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Abstract

We consider the problem of sensor selection for event detection in wireless sensor networks (WSNs).

We want to choose a subset of p out of n sensors that yields the best detection performance. As the

sensor selection optimality criteria, we propose the Kullback-Leibler and Chernoff distances between the

distributions of the selected measurements under the two hypothesis. We formulate the maxmin robust

sensor selection problem to cope with the uncertainties in distribution means. We prove that the sensor

selection problem is NP hard, for both Kullback-Leibler and Chernoff criteria. To (sub)optimally solve

the sensor selection problem, we propose an algorithm of affordable complexity. Extensive numerical

simulations on moderate size problem instances (when the optimum by exhaustive search is feasible to

compute) demonstrate the algorithm’s near optimality in a very large portion of problem instances. For

larger problems, extensive simulations demonstrate that our algorithm outperforms random searches, once

an upper bound on computational time is set. We corroborate numerically the validity of the Kullback-

Leibler and Chernoff sensor selection criteria, by showing that they lead to sensor selections nearly

optimal both in the Neyman-Pearson and Bayes sense.

Keywords: sensor selection, event detection, robust optimization, Chernoff distance, Kullback-Leibler

distance
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I. INTRODUCTION

Wireless sensor networks (WSNs) operate with limited power and communication resources. When

observing phenomena with WSNs, a major challenge is to balance the tradeoff between the quality and the

cost of operation. A fundamental problem of this kind, sensor selection problem, is how to optimally select

a limited subset of sensors (hence limiting the operation cost) that gives the most valuable information

about the observed phenomena.

Problem statement. This paper studies the sensor selection problem for event detection in WSNs. Nature

can be in one of two states: H1 (event occurring, e.g., target present) and H0 (event not occurring,

e.g., target absent). A WSN, composed of n sensors, instruments the nature. The distribution of the

n-dimensional measurement vector is assumed Gaussian under the two hypothesis, with different means

mi and covariances Si, i = 0, 1. We assume that, due to inherent WSN constraints, such as power, only

p (out of n) sensors can sense and transmit their readings to a fusion node; based on the received p

readings, the fusion node performs detection, i.e., decides which of the two hypothesis is true. We ask

the following question: Which p sensors should be chosen to achieve the best detection performance?

Each possible p-sensor selection induces, under hypothesis Hi, a p dimensional Gaussian distribution

πi (of selected sensors), i = 0, 1. Intuitively, a p-sensor selection that yields more distant distributions

π1 and π0 leads to better detection. Hence, we propose, as sensor selection optimality criteria: 1) the

Kullback-Leibler (KL) distance; and 2) the Chernoff (C) distance between π1 and π0. In practice, the

distribution parameters (mi, Si) are estimated from training data, and may not be known exactly, but

only within an uncertainty region. We thus formulate the robust maxmin sensor selection problem of

maximizing the KL (or C) distance between the selected distributions π1 and π0, for the worst case of

parameter drifts. In this paper, we address the case when only the means of the two distributions are

uncertain, relegating the general case for future work.

Contributions. The problem of evaluating the best p-sensor subset is combinatorial; checking over all(
n
p

)
possible combinations becomes infeasible when n and p are sufficiently large. We indeed prove that

the KL and C sensor selection problems are NP hard; hence, it is unlikely to find an efficient algorithm

that solves large instances of these problems. To (suboptimally in general) solve the sensor selection

problems, we propose a computationally affordable algorithm. For example, to select 10 out of 100

sensors, our algorithm takes only few seconds on a current generation personal computer. There is no

theoretical guarantee that our algorithm produces an optimal or near optimal solution; however, extensive

numerical experiments demonstrate that our algorithm produces an optimal (or near optimal) solution in

most cases.
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The KL and C distances are only heuristic optimality measures for the detection performance; the exact

(yet in our case intractable) criterion is the probability of detection error (either in Neyman-Pearson or

Bayes sense). However, interestingly enough, we show by simulations that optimizing the KL and C

distances yields to sensor selections that are very close to the optimal probability of error (either in

Bayes or Neyman-Pearson sense). Moreover, they are often indeed optimal.

Selecting p out of n sensors is equivalent to finding the n×p selection matrix with 0/1 entries that maps

the n-dimensional vector x of all measurements to the p-dimensional vector y of selected measurements.

Our methodology for solving the combinatorial sensor selection problems relies on enlarging the search

space from the the set of 0/1 selection matrices to the set of Stiefel matrices (the matrices with orthonormal

columns). Then, after solving for the Stiefel matrix, we project it back to the set of selection matrices.

The relaxed Stiefel problem corresponds to finding the linear map Rn → Rp which maximizes the (worst-

case) KL (C) distance between the projected distributions in the lower p-dimensional space. To our best

knowledge, existing work on this topic either does not solve the problem in full generality (i.e., unequal

means and covariance matrices) or does not guarantee global optimality of their solutions (see [1], [2]

for problems involving Chernoff distance and the closely related J-divergence). A major contribution of

this paper is that we solve this nonconvex problem globally for the case p = 1, and in full generality,

by reducing it to a scalar (1D) problem over a compact interval. We tackle the generic case p > 1 via

an incremental, greedy approach, based on the 1D case, which provides near optimal result with small

computational cost.

This paper is related to our prior work [3], [4], which also considers sensor selection for event detection,

but only based on the KL distance. With respect to KL distance, this paper provides a new heuristic

with reduced complexity; more importantly, this paper studies the problem with respect to the Chernoff

distance, which we did not consider in [3], [4]. With respect to [3], [4], this paper also contributes by

validating the KL and C distances as good optimality criteria by showing their near optimality in the

error probability sense, and by establishing NP hardness of the corresponding sensor selection problems.

Finally, we would like to note that the KL-based and C-based sensor selection problems could be, in

principle, globally solved by, e.g., branch and bound methods [5], [6]. However, the computational time

of such methods is often very long, even for modest values of n and p. We discuss in more detail the

challenges to solve the sensor selection problems that we address at the end of subsection II-B.

Review of existing work on sensor selection. Sensor selection problems have been extensively studied

in different contexts, including target localization [7], target tracking [8] and sensor querying in ad hoc

sensor networks [9]. Generally, sensor selection problems appear in the form of optimizing a certain
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measure of performance of the system (e.g., utility [10], information theoretic measure [8], estimation

error [11]) subject to energy constraints (e.g., limited number of sensors to be selected [11]). Our work

belongs to the class of sensor selection problems for inference tasks, i.e., sensor selection for estimation

and detection. Reference [11] considers the problem of sensor selection for parameter estimation in WSNs,

proposing to select the subset of p (out of n) sensors that minimize the determinant of the estimator

covariance matrix. Reference [12] proposes distributed algorithms to (suboptimally) solve the sensor

selection problem formulated in [11]. Reference [13] addresses the problem of selecting the maximal

number of reliable sensors for estimation. Reference [14] shows, through the optimal experiment design

framework [15] and using convex analysis, that optimal estimation is achievable by using only a relatively

small number of sensors.

Paper organization. Section II introduces the model and formulates the sensor selection optimization

problems. Section III details the algorithms for solving the robust sensor selection problems, in the

presence of uncertainties in the means of the distributions. Section IV considers the special, yet important

case, when there are no uncertainties in the distribution parameters. Section V demonstrates numerically

that the KL and the C distances are appropriate metrics for sensor selection. Section VI shows near

optimal performance of the proposed algorithms. Finally, Section VII concludes the paper.

II. PROBLEM FORMULATION

A. Problem model

We assume that nature can be in one of two states: H1–event occurring, and H0–event not occurring.

Let x ∈ Rn denote the vector that collects all sensor measurements (one measurement per sensor). We

assume that x is Gaussian under the hypothesis H1 (respectively, H0), with generic means and covariances

(m1, S1) (respectively, (m0, S0)), i.e.,

under Hi : x ∼ N (mi, Si), i = 0, 1 ,

where N (µ,Σ) denotes Gaussian distribution with mean vector µ and covariance matrix Σ. The Gaussian

assumption on x is standard and can be, in many applications, justified, e.g, by central limit theorem

arguments [16], [17]. Noise correlation (i.e., non diagonal covariance matrices) is important to take into

account in dense deployments of WSNs. We note that our formulation allows for different covariances

under the two hypothesis (S1 6= S0); in many applications, e.g., power-based detection of primary users

for cognitive radios [17], accounting for different covariances is essential.

