‖.

If ε(λ(i,j),t)/ε(λ(i,j),t−1) ≤ κ(λ(i,j)) < 1, then the constraint violation is sufficiently decreased, and the

parameter ρ(λ(i,j),t) remains unchanged, i.e., node i sets ρ(λ(i,j),t) = ρ(λ(i,j),t−1); otherwise, node i increases

the parameter, i.e., it sets ρ(λ(i,j),t) = σ(λ(i,j))ρ(λ(i,j),t−1). The constants κ(λ(i,j)) ∈ (0, 1) and σ(λ(i,j)) > 1

are local to node i.

5Reference [23] proves convergence of the method of multipliers with the positive definite matrix (possibly time-varying)
penalty update, see eqn. (1.5) in [23]; the case of different (possibly time-varying) penalties assigned to different constraints is
a special case of the matrix penalty, when the matrix is diagonal (possibly time-varying.)

April 15, 2011 DRAFT

13

IV. CONVERGENCE ANALYSIS OF THE AL–G ALGORITHM

This section provides the convergence of the AL–G algorithm. Convergence of the multiplier method

for the dual variable updates (on slow time scale {t}) in eqn. (8) is available in the literature, e.g., [6].

We remark that, in practice, P–AL–G runs for a finite time, producing an inexact solution of (9). This,

however, does not violate the convergence of the overall primal-dual AL–G scheme, as corroborated by

simulations in Section VI. The P–AL–G algorithm for the primal variable update (on the fast time scale

{k}) is novel, and its convergence requires a novel proof. We proceed with the convergence analysis of

P–AL–G. First, we state an additional assumption on the function f(·), and we state Theorem 4 on the

almost sure convergence of P–AL–G.

Assumptions and statement of the result. Recall the equivalent definition of the P–AL–G and the

simplified notation in III-C1. The P–AL–G algorithm solves the following optimization problem:

minimize L(z)

subject to z ∈ C
. (16)

We will impose an additional, mild assumption on the function L(z), and, consequently, on the function

f(·). First, we give the definition of a block-optimal point.

Definition 2 (Block-optimal point) A point z• =
(
z•1 , z

•
2 , ..., z

•
N+2M

)
is block-optimal for the prob-

lem (16) if: z•i ∈ arg minwi∈CiL
(
z•1 , z

•
2 , ..., z

•
i−1, wi, z

•
i+1, ..., z

•
N+2M

)
, i = 1, ..., N + 2M.

Assumption 3 If a point z• is a block-optimal point of (16), then it is also a solution of (16).

Remark. Assumption 3 is mild: it is valid if, e.g., fi(x) = ki‖x‖1 +Wi(x), ki ≥ 0, where Wi : Rm → R

is a continuously differentiable, convex function, and ‖x‖1 =
∑N

i=1 |xi| is the l1 norm of x, [24].

Define the set of optimal solutions B = {z? ∈ C : L(z?) = L?}, where L? = infz∈C L(z).6 Further,

denote by dist(b, A) the Euclidean distance of point b ∈ Rm to the set A ⊂ Rm, i.e., dist(b, A) =

infa∈A ‖a− b‖2, where ‖x‖2 is the Euclidean, l2 norm. We now state the Theorem on almost sure (a.s.)

convergence of the P–AL–G algorithm (Theorem 4,) after which we give some auxiliary Lemmas needed

to prove Theorem 4.

Theorem 4 Let Assumptions 1 and 3 hold, and consider the optimization problem (16) (with fixed dual

variables.) Consider the sequence {z(k)}∞k=0 generated by the algorithm P–AL–G. Then:

6Under Assumption 1, the set B is nonempty and compact and L? > −∞. This will be shown in Lemma 5. Clearly,
L? = L?

(
{λ(i,j)}, {µ(i,j)}

)
and B = B

(
{λ(i,j)}, {µ(i,j)}

)
depend on the dual variables. For simplicity, we write only L?

and B.

April 15, 2011 DRAFT

14

1) limk→∞ dist (z(k), B) = 0, a.s.

2) limk→∞ L (z(k)) = L?, a.s.

Auxiliary Lemmas. Let iC : Rm → R∪ {+∞} be the indicator function of the set C, i.e., iC(z) = 0 if

z ∈ C and +∞ otherwise. It will be useful to define the function L + iC : Rm(N+2M) → R ∪ {+∞},

(L + iC)(z) = L(z) + iC(z). Thus, the optimization problem (16) is equivalent to the unconstrained

minimization of (L+ iC)(·). The following Lemma establishes properties of the set of solutions B, the

optimal value L?, and the function (L+ iC)(·).

Lemma 5 Let Assumption 1 hold. The functions L(z) and (L+ iC)(z) are coercive, L? > −∞, and the

set B is nonempty and compact.

Proof: The function L(z) (given in eqn. (4)) is coercive. To see this, consider an arbitrary sequence

{z(j)}∞j=1, where ‖z(j)‖ → ∞ as j → ∞. We must show that L(z(j)) → ∞. Consider two possible

cases: 1) there is i ∈ {1, ..., N} such that ‖xi(j)‖ → ∞; and 2) there is no i ∈ {1, ..., N} such

that ‖xi(j)‖ → ∞. For case 1), pick an i such that ‖xi(j)‖ → ∞; then fi(xi(j)) → ∞, and hence,

L(z(j))→∞. In case 2), there exists a pair (i, l) such that ‖yil‖ → ∞; but then, as xi(j) is bounded,

we have that ‖xi(j) − yil(j)‖2 → ∞, and hence, L(z(j)) → ∞. The function (L + iC)(z) is coercive

because (L+ iC)(z) ≥ L(z), ∀z, and L(z) is coercive. The function (L+ iC)(z) is a closed7 (convex)

function, because L(z) is clearly a closed function and iC(z) is a closed function because C is a closed

set; hence, (L+ iC)(z) is closed function as a sum of two closed functions.Hence, B is a closed set, as

a sublevel set of the closed function (L+ iC)(z). The set B is bounded as a sublevel set of a coercive

function (L+ iC)(z). Hence, B is closed and bounded, and thus, compact. We have that L? > −∞ (and

B is non empty) as L(z) is a continuous, convex, and coercive on Rm(N+2M).

Define Uε(B) = {z : dist(z,B) < ε}, and let Vε(B) be its complement, i.e., Vε(B) = Rm\Uε(B). Further,

denote by S and F the initial sublevel sets of L and L+ iC , respectively, i.e., S = {z : L(z) ≤ L(z(0))},

and F = {z : (L+ iC)(z) ≤ L(z(0))} = S ∩ C, where z(0) ∈ C is a feasible, deterministic, initial

point. We remark that, given z(0), any realization of the sequence {z(k)}∞k=0 stays inside the set F .