Sensor selection. Sensors transmit their measurements to a fusion node, which conducts the hypothesis

test. Due to power constraints, only p sensors, p < n, perform their measurements and transmit them
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to the fusion node. We address the problem of selecting the p sensors that guarantee the best detection

performance. Mathematically, selecting p out of n sensors can be represented by a linear map Rn →

Rp, x 7→ y = E>x, where E ∈ Rn×p is a rank-p matrix that has exactly one unit entry per column,

corresponding to a chosen sensor, and the other entries in columns being zero. The columns of E are

orthonormal, i.e., E>E = Ip, where Ip denotes the p × p identity matrix. We refer to matrix E as the

sensor selection matrix.

Hypothesis test induced by E. Conditioned on Hi, i = 0, 1, y is a linear transformation of a Gaussian

vector x. Thus, y, under Hi, has the following distribution:

under Hi : y ∼ N (E>mi, E
>SiE), i = 0, 1. (1)

The fusion node performs the following log-likelihood ratio (LLR) decision test:

log
f1(y;E)
f0(y;E)

H1

≷
H0

γ, (2)

where fi(· ;E), i = 0, 1, is the density of N
(
E>mi, E

>SiE
)

and γ ∈ R is the test threshold [2].

B. Formulation of the sensor selection optimization problem

Sensor selection optimality criteria. Detection performance is, as noted above, generally quantified by

the error probabilities, PFA, PD and Pe. However, in the problem that we consider, none of the probabilities

above admit closed form expression, and their minimizations with respect to sensor selection are very

hard problems. As sensor selection optimality criteria, we propose the Kullback-Leibler (KL) and the

Chernoff (C) distance between the tested distributions. Given two distributions with densities f1 and f0,

KL and C distances measure dissimilarity between f1 and f0 and they are defined as follows:

DKL (f1 ‖ f0) :=
∫

log
f1(x)
f0(x)

f1(x)dx, DC (f1, f0) := max
s∈[0,1]

− log
∫
f s

1 (x)f1−s
0 (x)dx.

Thus, our goal is to find a sensor selection matrix E that yields the maximal KL or C distance between

the projected Gaussian distributions, N (E>m1, E
>S1E) and N (E>m0, E

>S0E) (see (1)).

We are motivated to choose KL and C distances, as sensor selection optimality criteria, by two

fundamental results from detection theory: Chernoff-Stein lemma and Chernoff lemma [18]. Chernoff-

Stein lemma (resp. Chernoff lemma) states that, when the number of independent identically distributed

(i.i.d.) observations grows, the rate of exponential decay of probability of false alarm, PFA, (resp.

probability of error, Pe,) of the Neyman-Pearson optimal (resp. Bayes optimal) test equals the KL (resp.

C) between the two distributions. Thus, for large number of samples, more distant distributions (in either

KL or C sense) lead to better detection performance. Probabilistic distance measures have been often
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used in the literature as heuristics for detection problems(e.g., see [1], [19] for applications in linear

dimensionality reduction) and have shown excellent results, even when the number of samples is very

small or even equal to one [19]. In section V, we demonstrate by numerical tests that the KL and C

distances are indeed excellent criteria for sensor selection, exhibiting near optimal performance in the

probability of error sense. Section V shows that, generally, C distance has an advantage in the regimes

of high probability of detection (PD) (upper part of the receiver operating characteristics (ROC) curve),

while KL has an edge in the regimes of low PFA (lower left part of the ROC curve).

Robustness against uncertainty in distribution means. We consider the case when the true distribution

parameters (mi, Si), i = 0, 1 are not exactly known at the fusion node detector (2). Fusion node has

their estimates,
(
m̂i, Ŝi

)
, which can be obtained, e.g., in the network training phase. Thus, there is a

mismatch between the distribution used by the fusion node detector and the distribution that generates the

observations. Our goal is to design a sensor selection that yields detection (2) robust to these mismatches.

In this paper, we restrict our attention to the case where only the mean values are uncertain (the true

covariance matrices are known), and we allow the mean values to drift in the following ellipsoidal

uncertainty regions:

mi ∈ E
(
m̂i, ki S

−1
i

)
i = 0, 1. (3)

Here m̂i denotes the estimated mean vector, i = 0, 1, E(a,A) (A is a positive definite matrix) denotes

the ellipsoid E (a,A) = {x ∈ Rn : (x − a)>A(x − a) ≤ 1}, and the parameter ki ∈ (0,+∞] is a free

parameter which controls the “size” of the uncertainty region; e.g., if ki = +∞, there is no uncertainty:

m̂i = mi. The orientations of the uncertainty ellipsoids in (3) are induced by the covariance matrices S0

and S1. This choice of the form of uncertainty regions is motivated by the following fact: if the means are

estimated via the sample mean estimator based on N i.i.d. observations (the minimum variance unbiased

estimate for Gaussian distributions), then the covariance of the estimate m̂i equals 1
N Si, for i = 0, 1. A

standard measure of uncertainty, a confidence region [2], for mi is given by (3). The scaling constants

k0 and k1 are, in this context, proportional to N ; also, if N is known, k0 and k1 can be used to design

the uncertainty regions of desired confidence levels. We address the uncertainties in the mean vectors

adopting the worst case approach. That is, we search for the sensor selection that gives the maximal

distance (KL and C) for the worst case of the mean parameter drift.

Optimization problems. We introduce the following two functions, fKL and fC, that capture the depen-

dence of the KL and the C distance on the selection matrix E and the mean vectors m0 and m1:

fKL(E,m0,m1) := DKL

(
N (E>m1, E

>S1E)‖N (E>m0, E
>S0E)

)
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maxs∈[0,1]fC(s, E,m0,m1) := DC

(
N (E>m1, E

>S1E), N (E>m0, E
>S0E)

)
.

The robust sensor selection optimization problems are then given as follows:

maximize minm0∈E(m̂0,k0 S−1
0 ),m1∈E(m̂1,k1 S−1

1 )fKL(E,m0,m1)

subject to Eij ∈ {0, 1}

E>E = Ip

(4)

maximize minm0∈E(m̂0,k0 S−1
0 ),m1∈E(m̂1,k1 S−1

1 ) maxs∈[0,1]fC(s, E,m0,m1)

subject to Eij ∈ {0, 1}

E>E = Ip

. (5)

It can be shown that:

fKL(E,m0,m1) =
1
2

{
(m1 −m0)>E

(
E>S0E

)−1
E>(m1 −m0) + tr

((
E>S0E

)−1
E>S1E

)
− log

∣∣E>S1E
∣∣

|E>S0E|
− p

}
(6)

fC(s, E,m0,m1) =
1
2

{
s(1− s)(m1 −m0)>E

(
sE>S0E + (1− s)E>S1E

)−1
E>(m1 −m0)

− log

∣∣E>S0E
∣∣s ∣∣E>S1E

∣∣1−s

|sE>S0E + (1− s)E>S1E|

}
, (7)

where tr(·) and |·| denote trace and determinant, respectively.

Optimization problems (4) and (5) are combinatorial. When n and p are small, a simple method for

solving them is exhaustive search that checks all
(
n
p

)
sensor subsets (i.e. selection matrices). For large n

and p, however, this method becomes computationally infeasible. Indeed, we have the following result,

which we prove in Appendix A:

Theorem 1 Optimization problems (4) and (5) are NP hard (even when k0 = k1 = +∞ and S1 = S0).

In principle, besides exhaustive search, problems (4) and (5) can be solved by branch and bound

methods [6]. However, complexity of these methods relies strongly on the choice of bounds on the

cost function; finding tight bounds is a hard problem itself. An interesting method for solving a problem

somewhat similar to ours is proposed in [20]. In [20], the authors address the problem of finding the

most informative locations, for future sensor placements, in a discretized Gaussian field; the measure

of informativeness that the authors propose is the mutual information between sensed and un-sensed

locations. The authors show that the mutual information is a submodular function, which assures that

the simple strategy of choosing sensor by sensor greedily gives a solution within 1 − 1
e relative of the

optimum. In our problems, however, such a bound on the greedy strategy (of selecting sensors one by
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one) does not hold, as our cost functions (KL and C distance) are not submodular (see the proof in

Appendix B). In fact, in our problems, greedy performs poorly in many cases. The reason for this lies

in the fact that the correlations – an information that greedy discards can play an important role in

discerning between the two hypothesis.

III. SENSOR SELECTION ALGORITHMS

In this section, we present our algorithms, R–KL (robust KL based selection) and R–C (robust C-based

selection), that, respectively, solve problems (4) and (5). First, we explain geometrical intuition behind

our methodology and the resulting structure of the algorithms, and then in subsections III-A and III-B,

respectively, we provide the details for the R–KL and R–C algorithms.

Algorithms methodology and structure. Geometrically, one combination of p sensors defines one p-

dimensional subspace of Rn. This subspace is the range of the corresponding selection matrix E and,

since columns of E are canonical basis vectors of Rn, we call this subspace a canonical subspace. Simple

analysis reveals that cost functions in (4) and (5) depend on selection matrix E only through its range.

Therefore, problems (4) and (5) in this sense search for the best, among
(
n
p

)
canonical subspaces, on

which the original distributions should be projected. The way we relax these combinatorial problems

is by allowing for projections to arbitrary p-dimensional subspaces. Mathematically, this translates into

replacing the set of 0/1 selection matrices with the set of n × p Stiefel matrices (that represent all p-

dimensional subspaces). Then, we use a solution of the relaxed problem and “round” it to the closest

canonical subspace. We call the first phase of our algorithm, that solves the relaxed Stiefel problem, the

Relaxation phase; the second phase, in which we find the closest canonical subspace, is the Projection

phase. Finally, the last, third step in our algorithms, the Refinement phase, refines the solution by

performing local optimization.

A. Algorithm for the robust Kullback-Leibler based selection: the R–KL algorithm

1) Relaxation phase: We solve the following Stiefel relaxation of problem (4):

maximize minm0∈E(m̂0,k0 S−1
0 ),m1∈E(m̂1,k1 S−1

1 ) fKL(E,m0,m1)

subject to E>E = Ip.
(8)

The relaxed problem (8) is nonconvex and still difficult to solve; we globally solve it for p = 1. The

general, p > 1 case, is addressed by a greedy approach, using our approach for p = 1. We first detail

the algorithm that solves the p = 1 case. For p = 1, the constraint set of Stiefel matrices reduces to a
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sphere in Rn and the problem (8) takes a simplified form:

maximize minm0∈E(m̂0,k0 S−1
0 ),

m1∈E(m̂1,k1 S−1
1 )

1
2

{
(e>(m1−m0))2

e>S0e
+ e>S1e

e>S0e
− log e>S1e

e>S0e
− 1
}

subject to e>e = 1

. (9)

Our major contribution is showing that problem (9) reduces to a search over a compact (one-dimensional)

interval. We achieve this by a series of judicious problem reformulations, and by invoking convexity

of certain quadratic mappings [21], [22]. It is important to note that the original problem (9) has in

general very high dimensionality (equal to the total number of sensor in the network n); also, due to its

nonconvexity, it is very difficult to solve globally. By doing reformulations, we manage to map it to a

tractable, scalar problem. Lemma 2 states the first step towards this goal. It shows that a solution of (9)

can be reconstructed after solving the two-dimensional problem (10).

Lemma 2 Suppose (x?, y?) solves

maximize ψKL(x, y)

subject to (x, y) ∈ R
(10)

where
ψKL(x, y) = x− log x+

{(
√
y − 1√

k1

√
x− 1√

k0

)+
}2

, (11)

R =
{

(x, y) ∈ R2 : x = v>Sv, y = v>Mv, for some v ∈ Rn, v>v = 1
}
, (12)

x+ = max (0, x), S = S
−1/2
0 S1S

−1/2
0 , m = S

−1/2
0 (m̂1−m̂0), M = mm>. Let v? ∈ Rn be an unit-norm

vector that generates x? and y?, i.e. x? = v?>Sv? and y? = v?>Mv?. Then, e? := S
−1/2
0 v?/‖S−1/2

0 v?‖

solves (9).

The detailed proof of Lemma 2 is in [4]; for completeness, we briefly explain here why Lemma 2

holds. First, we note that the (inner) objective function in (9) depends on e only through its direction. This

allows for replacing the constraint e>e = 1 with e>S0e = 1 and introducing the new variable v = S
1/2
0 e;

the outer (maximization) constraint becomes v>v = 1. It can be shown that the inner minimization,

with respect to (w.r.t.) m0 and m1, now has a closed form solution, equal to: v>Sv − log v>Sv +{(√
v>Mv − 1√

k1

√
v>Sv − 1√

k0

)+
}2

. Finally, noting that the latter function depends on v only through

the two quadratic forms, v>Sv and v>Mv, allows for replacing the n-dimensional optimization variable

v with only two scalars, x = v>Sv and y = v>Mv, which yields the claim of Lemma 2.

Lemma 2 says that, in order to solve (9), it suffices to search over the set R ⊂ R2. For n ≥ 3, the set

R is compact and convex, as R is the image set of a unit sphere under two quadratic mappings [21].

Note that, since ψKL(·) is continuous and R is compact, there is a global maximizer, by the Weierstrass
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theorem. The next lemma 3 further simplifies the search by asserting that the boundary of R contains a

global maximizer. For the proof of Lemma 3see [4].

Lemma 3 The boundary ∂R of the set R contains a global maximizer of (10).

The boundary of R is a closed curve in R2. Our strategy consists in circulating along ∂R to spot a global

maximizer. More precisely, we will sample ∂R with a finite set of points and pick the best point. To

implement this strategy, we borrow the following theorem from [22].

Theorem 4 ([22]) Let n ≥ 3 and let A,B be n× n symmetric matrices. Let

R(A,B) =
{

(x, y) ∈ R2 : x = v>Av, y = v>Bv, for some v ∈ Rn, v>v = 1
}
.

For t ∈ [0, 2π], let C(t) = A cos t + B sin t and let λmin(t) be the minimal eigenvalue of the matrix

C(t) and umin(t) an associated unit-norm eigenvector. Suppose that λmin(t) is a simple eigenvalue of

C(t) for all t ∈ [0, 2π]. Then, the set R(A,B) is strictly convex and its boundary is given by

∂R(A,B) =
{

(x(t), y(t)) : t ∈ [0, 2π], x(t) = umin(t)>Aumin(t), y(t) = umin(t)>Bumin(t)
}
. (13)

The quantity t in Theorem 4 parameterizes all supporting hyperplanes of the set R(A,B); namely, a

hyperplane Ht, t ∈ [0, 2π], is given by: Ht = {(x, y) ∈ R2 : x cos t + y sin t = x(t) cos t + y(t) sin t},

where (x(t), y(t)) is a point at which Ht intersects with (touches) R(A,B). Theorem 4 shows that, when

λmin(t) is simple for all t (R(A,B) is strictly convex), the boundary ∂R(A,B) can be parameterized

by moving a single parameter t over the compact interval [0, 2π]. A parametrization of ∂R(A,B) (in

our context, ∂R(S,M)) is readily available, even when R(S,M) is not strictly convex. Namely, if, for

some t, λmin(t) is not unique, then the hyperplane Ht touches R(S,M) on a line segment, and not at a

unique point. The sample of ∂R(S,M) can then be numerically obtained as follows: 1) slide t in a fine

grid over the interval [0, 2π] and acquire one point (x(t), y(t)) (per each t) as in (13); and 2) to identify

the line segments, connect the consecutive points (x(t), y(t)) with a straight line, if these consecutive

points are far apart. More precisely, the procedure is given as follows:

1) generate the points

(xk, yk) = (u>k Suk, u
>
k Muk), k = 1, 2, . . . ,K,

where uk denotes an unit-norm eigenvector corresponding to the minimal eigenvalue of

Ck = S cos ((k − 1)2π/K) +M sin ((k − 1)2π/K) .

Here, K is the user-defined grid size and {(xk, yk) : k = 1, . . . ,K} is an initial sample of ∂R;
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2) if the distance between two consecutive points (xk, yk) and (xk+1, yk+1) is greater than a prescribed

threshold, interpolate the line segment which connects them, i.e., consider(
x

(j)
k , y

(j)
k

)
= (1− j/J) (xk, yk) + j/J (xk+1, yk+1) , j = 0, 1, . . . , J.

In summary, our sampling of ∂R is ∂̂R = {(xk, yk)} ∪
{
x

(j)
k , y

(j)
k

}
.

Solving (9). We explained how to solve (10) by parameterizing ∂R. Now we explain how a solution

of (10), x?, y?, is sufficient to reconstruct v?, a solution of (9). The vector v? in Lemma 2 can be found

as follows. Let

(x?, y?) ∈ arg max
(x,y)∈∂̂R

ψKL(x, y).