This is true because L(z(k)) is a nonincreasing sequence by the definition of the algorithm P–AL–G

and because any point z(k) is feasible. Define also the set Γ(ε) = F ∩ Vε(B). We now remark that, by

construction of the P–AL–G algorithm, the sequence of iterates z(k) generated by P–AL–G is a Markov

sequence. We are interested in the expected decrease of the function L(·) in one algorithm step, given

7A function q : Rm → R ∪ {+∞} is closed if its epigraph epi(q) = {(x, v) : q(x) ≤ v} is a closed subset of Rm+1.

April 15, 2011 DRAFT

15

that the current point is equal to z(k) = z:

ψ(z) = E [L (z(k + 1)) |z(k) = z]− L(z). (17)

Denote by Li(z) the block-optimal value of the function L(z) after minimization with respect to zi:

Li(z) = min
wi∈Ci

L (z1, z2, ..., zi−1, wi, zi+1, ..., zN+2M) (18)

We have, by the definition of P–AL–G, that (recall the definition of Pi above Algorithm 2:)

ψ (z) =
N+2M∑
i=1

Pi
(
Li(z)− L(z)

)
. (19)

Define φ(z) = −ψ(z). From eqn. (19), it can be seen that φ(z) ≥ 0, for any z ∈ C. We will show that

φ(z) is strictly positive on the set Γ(ε) for any positive ε.

Lemma 6

inf
z∈Γ(ε)

φ(z) = a(ε) > 0 (20)

We first show that Γ(ε) is compact and that Li is continuous on Γ(ε) (latter proof is in the Appendix.)

Lemma 7 (Compactness of Γ(ε)) The set Γ(ε) is compact, for all ε > 0.

Proof: We must show that Γ(ε) is closed and bounded. It is closed because it is the intersection of

the closed sets F and Vε(B). It is bounded because Γ(ε) ⊂ F , and F is bounded. The set F is bounded

as a sublevel set of the coercive function L + iC . The set F is closed as a sublevel set of the closed

function L+ iC .

Lemma 8 (Continuity of Li) The function Li : Γ(ε)→ R is continuous, i = 1, ..., N + 2M .

Proof of Lemma 6: First, we show that φ(z) > 0, for all z ∈ Γ(ε). Suppose not. Then, we have:

Li(z) = L(z), for all i. This means that the point z ∈ Γ(ε) is block-optimal; Then, by Assumption 3, the

point z is an optimal solution of (16). This is a contradiction and φ(z) > 0, for all z ∈ Γ(ε). Consider

the infimum in eqn. (20). The infimum is over the compact set and the function φ(·) is continuous (as a

scaled sum of continuous functions Li(·)); thus, by the Weierstrass theorem, the infimum is attained for

some z• ∈ Γ(ε) and φ(z•) = a(ε) > 0.

Proof of Theorem 4–1. Recall the expected decrease of the function L(·), ψ(z). We have:

E [ψ (z(k))] = E [E [L (z(k + 1)) |z(k)]− L (z(k))] = E [L (z(k + 1))]− E [L (z(k))] . (21)

April 15, 2011 DRAFT

16

On the other hand, we have that E [ψ(z(k))] equals:

E [ψ (z(k)) |z(k) ∈ Γ(ε)] Prob (z(k) ∈ Γ(ε)) + E [ψ (z(k)) |z(k) /∈ Γ(ε)] Prob (z(k) /∈ Γ(ε)) . (22)

Denote by pk = Prob (z(k) ∈ Γ(ε)). Since ψ (z(k)) ≤ −a(ε), for z(k) ∈ Γ(ε), and ψ (z(k)) ≤ 0, for

any z(k), we have that: E [ψ (z(k))] = E [L(z(k + 1))] − E [L(z(k))] ≤ −a(ε) pk; summing up latter

inequality for j = 0 up to j = k − 1, we get:

E [L(z(k))]− L(z(0)) ≤ −a(ε)
k−1∑
j=0

pk, ∀j ≥ 0. (23)

The last inequality implies that:
∑∞

k=0 pk ≤
1
a(ε) (L (z(0))− L?) < ∞. Thus, by the first Borel-

Cantelli Lemma, Prob (z(k) ∈ Γ(ε), infinitely often) = 0, ∀ε > 0. Thus, Prob (Aε) = 1, ∀ε > 0,

where the event Aε is: Aε := {the tail of the sequence z(k) belongs to Uε(B)}. Consider the event

A := ∩∞s=1Aεs , where εs is a decreasing sequence, converging to 0. Then, Prob (A) = Prob (∩∞s=1Aεs) =

lims→∞ Prob (Aεs) = lims→∞ 1 = 1. Now, the event B := {limk→∞ dist(z(k), B) = 0} is equal to A,

and thus Prob (B) = 1.

Expected number of iterations for convergence: Proof of Theorem 4–2. Consider now the sets

Uε(B) = {z : L(z) ≤ ε+ L?} and Vε(B) = Rm\Uε(B) and define the sets F and G(ε) as F = C ∩ S

and G(ε) = F ∩ Vε(B). Similarly as in Lemmas 8, we can obtain that

inf
z∈G(ε)

φ(z) = b(ε) > 0. (24)

We remark that, once z(k) enters the set Uε(B) at k = Kε, it never leaves this set, i.e., z(k) ∈ Uε(B),

for all k ≥ Kε. Of course, the integer Kε is random. In the next Theorem, we provide an upper bound on

the expected value of Kε (the time slot when z(k) enters the set Uε(B),) thus giving a stopping criterion

(in certain sense) of the algorithm P–AL–G.

Theorem 9 (Expected number of iterations for convergence) Consider the sequence {z(k)}∞k=0 gener-

ated by the algorithm P–AL–G. Then, we have:

E [Kε] ≤
L (z(0))− L?

b(ε)
. (25)

Proof: Let us define an auxiliary sequence z̃(k) as z̃(k) = z(k), if z(k) ∈ G(ε), and z(k) = z?,

if z(k) ∈ Uε(B). Here z? is a point in B. That is, z̃(k) is identical to z(k) all the time while z(k) is

outside the set Uε(B) and z̃(k) becomes z? and remains equal to z? once z(k) enters Uε(B). (Remark

that z(k) never leaves the set Uε(B) once it enters it by construction of Algorithm P–AL–G.)