That is, (x?, y?) denotes the best point in ∂̂R. If (x?, y?) ∈ {(xk, yk)}, say (x?, y?) = (xk? , yk?), then

we can take v? as an unit-norm eigenvector associated with the minimal eigenvalue of Ck? . Otherwise,

(x?, y?) ∈
{

(x(j)
k , y

(j)
k )
}

, and we need to solve the system of 3 quadratic equations:

v>Sv = x?, v>Mv = y?, v>v = 1, (14)

w.r.t. v. Any solution can be taken as v?. It can be shown that (14) can be efficiently solved by solving

a convex problem.

Case p > 1: greedy algorithm Optimization problem (8) for the case p > 1 is very difficult to solve

globally; we propose a greedy, suboptimal approach. We construct the columns of the matrix E =

[e1 e2 . . . ep] one by one (in the order e1, e2, ...). We construct the j-th column by solving (9), with the

constraint that the column ej must be orthogonal to the previously determined columns e1, e2, . . . ej−1,

i.e., we solve:

maximize minm0∈E(m̂0,k0S
−1
0 ), m1∈E(m̂1,k1S

−1
1 ) fKL(e,m0,m1, S0, S1)

subject to e>e = 1

e>ei = 0, i = 1, . . . , j − 1.

(15)

Let U (j) ∈ Rn×(n−j+1) be a matrix with orthonormal columns which spans the orthogonal complement

of span {e1, . . . , ej−1}. The restrictions in (15) mean that e = U (j)e(j) for some unit-norm e(j) ∈ Rn−j+1.

This means that (15) corresponds to

maximize minm0∈E(m̂0,k0S
−1
0 ), m1∈E(m̂1,k1S

−1
1 ) fKL(U (j)e(j),m0,m1, S0, S1)

subject to e(j)>e(j) = 1.
(16)
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The problem (16) is equivalent to (17) [4]:

maximize min
m

(j)
0 ∈E

(
m̂

(j)
0 ,k0(S

(j)
0 )−1

)
, m

(j)
1 ∈E

(
m̂

(j)
1 ,k1S

(j)
1
−1
) fKL(e(j),m

(j)
0 ,m

(j)
1 , S

(j)
0 , S

(j)
1 )

subject to e(j)>e(j) = 1
(17)

where m̂(j)
i = U (j)>m̂i and S

(j)
i = U (j)>SiU

(j), i = 0, 1. That is, (17) is simply an instance of (9)

in the reduced dimensional space Rn−j+1, for which we have developed a global solution. Algorithm 1

outlines the overall approach.

Algorithm 1: Greedy algorithm
1: for j = 1 to p do
2: Compute U (j) ∈ Rn×(n−j+1) (U (1) := In), an orthonormal basis for the orthogonal complement

of the j − 1 dimensional subspace span {e1, e2, . . . , ej−1}

3: Compute the projected means and covariances m̂(j)
i = U (j)>m̂i, S

(j)
i = U (j)>SiU

(j) for i = 0, 1

4: Compute S(j) = (S(j)
0 )−1/2S

(j)
1 (S0

(j))−1/2, m(j) = (S0
(j))−1/2(m̂(j)

1 − m̂
(j)
0 ), M (j) = m(j)m(j)>

5: Solve (10) for (M,S) :=
(
M (j), S(j)

)
; find e(j) ∈ Rn−j+1 as: e(j) := e?, as in Lemma 2

6: Compute the jth column of E as ej = U (j)e(j)

7: end for

2) Projection phase: The relaxation phase(in subsection III-A1) produces a Stiefel matrix E. Now,

we project the matrix E back to the set of 0/1 selection matrices. We remark that the objective function

fKL(·) in eqn. (6) depends on the matrix E only through its range space; that is, fKL (EQ) = fKL (E),

for any Stiefel matrix E and for any orthogonal p×p matrix Q. Thus, we choose the canonical selection

matrix Ẽ with the range space closest to the range space of matrix E. It can be shown [3] that Ẽ can be

efficiently obtained as follows: if (j1, j2, . . . , jp) denote the indices of the largest entries on the diagonal

of EE>, then Ẽ =
[
hj1hj2 . . . hjp

]
where hj stands for the j-th column of the identity matrix In. Thus,

the projection phase has very small computational cost.

3) Refinement phase: Once the projection to the set of 0/1 selection matrices is done and the matrix

Ẽ is obtained, we finalize our algorithm with a local maximization around Ẽ to get E? (see [11], [15]

for very similar local searches.) Namely, for a given selection matrix E in the neighborhood of Ẽ, we

find
fKL, worst(E) := minm0∈E(m̂0,k0 S−1

0 ),m1∈E(m̂1,k1 S−1
1 )fKL(E,m0,m1).

The procedure has p steps. We start with the matrix E := Ẽ. In the first step, all columns of the current

selection matrix E are fixed except the first one, which is viewed as an optimization variable. The first

column is swept through all canonical vectors hj , j = 1, . . . , n, different from the remaining p − 1
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columns of E. After all possible choices for the first column are tested, the column is frozen to the

choice that gives the maximal fKL, worst. In the second step, this procedure is repeated for the second

column, and so on, up to the p-th step; after the p-th step is done, we set E? := E.

We obtain the quantity fKL, worst(E) by first finding:

min
m0∈E(m̂0,k0 S−1

0 ),

m1∈E(m̂1,k1 S−1
1 )

(m1 −m0)>E(E>S0E)
−1
E>(m1 −m0), (18)

and then adding the remaining terms of fKL(·) that do not depend on m1 and m0 (see eqn. (6)).

The minimum in eqn. (18) (n-dimensional problem) equals the following minimum (of corresponding

p-dimensional problem):

min
m′0∈E(Q>(E>S0E)−1/2E>m̂0,k0 Ip),m′1∈E(Q>(E>S0E)−1/2E>m̂1,k1 Λ−1)

‖m′1 −m′0‖, (19)

where Λ and Q are, respectively, the matrix of eigenvalues and the matrix of eigenvectors of

(E>S0E)−1/2E>S1E(E>S0E)−1/2, and ‖ · ‖ denotes Euclidean norm. The first step in showing the

equivalence between (18) and (19) is to introduce the change of variables m′i = Q>(E>S0E)−1/2
E>mi,

i = 0, 1. Define m̂i
′ := Q>(E>S0E)−1/2

E>m̂i. Then, the cost function becomes as in (19) and, to

show the equivalence, it remains to show that m′0 ∈ E
(
m̂0
′, k0 Ip

)
,m′1 ∈ E

(
m̂1
′, k1 Λ−1

)
if and only

if mi ∈ E
(
m̂i, ki S

−1
i

)
, i = 0, 1. It can be shown (the proof can be found in [4]) that E>E

(
0, S−1

i

)
=

E
(
0, (E>SiE)−1

)
and, also, that

Q>(E>S0E)−1/2E
(
E>m̂i, (E>SiE)−1

)
= E

(
m̂i
′,
(
Q>(E>S0E)−1/2E>SiE(E>S0E)−1/2Q

)−1
)

=

 E
(
m̂0
′, Ip
)

if i = 0

E
(
m̂1
′,Λ−1

)
if i = 1

,

which proves the equivalence. The problem (19) is a (convex) quadratically constrained quadratic problem

(QCQP), and it can be solved with complexity O(p3) [23].

B. Algorithm for the robust Chernoff-based selection: the R–C algorithm

In this subsection, we present the algorithm R–C, the Chernoff based sensor selection under the presence

of uncertainties. As mentioned previously, we adopt the same methodology for solving both (5) and (4)

and, consequently, the structure of R–C is the same as the one in R–KL. However, the problem (5) is

more difficult than (4), due to the additional maximization over the parameter s. This will result in several

specificities in R–C compared to R–KL. We present R–C by focusing on these specificities, phase by

phase, whereas the overall structure remains the same as in R–KL.
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The main difference between R–KL and R–C is in the Relaxation phase in the case p = 1. As with

the KL case, we solve the resulting Chernoff problem globally; we next explain a solution.

1) Relaxation phase: case p = 1: global solution: The Stiefel relaxation of (5) for p = 1 is given by:

maximize minm0∈E(m̂0,k0 S−1
0 ),m1∈E(m̂1,k1 S−1

1 )maxs∈[0,1]fC(s, e,m0,m1)

subject to e>e = 1,
(20)

where

fC(s, e,m0,m1) =
s(1− s)

2

(
e>(m1 −m0)

)2
se>S0e+ (1− s)e>S1e

− 1
2

log
(e>S0e)s(e>S1e)1−s

se>S0e+ (1− s)e>S1e
.

The first reformulation of (20) that we make is the conversion of the inner minimax problem into a

maximin problem, as Lemma 5 explains.

Lemma 5 Problem (20) is equivalent to:

maximize maxe>e=1minm0∈E(m̂0,k0 S−1
0 ),m1∈E(m̂1,k1 S−1

1 )fC(s, e,m0,m1)

subject to s ∈ [0, 1].
(21)

Proof: Function fC is convex w.r.t. m0 and m1, and concave w.r.t. s, and the constraint sets are

compact and convex. Thus, the equivalence follows by Sion’s minimax theorem [24].

Next, we focus on the inner maximization in (21):

maximize minm0∈E(m̂0,k0 S−1
0 ),m1∈E(m̂1,k1 S−1

1 )fC(s, e,m0,m1)

subject to e>e = 1
, (22)

where s ∈ [0, 1] is fixed. The following lemma is the counterpart of Lemma 2.

Lemma 6 Suppose (x?, y?) solves

maximize ψC(s, x, y)

subject to (x, y) ∈ R
(23)

where

ψC(s, x, y) =
s(1− s)

2

{(√
y − 1√

k1

√
x− 1√

k0

)+
}2

s+ (1− s)x
− 1

2
(1− s) log x+

1
2

log(s+ (1− s)x),

and s ∈ [0, 1]. Let v? ∈ Rn be an unit norm vector that generates x? and y?, i.e., x? = v?>Sv? and

y? = v?>mm>v?. Then, e? := S
−1/2
0 v?/‖S−1/2

0 v?‖ solves (22).

Proof: The proof is similar to the proof of Lemma 2 and is omitted.
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By similar analysis as in subsection III-A1, it can be shown that (23) can be solved by parametrization of

the boundary of R, given in eqn. (12). Thus, for fixed s, the algorithm that solves (22) is the same as the

one that solves (9), except that ψKL(x, y) is replaced by ψC(s, x, y). Then, the function ψC(s, x?(s), y?(s))

can be evaluated using this algorithm and problem (21) is solvable by, e.g., a grid search on [0, 1].

The projection phase of R–C is the same as the projection phase of R–KL and the steps in the refinement

phase of R–C are the same as the ones in the refinement phase of R–KL (with fKL(E,m0,m1) replaced

by maxs∈[0,1] fC(s, E,m0,m1)). Similarly as in III-A3, in the refinement phase, for a given selection ma-

trix E, we have to find fC, worst(E) := minm0∈E(m̂0,k0 S−1
0 ),m1∈E(m̂1,k1 S−1

1 ) maxs∈[0,1] fC(s, E,m0,m1).

Applying again the minimax theorem, we first exchange the order of min and max in fC, worst; then, for

fixed s, by applying the analogous transformation as between (18) and (19), we find

min
m0∈E(m̂0,k0 S−1

0 ),

m1∈E(m̂1,k1 S−1
1 )

(m1 −m0)>E
(
sE>S0E + (1− s)E>S1E

)−1
E>(m1 −m0), (24)

by solving the equivalent p-dimensional QCQP (25) (with equal minimum):

min
m′0∈E(Q>(E>S0E)−1/2E>m̂0,k0 Ip),

m′1∈E(Q>(E>S0E)−1/2E>m̂1,k1 Λ−1)

(m′1 −m′0)>(sIp + (1− s)Λ)−1(m′1 −m′0). (25)

Denote by m′i(s) the optimal value of m′i, i = 0, 1. The function f ′C(s, E,m′0(s),m′1(s)),

f ′C(s, E,m′0(s),m′1(s)) =
s(1− s)

2
(m′1(s)−m′0(s))>(sIp + (1− s)Λ)−1(m′1(s)−m′0(s))

− 1
2

log

∣∣E>S0E
∣∣s ∣∣E>S1E

∣∣1−s

|sE>S0E + (1− s)E>S1E|

is concave w.r.t. s (as a minimum of concave functions); we find its maximum over s ∈ [0, 1], which is

equal to fC, worst(E), via a bisection method.

C. Complexities of R–KL and R–C

The complexity of both R–KL and R–C algorithm is O(n3p+ np4), although the hidden constant in

R–C is larger than the one in R–KL. The least computational effort is required for the projection phase

2, which for both R–C and R–KL is O(n2) and is dominated by complexities of the other two phases.

It can be shown that Phase 1 has complexity O(n3p) and Phase 3 has complexity O(np4).

IV. SENSOR SELECTION ALGORITHMS: NO UNCERTAINTIES CASE

In this section, we address a special, yet important case, when there are no uncertainties in the mean

vectors and the problems (4) and (5) simplify by dropping the inner minimizations. We first remark that

algorithms R–KL and R–C can readily solve the simplified versions of (4) and (5). However, we derive
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in this section a more efficient algorithm. We exploit the structure of the problem and the knowledge of

exact distribution parameters mi, i = 0, 1 (more specifically, their difference m1 −m0), and we resort

to a heuristic approach (as detailed below), to reduce the computational load of the relaxation phase of

R–KL and R–C algorithm, while keeping the second and the third phase the same1. The key to reducing

the complexity of the relaxation phase is a simple, analytic solution of the relaxed, Stiefel problem, in

the special case of equal mean values. We refer to the overall simplified algorithms as MD–KL (mean-

difference based KL algorithm), and MD–C (mean-difference based C algorithm).

A. Kullback-Leibler based selection without uncertainties: The mean-difference KL algorithm (MD–KL)

In this subsection, we only explain the relaxation phase of MD–KL, as the other two phases are the

same as in R–KL. We first consider a special case of equal mean values of the problem (8) (without

inner minimization), and we show that this problem has a simple analytic solution. Based on the solution

for the equal means, we derive an algorithm that solves the general case.

1) Relaxation phase: the case m0 = m1: Consider the problem (8) when there is no uncertainty in

the mean values (uncertainty ellipsoids shrink to a point, by letting k0, k1 =∞, and inner minimization

drops from the problem). First, remark that, when ki =∞, m1 = m0, (8) can be written as:

maximize 1
2

(
tr(P>SP )− log

∣∣P>SP ∣∣− p)
subject to P>P = Ip,

(26)

where S = S
−1/2
0 S1S

−1/2
0 . This equivalence can be shown by noting that the constraint E>E = Ip in (8)

can be replaced by E>S0E = Ip, and by introducing the new variable P = S
1/2
0 E.

The objective function in (26) can be further simplified to
∑p

i=1
1
2φKL

(
λi

(
P>SP

))
, where φKL(x) =

x−log x−1 and λi denotes the i-th largest eigenvalue. We show in Appendix C that a solution P ? of (26)

is given by the a of p orthonormal eigenvectors that correspond to the p largest eigenvalues of the matrix

S − logS, where logS is the matrix logarithm, given by logS = UDiag (log λ1(S), ..., log λn(S))U>.

Here, U denotes the matrix of eigenvectors of S, and Diag(z1, ..., zn) is the diagonal matrix with the

diagonal entries equal to zi.

We give the intuition behind the solution of (26). Recall that the matrix E is chosen such that the

projection of the covariance matrix S0 equals E>S0E = Ip. Then, the projection of S1, E>S1E, equals

P>SP . Thus, the further from point 1 are the eigenvalues of P>SP , the more separated are the projected

distributions. The function φKL(·) measures the distance from 1 in this sense.

1We remark that the refinement phase of R–C and R–KL simplifies significantly in the no uncertainties case, as in this case
computing fKL, worst(E) boils down to computing fKL(E), i.e. there is no need to solve intermediate minimization problems
(see (18) and (24)).
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2) Relaxation phase: general case: The main idea behind the relaxation phase of MD–KL is the

following heuristic: set one column of the solution Stiefel matrix E in the direction of the vector m1−m0,

i.e., in the direction of the difference of the distribution means. The remaining p− 1 columns of E are

then obtained in the following way: we project the distribution parameters mi, Si, i = 0, 1, onto the

orthogonal complement of m1−m0, and then solve an (p−1 dimensional) instance of (8) when ki =∞,

i = 0, 1, with the projected distribution parameters. This p− 1-dimensional instance of (8) is in fact the

special one, with equal means, and is hence very efficiently solved, as explained above. The relaxation

phase of MD–KL is summarized in Algorithm 2.

We give the intuition behind the heuristic choice of m1−m0 as the direction of the first column of E:

the Euclidean distance between the means E>m1 and E>m0 of the projected distributions is the maximal

possible (and equal to ‖m1 −m0‖), when one column of E lies in the direction of m1 −m0. Another

justification is that choosing a column of E in the direction m1 −m0 provides an optimal solution of

problem (8) when ki =∞, i = 0, 1, and S0 = S1 = In.