April 15, 2011 DRAFT

17

Now, we have that:

ψ (z̃(k)) =

 ψ(z(k)) ≤ −b(ε) if z(k) ∈ G(ε)

0 if z(k) ∈ Uε(B)
. (26)

Taking the expectation of ψ (z(k)), k = 0, ..., t − 1 and summing up these expectations, and letting

t→∞, we get:

E [L (z̃(∞))]− L(z(0)) =
∞∑
k=0

E [ψ (z̃(k + 1))]− E [ψ (z̃(k))] = E
∞∑
k=0

ψ (z̃(k)) ≤ −E [Kε] b(ε)

Thus, the claim in equation (25) follows.

We now prove Theorem 4–2. By Theorem 10, the expected value of Kε is finite, and thus Kε is finite

a.s. This means that for all ε > 0, there exists random number Kε (a.s. finite), such that z̃(k) = z?, for

all k ≥ Kε, i.e., such that z(k) ∈ Uε(B) for all k ≥ Kε. The last statement is equivalent to Theorem 4–2.

V. VARIANTS TO AL–G: AL–MG (AUGMENTED LAGRANGIAN MULTI NEIGHBOR GOSSIPING) AND

AL–BG (AUGMENTED LAGRANGIAN BROADCAST GOSSIPING) ALGORITHMS

This section introduces two variants to the AL–G algorithm, the AL–MG (augmented Lagrangian

multi neighbor gossiping) and the AL–BG (augmented Lagrangian broadcast gossiping). Relying on

the previous description and analysis of the AL–G algorithm, this section explains specificities of the

AL–MG and AL–BG algorithms. Subsection V-A details the AL–MG, and subsection V-B details the

AL–BG algorithm. Proofs of the convergence for P–AL–MG and P–AL–BG are in the Appendix.

A. AL–MG algorithm

The AL–MG algorithm is a variation of the AL–G algorithm. The algorithms AL–G and AL–MG

are based on the same reformulation of (1) (eqn.(2)), and they have the same dual variable update (that

is, D–AL–G and D–AL–MG are the same.) We proceed by detailing the difference between P–AL–MG

and P–AL–G to solve (9) (with fixed dual variables.) With the algorithm P–AL–MG, each node has

two independent Poisson clocks, T xi and T yi . Update followed by a tick of T xi is the same as with

P–AL–G (see Algorithm 1, step 4.) If T yi ticks, then node i transmits simultaneously the variables yij ,

j ∈ Ωi, to all its neighbors (yi,j1 is transmitted to node j1, yi,j2 is transmitted to node j2, etc.) Due to

link failures, the neighborhood nodes may or may not receive the transmitted information. Successfull

transmissions are followed by updates of yji’s, according to eqn. (13). Define also the virtual clock T

that ticks whenever one of the clocks T xi , T yi , ticks. Accordingly, we define the k-time slots as [τk−1, τk),

k = 1, 2..., τ0 = 0, and τk is the time of the k-th tick of T . Overall AL–MG algorithm is the same

April 15, 2011 DRAFT

18

as AL–G (see Algorithm 3,) except that, instead of P–AL–G, nodes run P–AL–MG algorithms at each

t. We prove convergence of the P–AL–MG in the Appendix; for convergence of the overall AL–MG

algorithm, see discussion at the beginning of section V.

B. AL–BG algorithm: An algorithm for static networks

We now present a simplified algorithm for the networks with reliable transmissions. This algorithm is

based on the reformulation of (1) that eliminates the variables yij’s. That is, we start with the following

equivalent formulation of (1):

minimize
∑N

i=1 fi(xi)

subject to xi ∈ Xi, i = 1, ..., N,

xi = xj , {i, j} ∈ E

(27)

We remark that (27) is equivalent to (1) because the supergraph is connected. After dualizing the

constraints xi = xj , (i, j) ∈ E, the AL dual function La(·) and the Lagrangian L(·) become:

La
(
{λ{i,j}}

)
= min L

(
{xi}, {λ{i,j}}

)
subject to xi ∈ Xi, i = 1, ..., N

L
(
{xi}, {λ{i,j}}

)
=

N∑
i=1

fi(xi) +
∑

{i,j}∈E, i<j

λ>{i,j} (xi − xj) +
1
2
ρ

∑
{i,j}∈E, i<j

‖xi − xj‖2. (28)

In the sums
∑
{i,j}∈E λ

>
{i,j} (xi − xj) and

∑
{i,j}∈E ‖xi−xj‖2, the terms λ>{i,j} (xi − xj) and ‖xi−xj‖2

are included once. (The summation is over the undirected edges {i, j}.) Also, terms λ>{i,j} (xi − xj) in

the sum
∑
{i,j}∈E λ

>
{i,j} (xi − xj) are arranged such that i < j, for all {i, j} ∈ E. The resulting dual

optimization problem is the unconstrained maximization of La(λ{i,j}).

Solving the dual: D–AL–BG algorithm. We solve the dual (28) by the method of multipliers, which

can be shown to have the following form:

λ{i,j}(t+ 1) = λ{i,j}(t) + ρ sign(j − i)
(
x?i (t)− x?j (t)

)
(29)

x?(t) = (x?1(t), x∗2(t), ..., x∗N (t)) ∈ arg min L
(
{xi}, {λ{i,j}(t)}

)
subject to xi ∈ Xi, i = 1, ..., N

. (30)

We will explain in the next paragraph how the P–AL–BG algorithm solves (30) in a distributed, iter-

ative way. With AL–BG, each node needs to maintain only one m-dimensional dual variable: λi :=∑
j∈Ωi

sign(j − i)λ{i,j}. Also, define xi :=
∑

j∈Ωi
xj . The P–AL–G algorithm terminates after a finite

April 15, 2011 DRAFT

19

number of inner iterations k, producing an inexact solution. Denote by xFi (resp. xFj) the inexact solution

of xi (resp. xj , j ∈ Ωi), available at node i, after termination of P–AL–BG. We will see that xFi = xLi ,

∀i; accordingly, after termination of P–AL–BG, node i has available xFi :=
∑

j∈Ωi
xFj . Summing up

equations (29) for λ{i,j}, j ∈ Ωi, and taking into account the finite time termination of the P–AL–BG,

we arrive at the following dual variable update at node i:

λi(t+ 1) = λi(t) + ρ
(
di x

F
i (t)− xFi (t)

)
, i = 1, ..., N. (31)

Solving for (30): P–AL–BG algorithm. We solve the problem (30) by a randomized, block-coordinate