Algorithm 2: MD–KL algorithm: Relaxation phase
1: Set e1 := (m1 −m0) /‖m1 −m0‖
2: Compute U ∈ Rn×(n−1), an orthonormal basis for the orthogonal complement of e1

3: Compute S′ =
(
U> S0 U

)−1/2
U> S1 U

(
U> S0 U

)−1/2

4: Set the columns of P to be equal to p− 1 maximal eigenvectors of S′ − logS′

5: [e2, e3, ..., ep] := U
(
U> S0 U

)−1/2
P , E := [e1, e2, ..., ep]

B. Chernoff based selection without uncertainties: The mean-difference C algorithm (MD–C)

1) Relaxation phase: the case m0 = m1: The counterpart of problem (26) for the C criterion is:

maximize maxs∈[0,1] − log |P>SP |1−s

|sIp+(1−s)P>SP |

subject to P>P = Ip
, (27)

The objective in (27) can be written as
∑p

i=1 φC

(
s, λi

(
P>SP

))
, where φC(s, x) := log(s+(1−s)x)−

(1−s) log x. Similarly to the proof of (26) (Appendix C), it can be shown that, for a fixed s, a maximizer

of the objective in (27) w.r.t. P>P = Ip is a set of p maximal eigenvectors of log (sIn + (1− s)S)−(1−

s) logS. Further, it can be shown, using unimodularity of φC(s, ·), that the corresponding p maximal

eigenvalues must be of the form: λ1(S), . . . , λj(s)(S), λn−p+j(s)+1(S), . . . , λn(S), for some index

j(s) ∈ {0, 1, ..., p} (that depends on s). Thus, the solution to (27) is given by:

max
s∈[0,1]

∑
i≤j(s)

φC (s, λi(S))+
∑

i>j(s)

φC (s, λn−p+i(S)) = max
s∈[0,1]

max
j=0,...,p

∑
i≤j

φC (s, λi(S))+
∑
i>j

φC (s, λn−p+i(S)) .

(28)
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Finally, switching the order of maximization (w.r.t. s and j) in (28) yields the procedure to solve (27)

given in Algorithm 3. The general case of the relaxation phase of MD–C algorithm is the same as the

Algorithm 3: Procedure for solving (27) when m1 = m0

1: Set φ?
C = 0

2: for j = 0 to p do
3: if j = 0 x = (λn−p+1(S), . . . , λn(S)), else x = (λ1(S), . . . , λj(S), λn−p+j+1(S), . . . , λn(S))
4: Find s(x) ∈ arg maxs∈[0,1]

∑p
i=1 φC(s, xi) by Newton method

5: Compute φ =
∑p

i=1 φC(s(x), xi)
6: if φ > φ?

C, then j? = j, s? = s(x), φ?
C = φ

7: end for
8: x? = (λ1(S), . . . , λj?(S), λn−p+j?+1(S), . . . , λn(S)); s? = s?;
P ? is the set of orthonormal eigenvectors of S corresponding to the eigenvalues of S given in x?.

one in MD–KL given in 2, except that, in step 4), it calls the procedure given by Algorithm 3.

C. Complexities of MD–KL and MD–C

We briefly comment on the complexity of MD–KL and MD–C. The complexity of both MD–KL and

MD–C is O(n3 +np3), although the hidden constant in MD–C is larger than the one in MD–C. The main

computational burden in the relaxation phase of MD–KL is computation of the orthogonal complement

U of m1−m0, and the subsequent eigenvalue decomposition of the auxiliary matrix S (see Algorithm 2):

the total is of order O(n3). The relaxation phase of MD–C requires more computational effort; besides

finding U and the eigenvalue decomposition of S, each of the p steps in Algorithm 3 requires finding

the optimal s by, e.g., Newton method. However, the number of operations in p Newton runs is still

dominated by the number of operations to find U . Therefore, the complexity of the relaxation phase of

MD–C is O(n3). Finally, it can be shown that, for both MD–KL and MD–C, the refinement phase is of

complexity O(np3).

V. NUMERICAL STUDIES: TESTING THE OPTIMIZATION CRITERIA

This subsection tests how good are the Kullback-Leibler and the Chernoff distance as optimality criteria

for sensor selection. To this end, we want to compare the sensor selections that optimize the KL and C

distances with: 1) the sensor selection that minimizes the Bayes probability of error (Bayes optimality);

2) the sensor selection that minimizes the probability of miss subject to a given probability of false alarm

(Neyman-Pearson optimality). We find numerically the Bayes optimal and the Neyman-Pearson optimal

sensor selections by Monte Carlo simulations. With respect to Bayes optimality, for each possible (out

of
(
n
p

)
) sensor selection, we estimate the Bayes probability of error Pe by Monte Carlo simulations with

100, 000 instantiations of the maximum-likelihood detector tests (with zero treshold), with equal prior
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probabilities. With respect to Neyman-Pearson optimality, for the fixed probability of false alarm PFA, we

find the sensor selection that maximizes the probability of detection PD. This is achieved by estimating

the receiver operating characteristic (ROC) curve (by Monte Carlo simulations with 20, 000 instantiations

of the likelihood ratio tests) in the neighborhood of PFA in a fine grid, and then interpolating the ROC

curve (i.e., PD) at the desired point PFA. This is done for each possible selection and the selection with

maximal obtained PD is set as Neyman-Pearson optimal.

Table I shows the Bayes probability of error for: 1) the sensor selection that maximizes KL distance

(KL); 2) the sensor selection that maximizes C distance (C); 3) the best sensor selection (that minimizes

Pe); 4) the worst sensor selection (that maximizes Pe); and 5) the average Pe over all selections. Table I

(left) is for n = 12 and p = 2, 3, 4, 5 and Table I (right) is for n = 15 and p = 2, 3, 4, 6. We can see that

the C selection matches the best selection. KL selection is in many cases very close or equal to C and

best selections in Pe. As could be predicted by theory (Chernoff lemma), the C selection is better than

the KL selection in terms of Pe.

Comparison of: 1) C, KL and best selections; with 2) worst and average selections justifies the sensor

selection problem; namely, by finding the optimal selection, Pe can be for an order of magnitude smaller

than for the average selection. (See Table 1 and Figure 1-right.)

Table II shows the probability of detection for: 1) the KL-optimal selection (KL); 2) the C-optimal

selection (C); and 3) the Neyman-Pearson (NP) optimal selection, for n = 15, p = 2, 3, 4, 5. We can see

that, for p = 2 and p = 3, both KL and C selections match the NP optimal selections, and for p = 4 and

p = 5, PD for KL and C selections is at most 3.5% from the optimum (p = 4, PFA = 0.005).

Figure 1 (left) plots the ROC curves for all possible selections, for n = 5 and p = 2. We plot the ROC

curves for: 1) KL-optimal selection; 2) C-optimal selection; 3) the pointwise envelope of all possible

curves (Neyman-Pearson optimal). Remark that the Neyman-Pearson optimal curve (envelope) is not

obtained for a single selection; in different regions, it corresponds to different selections. We can see that

for lower values of PFA, KL selection is optimal; for higher values of PD, C-selection is optimal.

Figure 1 (right) plots the ROC curve for all possible
(
n
p

)
= 1365 selections for a larger example, with

n = 15 and p = 4. Interestingly, we can see that the KL and C selections are very close to the optimum,

in whole range of PFA. In addition, we plot the average of the ROC curves (pointwise average of PD for

each fixed PFA). This average curve thus represents what performance would be, on average, achieved,

if we choose a subset of sensors uniformly at random. We can see that there is a a large gain of the C

and KL selections over this average curve; thus, selecting the optimal, rather than a random subset of

sensors, provides large performance gain.
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TABLE I
Pe FOR KL, C AND OPTIMAL SELECTION; LEFT: n = 12, p = 2, 3, 4, 5; RIGHT: n = 15, p = 2, 3, 4, 6

Pe p = 2 p = 3 p = 4 p = 5

KL 0.100 0.078 0.052 0.046
C 0.100 0.078 0.052 0.043

Bayes-best 0.100 0.078 0.052 0.043
worst 0.457 0.439 0.396 0.319

average 0.275 0.216 0.170 0.134

Pe p = 2 p = 3 p = 4 p = 6

KL 0.086 0.061 0.037 0.022
C 0.085 0.051 0.029 0.012

Bayes-best 0.085 0.051 0.029 0.012
worst 0.480 0.440 0.396 0.311

average 0.240 0.180 0.136 0.077

TABLE II
PD FOR PFA = [0.005 0.03 0.1], n = 15, p = 2, 3, 4, 5 FOR KL, C AND OPTIMAL SELECTION

PFA = 0.005 PFA = 0.03 PFA = 0.1

PD KL C NP KL C NP KL C NP
p = 2 0.720 0.720 0.720 0.889 0.889 0.889 0.961 0.961 0.961
p = 3 0.812 0.812 0.812 0.941 0.941 0.941 0.985 0.985 0.985
p = 4 0.868 0.838 0.868 0.962 0.967 0.970 0.990 0.995 0.995
p = 5 0.891 0.898 0.903 0.968 0.981 0.983 0.991 0.994 0.996

Finally, we remark that, in extensive simulations, we observe similar behavior as in representative

Tables I and II, and Figure 1 (left and right). That is, the KL and C selections are very close to optimal

and even equal to optimal in a certain range of PFA. We also report that C-selection is generally better

than KL for large PD’s (upper right part of the ROC curve,) while KL is generally better for low PFA

(lower left in the ROC). Finally, improvement of KL over C for low PFA is smaller than the improvement

of C over KL for large PD.
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Fig. 1. Left: n = 5, p = 2; ROC curves for all possible sensor selections (gray); the ROC curves for the KL-optimal and
the C-optimal sensor selections, as well as the Neyman-Pearson optimal “envelope” are represented in different color. Right:
n = 15, p = 4, Figure plots the same ROC curves as on the left; in addition, the Figure plots the average ROC among all
sensor selections.
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VI. NUMERICAL STUDIES: TESTING THE ALGORITHMS

This subsection tests our algorithms for solving the sensor selection problem. Subsection VI-A shows

that the algorithms R–KL and R–C show near optimal performance in the presence of uncertainties (i.e.,

for solving the problems (4) and (5)), Subsection (VI-B) shows that R–KL and R–C have near optimal

performance when also applied to the case of no uncertainties (i.e., when k0 = k1 =∞ in (4) and (5)).

This subsection also shows that MD–KL (resp. MD–C) has comparable performance to R–KL (resp.

R–C), while reducing the computational time.

For smaller problem instances, i.e., for smaller values of n and p, we compare the solutions produced by

our algorithms with the optimum obtained by exhaustive search. For larger examples, when the optimum

is infeasible to compute, we generate randomly a number of sensor selections; then, we compare the

selection obtained by our algorithms with the best among generated random selections.

For a fixed size of the problem (for fixed pair (n, p)), we generate randomly Kexper instances of

the problem parameters (mi, Si, i = 0, 1); for the case with uncertainties, Kexper = 50, and for the

case without uncertainties, Kexper = 200. In the case with uncertainties, the parameters k0 and k1 are

chosen such that the norm of the mean vector drift does not exceed 0.15‖m1−m0‖, i.e., we set them as

ki = |Si| / (0.15‖m1 −m0‖)2 , i = 0, 1. Based on Kexper solved problems of fixed size (n, p), we create

statistics on how our algorithms behave for a given size of the problem. The entries of the (nominal)

mean vectors m1,m0 are drawn independently from the standard normal distribution. The covariance

matrices S1, S0, are generated in two steps: 1) we generated a symmetric matrix F by drawing its entries

independently from the standard normal distribution (we set Fij = Fji, i 6= j); 2) we generate the matrix

Si to have the same eigenvectors as F , and the eigenvalues of Si are equal to the absolute values of the

eigenvalues of F .

A. Testing the R–KL and R–C algorithms: The case with uncertainties

Testing the robustness against the uncertainty in distribution means. Table III (left) shows the

performance of the R–KL and R–C algorithms, for solving (4) and (5), respectively. We evaluate the

optimal solutions fOPT−KL and fOPT−C by exhaustive search. We then compute the ratio rR−KL :=
fR−KL

fOPT−KL (resp. rR−C := fR−C

fOPT−C ) that says how close is the solution value obtained by R–KL (resp.

R–C) to the optimum. Table III (left) shows the results for n = 10, 12, 15 and p = 3. We present the

maximum (max), the average (avg), the minimum (min), and the standard deviation (dev) of the ratio

rR−KL over Kexper = 50 problem instances, for each pair (n, p). We can see that both R–KL and R–C

show very good performance; the R–C shows better performance than R–KL. The maximal value of

both rR−KL and rR−C in all the examples is equal to 1. With the R–KL algorithm, the average value of
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TABLE III
LEFT: STATISTICS FOR rR−KL AND rR−C , SMALLER EXAMPLES: n = 10, 12, 15, p = 3, Kexper = 50; RIGHT: STATISTICS

FOR ρR−KL AND ρR−C , n = 50, p = 5, Kexper = 50

max avg min dev

rR−KL

n = 10 1.000 0.964 0.606 0.090
n = 12 1.000 0.918 0.551 0.140
n = 15 1.000 0.939 0.512 0.118

rR−C

n = 10 1.000 0.981 0.7862 0.051
n = 12 1.000 0.982 0.834 0.037
n = 15 1.000 0.961 0.595 0.095

max avg min dev

ρR−KL 1.777 1.267 0.817 0.191
ρR−C 1.868 1.277 1.005 0.166

rR−KL is always above 91.8%, and the minimum value is always above 51%; with the R–C algorithm,

the average of rR−C is always above 96%, and the minimum is always above 59%. Also, we report that

the refinement phase for both R–KL and R–C algorithm improves significantly the solution. Typically,

the average value of rR−KL before refinement is about 65%, while the one for R–C is slightly higher

and is about 70%2.

Table III (right) shows the performance of R–KL and R–C for a larger example n = 50, p = 5, for which

it was infeasible to find the optimal solution by exhaustive search. We thus randomly generate 2500 sensor

selections, and we evaluate the quantity fBEST−RAND−KL–the maximal objective function in (4) over all

2500 randomly generated selections. Define the ratios ρR−KL := fR−KL

fBEST−RAND−KL . (Analogously define the

corresponding ratios for the Chernoff-based sensor selection.) We report that, to obtain fBEST−RAND−KL

(for 2500 50 × 5 selection matrices) it takes about 10 times longer than for R–KL algorithm to find a

solution. Also, to obtain fBEST−RAND−C it takes about 6 times longer than for R–C algorithm to find a

solution. From Table III (right) we can see that R–KL in many cases outperforms random strategy: with

significant savings in time (90%) it gives a 26% larger objective function on average. More importantly,

R–C always stays above the random strategy in terms of the objective function, with computational

savings of 83%.

2Denote by E• the selection matrix obtained prior to the refinement phase of R–KL, and by f?
KL the KL distance for the optimal

selection. The average value of fKL(E•)/f?
KL, which is typically about 65%, is relatively high (although far from optimum).

Namely, if we choose a selection matrix Er at random, then the (simulated) average ratio fKL(Er)/f
?
KL (the average is over

both randomly generated data mi, Si and Er) is typically about 30%, which is more than twice smaller than fKL(E•)/f?
KL.

Similar behavior is observed for the C distance case, also.
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B. Testing the algorithms: The case without uncertainties

This subsection tests the algorithms R–KL, MD–KL, R–C, and MD–C in the no uncertainties case.

Simulations show that R–KL and MD–KL show comparable (both very good) performance w.r.t. accuracy,

while MD–KL has smaller computational cost. Thus, MD–KL is a better algorithm in the no uncertainties

case, while MD–KL does not apply in the presence of uncertainties. Similar conclusions hold for R–C

and MD–C algorithms.

Smaller examples: Comparison with the global optimum. Table IV shows the performance of the R–KL

and MD–KL algorithms for solving (4) in the case without uncertainties (k0 = k1 =∞). For fixed n and

p, we generate Kexper = 200 sets of problem parameters mi, Si, i = 0, 1; for each fixed mi, Si, i = 0, 1,

we evaluate the ratios rR−KL, rMD−KL, rR−C, and rMD−C. Table IV shows the maximum (max), the

average (avg) and the minimum (min) of the quantities rR−KL and rMD−KL over all Kexper = 200

experiments. The standard deviation in these experiments varies from 0.03 to 0.06. We can see from

the table that the maximum of both rR−KL and rMD−KL is always 1. Table IV demonstrates very good

performance of both R–KL and MD–KL algorithms. On average, rR−KL and rMD−KL are always (for

each pair n, p) above 97.7%; the minimum is always above 67.2%. We see that R–KL and MD–KL

algorithms have comparable performance with respect to (near)optimality, while MD–KL has smaller

computational cost (We note, however, that MD–KL does not apply for the case with uncertainties in

distribution means.) We performed similar simulations for R–C and MD–C algorithms also. Results are

omitted due to the lack of space, but we report that R–C and MD–C show mutually similar (and near

optimal) performance. Also, performance of R–C and MD–C is very similar to performance of R–KL

and MD–KL.