P–AL–BG algorithm. After straightforward calculations, it can be shown that minimization of the function

in (28) with respect to xi (while other coordinates are fixed) is equivalent to the following minimization:

minimize fi(xi) +
(
λi − ρ xi

)>
xi + 1

2 ρ di‖xi‖
2

subject to xi ∈ Xi
(32)

Similarly as with AL–G, we assume that the clock ticks at all nodes are governed by independent

Poisson process Ti’s. P–AL–BG is as follows. Whenever clock Ti ticks, node i updates xi via eqn. (32)

and broadcasts the updated xi to all the neighbors in the network. Discrete random iterations {k} of the

P–AL–BG algorithm are defined as ticks of the virtual clock T that ticks whenever one of Ti ticks. The

P–AL–BG algorithm produces xFi and xFi at node i. Overall primal-dual AL–BG algorithm is similar

to the AL–G algorithm (see Algorithm 3), except that, at each t, nodes cooperatively run the P–AL–

BG algorithm, instead of P–AL–G algorithm. We prove convergence of P–AL–BG in the Appendix; for

convergence of the overall primal-dual AL–BG scheme, see discussion at the beginning of Section V.

VI. SIMULATION EXAMPLES

In this section, we consider two simulation examples, namely, l1–regularized logistic regression for

classification (subsection VI-A,) and cooperative spectrum sensing for cognitive radio networks (subsec-

tion VI-B.) Both examples corroborate the convergence of our algorithms AL–G, AL–MG on random

networks, and AL–BG on static networks, and demonstrate tradeoffs that our algorithms show with

respect to the existing literature. We compare the convergence speed of our and existing algorithms with

respect to: 1) communication cost; and 2) computational cost, while the communication cost is dominant

in networked systems supported by wireless communication. AL–BG outperforms existing algorithms

(in [10], [8], [25], [4]8) on static networks in terms of communication cost, on both examples; at the same

time, it has a larger computational cost. For the l1-regularized logistic regression example and random

8Reference [4] focusses specifically on the Lasso problem; we compare with [4] in subsection VI-B.

April 15, 2011 DRAFT

20

networks, AL–G and AL–MG outperform existing algorithms ([10], [8]9) in terms of communication

cost, while having larger computational cost. For the cooperative spectrum sensing example and random

networks, AL–G and AL–MG converge slower than existing algorithms [10], [8].

A. l1–regularized logistic regression for classification

We consider distributed learning of a linear discriminant function. In particular, we consider the l1–

regularized logistic regression optimization problem (eqn. (45) in [14]; see Subsections 7.1 and 10.2).

We add private constraints and adapt the notation from [14] to fit our exposition.10 The problem setup

is as follows. Each node i, i = 1, ..., N , has Nd data samples, {aij , bij}Ndj=1, where aij ∈ Rm is a

feature vector (data vector,) and bij ∈ {−1,+1} is the class label of the feature vector aij . That is, when

bij = 1 (respectively, −1,) then the feature vector aij belongs to the class “1” (respectively, “−1”.) The

goal is to learn the weight vector w ∈ Rm, and the offset v ∈ R, based on the available samples at

all nodes, {aij , bij}Ndj=1, i = 1, ..., N , so that w is sparse, and the equality: sign
(
a>ijw + v

)
= bij , i =

1, ..., N, j = 1, ..., Nd, holds for the maximal possible number of data samples {aij , bij}Ndj=1, i = 1, ..., N .

One approach to choose w and v is via l1–regularized logistic regression; that is, choose w? and v? that

solve the following optimization problem, [14]:

minimize
∑N

i=1

∑Nd
j=1 log

(
1 + exp

(
−bij(a>ijw + v)

))
+ λ‖w‖1

subject to w>w ≤ ki, i = 1, ..., N

|v| ≤ k′i, i = 1, ..., N

. (33)

The parameter λ > 0 enforces the sparsity in w, [26]. The private constraints on w and v at node i (ki’s

and k′i’s are positive) represent the prior knowledge available at node i (see [27], Chapter 7.) Problem (33)

clearly fits our generic framework in (1) and has a vector optimization variable, a non smooth objective

function, and quadratic private constraints. Alternatives to (33) to learn w and v include support vector

machines and boosting, [26], [14].

Simulation setup. We consider a supergraph with N = 20 nodes and |E| = 37 undirected edges (74

arcs). Nodes are uniformly distributed on a unit square and pairs of nodes with distance smaller than

a radius r are connected by an edge. For networks with link failures, the link failures of different

arcs at the same time slot are independent and the failures of the same arc at different time slots are

independent also. Link failure probabilities πij are generated as follows: πij = k
δ2ij
r2 , δij < r, where

9Only references [10], [8] consider random networks.
10Note that [14] studies only the parallel network architecture, with a fusion center, and it does not propose an algorithm to

solve the l1–regularized logistic regression problem on generic networks, the case that we address here.

April 15, 2011 DRAFT

21

k = 0.5. Each node has Nd = 5 data samples. Each feature vector aij ∈ Rm, m = 20, and the “true”

vector wtrue have approximately 60% zero entries. Nonzero entries of aij and wtrue, and the offset vtrue

are generated independently, from the standard normal distribution. Class labels bij are generated by:

bij = sign
(
a>ijwtrue + vtrue + εij

)
, where εij comes from the normal distribution with zero mean and

variance 0.1. The penalty parameter λ is set to be 0.5 · λmax, where λmax is the maximal value of λ

above which the solution to (33) is w? = 0 (see ([14], subsection 10.2) how to find λmax.) We set ki

and k′i as follows. We solve the unconstrained version of (33) via the centralized subgradient algorithm;

we denote the corresponding solution by w• and v•. We set ki = (1 + ri) · ‖w•‖2, k′i = (1 + r′i) · |v•|,

where ri and r′i are drawn from the uniform distribution on [0, 1]. Thus, the solution to problem (33) is

in the interior of the constraint set. (Similar numerical results to the ones presented are obtained when

the solution is at the boundary.) To update xi with P–AL–G and P–AL–MG (eqn. (11)), we solve (11)

via the projected subgradient algorithm.

Algorithms that we compare with. In the first set of experiments, we consider AL–BG for (static)

networks; in the second set of experiments, we test AL–G and AL–MG on networks with link failures.

We compare our algorithms with the ones proposed in [10], [11], [9], [8]11 and in [25]. References [10],

[11], [9], [8] propose a primal projected subgradient algorithm, here refer to as PS (Primal Subgradient.)

PS, as an intermediate step, computes weighted average of the optimal point estimates across node i’s

neighborhood. Averaging weights have not been recommended in [10], [11], [9], [8]; we use the standard

time-varying Metropolis weights, see [28], eqn. (11). Reference [25] proposes an incremental primal

subgradient algorithm, here referred to as MCS (Markov chain subgradient.) With MCS, the order of

incremental updates is guided by a Markov chain, [25].12 We simulate MCS and PS with fixed subgradient

step size rather than the diminishing step size, as the former yields faster convergence.

We compare the algorithms based on two criteria. The first is the amount of inter-neighbor com-

munication that the algorithms require to meet a certain accuracy. We count the total number of radio

transmissions (counting both successful and unsuccessful transmissions.) The second is the total number

of floating point operations (at all nodes.) In networked systems supported by wireless communication

(e.g., WSNs,) the dominant cost (e.g., power consumption) is induced by communication. Total number

of floating point operations depends on the algorithm implementation, but the results to be presented give

a good estimate of the algorithms’ computational cost. It may be possible to reduce the computational

11We simulate the algorithms in [10], [11], [9], [8] with symmetric link failures.
12Convergence for MCS has been proved only with the projection onto a public constraint set, but we simulate it here with

the straightforward generalization of the projection onto private constraint sets; MCS showed convergence for our example in
the private constraints case also.

April 15, 2011 DRAFT

22

cost of AL–G, AL–MG, and AL–BG by a more computationally efficient solutions to problems (11)

and (32) than (here adopted) projected subgradient method.

Denote by f? the optimal value of (33). We compare the algorithms in terms of the following metric:

errf =
1
N

N∑
i=1

(f(xi)− f?) ,

where xi is the estimate of the optimal solution available at node i at a certain time.

With our AL–G, AL-MG, and AL–BG algorithms, the simulations to be presented use an increasing

sequence of AL penalty parameters (see the end of Section IV,) which, after some experimentation, we set

to the following values: ρt = tAρ + Bρ, t = 0, 1, ..., with Aρ = 1.3, and Bρ = 1. We also implemented

the algorithms with different and increasing ρ’s assigned to each dual variable, with the scheme for

adjusting ρ’s explained at the end of Section IV, with κλ(i,j) = κµ(i,j) = 0.3, and σλ(i,j) = σµ(i,j) = 1.2.

The latter choice also showed convergence of AL–G, AL-MG, and AL–BG, but the former yielded

faster convergence. Our simulation experience shows that the convergence speed of AL–G, AL-MG,

and AL–BG depend on the choice of ρt, but the optimal tuning of ρt is left for future studies. With PS

and MCS, and a fixed step size, the estimates f(xi) converge only to a neighborhood of f?. There is a

tradeoff between the limiting error errf (∞) and the rate of convergence with respect to the stepsize α:

larger α leads to faster convergence and larger errf (∞). We notice by simulation that AL–G, AL–MG,

and AL–BG converge to a plateau neighborhood of f?; after that, they improve slowly; call the error

that corresponds to this plateau errf (ss). To make the comparison fair or in favor of PS and MCS, we

set α for the PS and MCS algorithms such that the errf (∞) for PS and MCS is equal (or greater) than

the err(ss) attained by AL–G, AL–MG, and AL–BG.

Results: Static network. Figure 2 (top left) plots errf versus the number of (m = 20-dimensional vector)

transmissions (cumulatively at all nodes.) We can see that AL–BG outperforms PS and MCS by one to

two orders of magnitude. AL–BG needs about 0.3 · 105 transmissions to reduce errf below 0.001, while

MCS and PS need, respectively, about 4 · 105 and 18 · 105 transmissions for the same precision. With

respect to the number of floating point operations (Figure 2, top right,) AL–BG needs more operations

than MCS and PS; 45 · 108 for AL–BG versus 13 · 108 for PS, and 2 · 108 for MCS. Thus, with respect

to MCS, AL–BG reduces communication at a cost of additional computation. Note that with AL–BG,

MCS, and PS, due to private constraints, node i’s estimate xi may not be feasible at certain time slots;

in this numerical example, AL–BG, MCS, and PS all produced feasible solutions at any time slot, at all

nodes. A drawback of MCS in certain applications, with respect to PS and AL–BG, can be the delay

time that MCS needs for the “token” to be passed from node to node as MCS evolves, see [25].

April 15, 2011 DRAFT

23

Results: Random network. Figure 2 (bottom left) plots errf versus the total number of transmissions.

AL–MG and AL–G outperform PS. To decrease errf below 5 ·10−4, AL–MG and AL–G require about

1.2 · 106 transmissions, and AL–G 1.5 · 106 transmissions; PS requires about 3.7 · 106 transmissions to

achieve the same precision. Figure 2 (bottom right) plots errf plots versus the total number of floating

point operations. PS requires less computation than AL–G and AL–MG. To decrease errf below 5·10−4,

AL–MG and AL–G require about 69 · 109 transmissions; PS requires about 2.8 · 109 transmissions for

same precision. With each of the algorithms AL–G, AL–MG, and PS, each node i’s estimate xi was

feasible along time slots.

0 0.5 1 1.5 2 2.5
x 106

10-4

10-2

100

102

number of transmissions

er
r f

PS

AL-BG

MCS

0 1 2 3 4
x 109

10-4

10-2

100

102

number of floating point operations

er
r f

AL-BG

PS

MCS

0 1 2 3 4
x 106

10-4

10-2

100

102

number of transmissions

er
r f

AL-G

PSAL-MG

0 2 4 6
x 1010

10-4

10-2

100

102

number of floating point operations

er
r f

PS AL-G

AL-BG

Fig. 2. Performance of AL–BG, MCS, and PS on a static network (top figures,) and the AL–G, AL–MG and PS algorithms
on a random network (bottom figures.) Left: total number of transmissions; Right: total number of floating point operations.

B. Cooperative spectrum sensing for cognitive radio networks

We now consider cooperative spectrum sensing for cognitive radio networks. Cognitive radios are an

emerging technology for improving the efficiency of usage of the radio spectrum. (For a tutorial on

cognitive radios see, e.g., [29].) We focus here on the cooperative spectrum sensing approach that has

been studied in [4], [3]. Suppose that Nr cognitive radios, located at xr positions in 2D space, cooperate to

determine: 1) the spatial locations; and 2) the power spectrum density (PSD) of primary users. Primary

users can be located on Ns potential locations, xs, on
√
Ns ×

√
Ns square grid (See Figure 3, top,

in [3].) For brevity, we omit the details of the problem setup; we refer to reference [4], subsection II-

A, for the problem setup, and section II (eqn. (2)) in the same reference, for the Lasso optimization

problem of estimating the locations and the PSD of primary users. This (unconstrained) optimization

April 15, 2011 DRAFT

24

problem in eqn. (2) in [4] fits the generic framework in eqn. (1); thus, our algorithms AL–G, AL–MG

and AL–BG apply to solve the problem in eqn. (2) in [4]. Throughout, we use the same terminology

and notation as in [4]. We now detail the simulation parameters. The number of potential sources is

Ns = 25; they are distributed on a regular 5 × 5 grid over the square surface of 4km2. Channel gains

γsr are modeled as γsr = min
{

1, A
‖xs−xr‖a

}
, with A = 200 [meters] and a=3. The number of basis

rectangles is Nb = 6, and the number of frequencies at which cognitive radios sample PSD is Nf = 6.

There are 3 active sources; each source transmits at 2 out of Nb = 6 possible frequency bands. After

some experimentation, we set the Lasso parameter λ (see eqn. (2) in [4]) to λ = 1; for a distributed

algorithm to optimally set λ, see [4]. We consider the supergraph with Nr = 20 nodes (cognitive radios)

and |E| = 46 undirected edges (92 arcs.) Nodes are uniformly distributed on a unit 2km×2km square

and the pairs of nodes with distance smaller than r =750m are connected.

For static networks, we compare AL–BG (our algorithm) with MCS, PS, and an algorithm in [4].

Reference [4] proposes three (variants of AD-MoM type algorithms, mutually differing in: 1) the total

number of primal and dual variables maintained by each node (cognitive radio); 2) the method by which

nodes solve local optimizations for primal variable update (These problems are similar to (32).) We

compare AL–BG with the DCD-Lasso variant, because it has the same number of primal and dual

variables as AL–BG and a smaller computational cost than the alternative DQP-Lasso variant. With

AL–BG, we use an increasing sequence of AL penalty parameters, ρt = KρA
t
ρ + Cρ, t = 0, 1, ..., with

Kρ = 1, Aρ = 1.15 and Cρ = 3. With DCD-Lasso, we used fixed ρ = ρt, as in [4], [3].13 We solve the

local problems in AL–BG (eqn. (32)), AL–G and AL–MG (eqn. (11),) by an efficient block coordinate

method in [4] (see eqn. (13) in [4].) For the networks with link failures, we have compared our AL–G

and AL–MG algorithms with PS (in [10], [11], [9], [8].) We briefly comment on the results. Both AL–G

and AL–MG converge to a solution, in the presence of link failures as in VI-A; they converge slower

than the PS algorithm, both in terms of communication and computational cost.

Results for static network. Figure 3 (left) plots errf for PS, MCS, DCD-Lasso, and AL–BG versus the

number of transmissions (at all nodes.) AL–BG shows improvement over the other algorithms. To achieve

the precision of errf ≤ 0.044, AL–BG requires about 5 · 104 transmissions; MCS 20 · 104 transmissions;

DCD-Lasso 25 · 104 transmissions; PS 50 · 104 transmissions. Limiting error for PS is 0.027 (not visible

in the plot.) Note also that DCD-Lasso and PS saturate at a larger error than AL–BG and MCS. Figure
3 (right) plots the errf for the PS, MCS, DCD-Lasso, and AL–BG algorithms versus the total number of

13It may be possible to improve on the speed of DCD-Lasso by selecting appropriate time varying ρ = ρt; this is outside of
our paper’s scope.

April 15, 2011 DRAFT

25

0 2 4 6 8
x 105

10-2

10-1

100

101

number of transmissions

er
r f

MCS

PSDCD-Lasso

AL-BG

0 2 4 6 8
x 109

10-2

10-1

100

101

number of floating point operations

er
r f

AL-BG

PS
DCD-Lasso

MCS

Fig. 3. Performance of AL–BG, DCD-Lasso, PS and MCS algorithms on static CR network. Left: total number of transmissions
(cumulatively, at all nodes). Right: total number of floating point operations (cumulatively, at all nodes.).

floating point operations. AL–BG, MCS and DCD-Lasso show similar performance, while PS is slower.

VII. CONCLUSION

We studied cooperative optimization in networked systems, where each node obtains an optimal (scalar

or vector) parameter of common interest, x = x?. Quantity x? is a solution to the optimization problem

where the objective is the sum of private convex objectives at each node, and each node has a private

convex constraint on x. Nodes utilize gossip to communicate through a generic connected network with

failing links. To solve this network problem, we proposed a novel distributed, decentralized algorithm,

the AL–G algorithm. AL–G handles a very general optimization problem with private costs, private

constraints, random networks, asymmetric link failures, and gossip communication.

This contrasts with existing augmented Lagrangian primal-dual methods that handle only static net-

works and synchronous communication, while, as mentioned, the AL-G algorithm handles random

networks and uses gossip communication. In distinction with existing primal subgradient algorithms

that essentially handle only symmetric link failures, AL–G handles asymmetric link failures.

AL–G updates the dual variables synchronously via a standard method of multipliers, and it updates

the primal variables via a novel algorithm with gossip communication, the P–AL–G algorithm. P–AL–G

is a nonlinear Gauss-Seidel type algorithm with random order of minimizations. Nonlinear Gauss-Seidel

was previously shown to converge only under the cyclic or the essentially cyclic rules, [24], [6]; we

prove convergence of P–AL–G, which has a random minimization order. Moreover, our proof is different

from standard proofs for nonlinear Gauss-Seidel, as it uses as main argument the expected decrease in

the objective function after one Gauss-Seidel step. We studied and proved convergence of two variants

of AL–G, namely, AL–MG and AL–BG. An interesting future research direction is to develop a fully

asynchronous primal-dual algorithm that updates both the dual and primal variables asynchronously.

April 15, 2011 DRAFT

26

The AL–G algorithm is a generic tool to solve a wide range of problems in networked systems;

two simulation examples, l1–regularized logistic regression for classification, and cooperative spectrum

sensing for cognitive radios, demonstrated the applicability and effectiveness of AL–G in applications.

APPENDIX

Proof of Lemma 8. We first need a standard result from topology (proof omitted for brevity.)

Lemma 10 Let X and Y be topological spaces, where Y is compact. Suppose the function: κ : X×Y → R

is continuous (with respect to the product topology on X × Y and the usual topology on R; × denotes

Cartesian product.) Then, the function γ : X → R, γ(a) := inf{κ(a, b) : b ∈ Y} is continuous.

Proof of Lemma 8: Denote by Pi : Rm(N+2M) → Rm the projection map Pi(z) = zi, i = 1, ..., N+

2M . Further, denote by Pi(Γ(ε)) :={zi ∈ Rm : zi = Pi(z), for some z ∈ Γ(ε)}. The set Pi(Γ(ε)) is

compact, for all i = 1, ..., N + 2M , because the set Γ(ε) is compact. Consider now the set Rm(N+2M) ⊃

Cε := P1(Γ(ε)) × P2(Γ(ε)) × ... × PN+2M (Γ(ε)), where the symbol × denotes the Cartesian product

of the sets. Clearly, Cε ⊃ Γε(B). We will show that Li is continuous on Cε, i.e., that Li : Cε →

R is continuous, which will imply the claim of Lemma 8. Recall the definition of Li in eqn. (18).

It is easy to see that the minimum in eqn. (18) is attained on the set Pi (Γ(ε)), i.e., that Li(z) =

minwi∈Pi(Γ(ε)) L (z1, z2, ..., zi−1, wi, zi+1, ..., zN+2M) . Thus, by Lemma 12, and because the function

L : Rm(N+2M) → R is continuous, the function Li : P1(Γ(ε))× ... ×Pi−1(Γ(ε))×Pi+1(Γ(ε))× ...×

PN+2M (Γ(ε))→ R is continuous. But this means that Li : Cε → R is also continuous.

Convergence proof of the P–AL–MG algorithm. We first introduce an abstract model of the P–AL–

MG algorithm. First, we impose an additional assumptions that the link failures are spatially independent,

i.e., the Bernoulli states Aij(k) and Alm(k) of different links at time slot k are independent. Define the

sets Y (Ωi) := {yji : j ∈ Ωi} and the class Y (Oi) := {yji : j ∈ Oi}, where Oi ⊂ Ωi. One distinct set

Y (Oi) is assigned to each distinct subset Oi of Ωi. (Clearly, Y (Ωi) belongs to a class of sets Y (Oi), as

Ωi is a subset of itself.) With P–AL–MG, at iteration k, minimization is performed either with respect

to xi, i ∈ {1, ..., N}, or with respect to some Y (Oi). If none of the neighbors of node i receives

successfully a message, then iteration k is void. Define the following collection of the subsets of primal

variables: Π := {{x1}, ..., {xN}, Y (Ω1), ..., Y (ΩN)}. Collection Π constitutes a partition of the set of

primal variables; that is, different subsets in Π are disjoint and their union contains all primal variables.

Further, denote each of the subsets {xi}, Y (Oi), Y (Ωi), with appropriately indexed Zs, s = 1, ..., S.

Then, with P–AL–MG, at time slot k, L(z) is optimized with respect to one Zs, s = 1, ..., S. Define

ξ(k), k = 1, 2, ..., as follows: ξ(k) = s, if, at time slot k, L(z) is optimized with respect to Zs; ξ(k) = 0,

if, at k, no variable gets updated–when all transmissions at time slot k are unsuccessful. Denote by

April 15, 2011 DRAFT

27

P (Zs) = Prob (ξ(k) = s). Under spatial independence of link failures, P (Zs) can be shown to be

strictly positive for all s. It can be shown that ξ(k) are i.i.d. Consider now (16) and P–AL–MG. All

results for P–AL–G remain valid for P–AL–MG also–only the expressions for the expected decrease of

L(·) per iteration, ψ(z), (Lemma 7), and the proof of Lemma 8 change. Denote by L(Zs)(z) the optimal

value after minimizing L(·) with respect to Zs at point z (with the other blocks zj , zj /∈ Zs, fixed.) Then:

ψ(z) =
∑S

s=1 P (Zs)
(
L(Zs) − L(z)

)
. Recall φ(z) = −ψ(z) and the set Γ(ε), for some ε > 0. Lemma 8

remains valid for P–AL–MG. To see this, first remark that φ(z) ≥ 0, for all z ∈ F . We want to show

that φ(z) > 0, for all z ∈ Γ(ε). Suppose not. Then, L(z) = L(Zs)(z), for all Zs, s = 1, ..., S. Then,

in particular, L(z) = L(Zs)(z), for all Zs in the partition Π. Because P (Zs) > 0, ∀s, this implies that

the point z is block-optimal (where now, in view of Definition 2, Zs is considered a single block). By

Assumption 3, z is also optimal, which contradicts z ∈ Γ(ε). Thus, φ(z) > 0 for all z ∈ Γ(ε). The proof

now proceeds as with the proof of Lemma 8 for algorithm P–AL–G.

Convergence proof of the P–AL–BG algorithm. P–AL–BG is completely equivalent to P–AL–G,

from the optimization point of view. P–AL–BG can be modeled in the same way as in Alg. 2, with

a difference that, with P–AL–BG: 1) there is a smaller number (= N) of primal variables: zi := xi,

i = 1, ..., N ; and 2) Prob(ζ(k) = 0) = 0. Thus, the analysis in section V is also valid for P–AL–BG.

REFERENCES

[1] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous routing and resource allocation via dual decomposition,” IEEE

Transactions on Communications, vol. 52, no. 7, pp. 1136–1144, January 2004.

[2] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed parameter estimation in sensor networks: Nonlinear observation

models and imperfect communication,” August 2008, submitted for publication, 30 pages. [Online]. Available:

arXiv:0809.0009v1 [cs.MA]

[3] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for cognitive radio networks by exploiting sparsity,”

IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1847–1862, March 2010.

[4] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear regression,” IEEE Transactions on Signal

Processing, vol. 58, no. 11, November 2010.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE Transactions on Information

Theory, vol. 52, no. 6, pp. 2508–2530, June 2006.

[6] D. Bertsekas, Nonlinear Programming. Athena Scientific, 1995.

[7] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation. New Jersey: Prentice-Hall, Englewood Cliffs, 1989.

[8] I. Lobel and A. Ozdaglar, “Convergence analysis of distributed subgradient methods over random networks,” in 46th Annual

Allerton Conference onCommunication, Control, and Computing, Monticello, Illinois, September 2008, pp. 353 – 360.

[9] S. Ram, A. Nedic, and V. Veeravalli, “Distributed stochastic subgradient projection algorithms for convex optimization,”

submitted 2009. [Online]. Available: arXiv:0811.2595v1 [math.OC]

April 15, 2011 DRAFT

28

[10] I. Lobel, A. Ozdaglar, and D. Feijer, “Distributed multi-agent optimization with state-dependent communication,” 2010,

LIDS report 2834, Massachusetts Institute of Technology. Laboratory for Information and Decision Systems, Cambrige,

MA, submitted for publication.

[11] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Transactions on Automatic

Control, vol. 54, no. 1, pp. 48–61, January 2009.

[12] S. S. Ram, A. Nedic, and V. Veeravalli, “Asynchronous gossip algorithms for stochastic optimization,” in CDC ’09, 48th

IEEE International Conference on Decision and Control, Shanghai, China, December 2009, pp. 3581 – 3586.

[13] S. S. Ram and A. Nedic, “A new class of distributed optimization algorithms: application

to regression of distributed data,” Optimization Methods and Software, 2010. [Online]. Available:

http://www.informaworld.com/10.1080/10556788.2010.511669

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via

the alternating direction method of multipliers,” November 2010, unfinished working draft. [Online]. Available:

http://www.stanford.edu/ boyd/papers/distr opt stat learning admm.html

[15] J.-B. H. Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms I: Fundamentals. Springer Verlag,

1996.

[16] A. Nedic, “Optimization I,” August 2008, lecture notes. [Online]. Available:

https://netfiles.uiuc.edu/angelia/www/optimization one.pdf

[17] T. Aysal, M. Yildiz, A. Sarwate, and A. Scaglione, “Broadcast gossip algorithms for consensus,” IEEE Transactions on

Signal Processing, vol. 57, no. 7, pp. 2748–2761, July 2009.

[18] S. Kar and J. M. F. Moura, “Sensor networks with random links: Topology design for distributed consensus,” IEEE

Transactions on Signal Processing, vol. 56, no. 7, pp. 3315–3326, July 2008.

[19] T. Aysal, A. Sarwate, and A. Dimakis, “Reaching consensus in wireless networks with probabilistic broadcast,” in 47th

Annual Allerton Conference on Communication, Control and Computation, Monticello, IL, Oct. 2009, pp. 732–739.

[20] R. T. Rockafellar, “A dual approach to solving nonlinear programming problems by unconstrained optimization,”

Mathematical Programming, vol. 5, no. 1, pp. 354–373, 1973.

[21] ——, “The multiplier method of Hestenes and Powell applied to convex programming,” Journal on Optimization Theory

and Applications, vol. 12, no. 6, pp. 133–145, 1973.

[22] D. Bertsekas, “Multiplier methods: a survey,” Automatica, vol. 12, pp. 133–145, 1976.

[23] B. He and X. Yuan, “On the acceleration of augmented Lagrangian method for linearly constrained optimization.”

[Online]. Available: http://www.optimization-online.org/DB HTML/2010/10/2760.html

[24] P. Tseng, “Convergence of block coordinate descent method for nondifferentiable minimization,” J. Optim. Theory Appl.,

vol. 109, no. 3, pp. 475–494, June 2001.

[25] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental subgradient method for distributed optimization in

networked systems,” SIAM Journal on Optimization, vol. 20, no. 3, pp. 1157–1170, August 2009.

[26] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[27] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[28] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average consensus,” in IPSN ’05,

Information Processing in Sensor Networks, Los Angeles, California, 2005, pp. 63–70.

[29] X. Hong, C. Wang, H. Chen, and Y. Zhang, “Secondary spectrum access networks,” IEEE Veh. Technol. Mag., vol. 4,

no. 2, pp. 36–43, 2009.

April 15, 2011 DRAFT

29

Dus̆an Jakovetić (S’10) obtained a dipl. ing. diploma from the School of Electrical Engineering, University

of Belgrade, in August, 2007. Currently, he is working towards the Ph.D. degree in electrical and computer

engineering within the joint program of Carnegie Mellon University, Pittsburgh, PA, and Instituto de

Sistemas e Robótica (ISR), Instituto Superior Técnico (IST), Lisbon, Portugal. His research interests

include consensus algorithms in sensor networks and distributed optimization in the context of sensor

networks.

João Xavier (S’97–M’03) received the Ph.D. degree in Electrical and Computer Engineering from Instituto

Superior Tcnico (IST), Lisbon, Portugal, in 2002. Currently, he is an Assistant Professor in the Department

of Electrical and Computer Engineering, IST. He is also a Researcher at the Institute of Systems and

Robotics (ISR), Lisbon, Portugal. His current research interests are in the area of optimization, sensor

networks and signal processing on manifolds.

April 15, 2011 DRAFT

30

José M. F. Moura (S’71–M’75–SM’90–F’94) received the engenheiro electrotécnico degree from Instituto

Superior Técnico (IST), Lisbon, Portugal, and the M.Sc., E.E., and D.Sc. degrees in Electrical Engineering

and Computer Science from the Massachusetts Institute of Technology (MIT), Cambridge.

He is University Professor at Carnegie Mellon University (CMU), with the Departments of Electrical

and Computer Engineering and, by courtesy, BioMedical Engineering. He was on the faculty at IST, has

held visiting faculty appointments at MIT, and was a visiting research scholar at the University of Southern

California. He is a founding co-director of the Center for Sensed Critical Infrastructures Research (CenSCIR) and manages a

large education and research program between CMU and Portugal, www.icti.cmu.edu.

His research interests include statistical and algebraic signal processing, image, bioimaging, and video processing, and digital

communications. He has published over 400 technical Journal and Conference papers, filed eleven patents with eight issued by

the US Patent Office, is the co-editor of two books, and has given numerous invited seminars at international conferences, US

and European Universities, and industrial and government Laboratories.

Dr. Moura is the Director Elect (2011) of IEEE Division IX and currently serves on the IEEE Publications Services and

Products Board. He was the President (2008-09) of the IEEE Signal Processing Society(SPS), Editor in Chief for the IEEE

Transactions in Signal Processing, interim Editor in Chief for the IEEE Signal Processing Letters, and was on the Editorial

Board of several Journals, including the IEEE Proceedings, the IEEE Signal Processing Magazine, and the ACM Transactions

on Sensor Networks. He has been on the steering and technical committees of several Conferences.

Dr. Moura is a Fellow of the IEEE, a Fellow of the American Association for the Advancement of Science (AAAS), and a

corresponding member of the Academy of Sciences of Portugal (Section of Sciences). He was awarded the 2003 IEEE Signal

Processing Society Meritorious Service Award and in 2000 the IEEE Millennium Medal. In 2007 he received the CMU’s

College of Engineering Outstanding Research Award and in 2009 the 2008 Philip L. Dowd Fellowship Award for Contributions

to Engineering Education. In 2010, he was elected University Professor at CMU and received the IEEE Signal Processing

Technical Achievement Award. He is affiliated with several IEEE societies, Sigma Xi, AAAS, AMS, IMS, and SIAM.

April 15, 2011 DRAFT