Larger examples: Comparison with the best randomly generated selection. We now consider larger n

and p, when computing the optimum by the exhaustive search is infeasible. Similarly as in subsection VI-A

(larger examples), we randomly generate 105 sensor selections and find the maximal objective function

fBEST−RAND−KL over these selections. For a fixed pair n and p, we generate Kexper = 100 sets of the

distribution parameters mi, Si, i = 0, 1; for each set of the distribution parameters, we evaluate ρR−KL,

ρMD−KL, and ρR−C, ρMD−C. We are also interested in the ratio of the computational time of the R–

KL (resp. MD–KL) algorithm over the computational time of checking 105 random selections (and the

analogous quantities for the Chernoff-based selection).

Table VI shows the average (avg), the maximal (max), and the minimal (min) values of ρR−KL and

ρMD−KL over 100 data sets mi, Si, i = 0, 1; Table VII (left) shows the computational time ratios. We

can see that both R–KL and MD–KL outperform best random selection strategy, as they achieve larger
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TABLE IV
STATISTICS FOR rR−KL = fR−KL/fOPT−KL AND rMD−KL = fMD−KL/fOPT−KL

p = 3 p = 4 p = 5

max avg min max avg min max avg min

rR−KL

n = 20 1.000 0.990 0.789 1.000 0.985 0.688 1.000 0.977 0.672
n = 30 1.000 0.989 0.830 1.000 0.988 0.826 1.000 0.983 0.795
n = 40 1.000 0.989 0.729 1.000 0.985 0.842 1.000 0.983 0.817

rMD−KL

n = 20 1.000 0.992 0.744 1.000 0.982 0.688 1.000 0.975 0.672
n = 30 1.000 0.989 0.809 1.000 0.987 0.832 1.000 0.981 0.742
n = 40 1.000 0.985 0.729 1.000 0.980 0.802 1.000 0.981 0.834

objective function while reducing computational time. For example, for n = 80, p = 0.1×n = 8, R–KL

can give 54% larger objective function, while it has 3 times smaller computational time. MD–KL is better

than R–KL, as it shows comparable performance in terms of the objective function; at the same time, it

significantly reduces the computational time. Thus, for sensor selection without uncertainties, MD–KL is

a very good tool that can handle large problem instances. Similar conclusions hold for the Chernoff based

algorithms (see Table VII and Table VIII (right)). Chernoff based algorithms have larger computational

time than Kullback-Leibler based algorithms, which is expected due to maximization over s (see (5)).

Section V shows generally that the Chernoff criterion has some advantage over the Kullback-Leibler

criterion, which trades off the computational requirements for these criteria.

VII. CONCLUSIONS

In this paper, we addressed the problem of finding the most informative subset of p out of n sensors,

for the task of deciding between the two possible hypothesis on the monitored environment. We proposed

two different information theoretic criteria for the best sensor selection: the Kullback-Leibler distance

and the Chernoff distance between the distributions induced by the selected sensors. We tackled the case

where the distributions are Gaussian, but the mean vectors are known only up to confidence regions.

We formulated the corresponding maxmin optimization problems, and developed the R–KL and R–C

algorithms, that efficiently solve the problems with complexity O(n3p+np4). We also addressed the case

when the mean vectors are known and, for this case, we exploited the structure of the problems to develop

more efficient algorithms, MD–KL and MD–C, of complexity O(n3 +np3). We performed Monte-Carlo

based experiments to test both the proposed sensor selection criteria and the sensor selection algorithms.
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TABLE V
STATISTICS FOR ρR−KL = fR−KL/fBEST−RAND−KL AND ρMD−KL = fMD−KL/fBEST−RAND−KL

p = 0.1× n p = 0.2× n p = 0.3× n

avg max min avg max min avg max min

ρR−KL

n = 50 1.069 1.246 0.855 1.225 1.577 1.072 1.274 1.733 1.071
n = 80 1.298 1.544 1.162 1.474 1.860 1.233 1.472 1.962 1.229
n = 100 1.427 1.705 1.169 1.556 1.739 1.337 1.598 1.894 1.378

ρMD−KL

n = 50 1.072 1.246 0.919 1.223 1.464 1.002 1.265 1.684 1.077
n = 80 1.299 1.544 1.130 1.475 1.782 1.248 1.468 2.002 1.225
n = 100 1.429 1.705 1.169 1.563 1.864 1.384 1.617 1.973 1.374

TABLE VI
STATISTICS FOR ρR−C = fR−C/fBEST−RAND−C AND ρMD−C = fMD−C/fBEST−RAND−C

p = 0.1× n p = 0.2× n p = 0.3× n

avg max min avg max min avg max min

ρR−C

n = 50 1.074 1.214 0.992 1.182 1.341 1.072 1.194 1.307 1.095
n = 80 1.262 1.454 1.132 1.357 1.621 1.199 1.338 1.464 1.206
n = 100 1.375 1.517 1.251 1.447 1.616 1.299 1.402 1.629 1.287

ρMD−C

n = 50 1.074 1.214 0.991 1.182 1.341 1.038 1.195 1.307 1.100
n = 80 1.262 1.471 1.132 1.357 1.621 1.194 1.338 1.464 1.212
n = 100 1.375 1.517 1.254 1.445 1.616 1.296 1.403 1.632 1.296

Numerical studies of the criteria show that the Kullback-Leibler based and the Chernoff based selections

have near optimal performance, both in the Neyman-Pearson and Bayes sense. The performance of our

algorithms was compared with 1) the optimal sensor selections, when the exhaustive search to compute

them is feasible (smaller n and p); and 2) with best random selections, when n and p are large. Comparison

with the exhaustive search shows that the proposed algorithms in many cases find the optimal selection

and, on average, are at most 5% below the optimal value; at the same time, computational savings are

significant. For larger problems, simulation results demonstrate that our algorithm outperforms random
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TABLE VII
AVERAGE TIME RATIOS, Kexper=100; LEFT: KL ALGORITHMS; RIGHT: C ALGORITHMS

p = 10% p = 20% p = 30%

R–KL
n = 50 0.070 0.104 0.107
n = 80 0.276 0.295 0.291
n = 100 0.417 0.472 0.349

MD–KL
n = 50 0.003 0.005 0.006
n = 80 0.007 0.012 0.014
n = 100 0.011 0.017 0.021

p = 10% p = 20% p = 30%

R–C
n = 50 0.105 0.146 0.153
n = 80 0.472 0.549 0.507
n = 100 0.875 0.990 0.721

MD–C
n = 50 0.002 0.004 0.006
n = 80 0.006 0.011 0.014
n = 100 0.010 0.017 0.021

searches, once an upper bound on computational time is set.

APPENDIX

A. Proof of NP hardness of optimization problems (4) and (5)

We will prove that both problems (4) and (5) are NP hard by reducing them to the maximal clique

problem (MQP), which is known to be NP hard [25]. We first define the MQP. Consider an undirected,

simple (i.e., without self-loops) graph G = (N , E), where N is the set of vertices with cardinality

|N | = n, and E is the set of undirected edges {i, j}, |E| = m. A clique of the graph G, of size p, is a

complete subgraph of G that has p vertices. The decision version of MQP is as follows:

MQP: The maximal clique problem: “For given graph G and a positive integer p, 1 ≤ p ≤ n,

determine whether G has a clique of size at least p.”

We conduct a reduction to MQP by attaching to a graph G a n×n matrix S (G) of a special structure.

Namely, we define a positive definite matrix S (G) as follows: [S (G)]ij = 2n, if i = j; [S (G)]ij = −1,

if i 6= j, and {i, j} ∈ E ; and [S (G)]ij = 0, otherwise. The matrix S (G) is positive definite because it

has positive diagonal elements and it is strictly diagonally dominant. Now, fix an integer p, 1 ≤ p ≤ n, and

consider a set of matricesAp defined asAp =
{
A ∈ Rp×p : A = A>, Aii = 2n, ∀i, Aij ∈ {0,−1}, i 6= j

}
.

Clearly, all matrices in Ap are positive definite, as they are strictly diagonally dominant, with positive

diagonal entries. Denote by 1p the column vector with all entries equal to 1 and define the function

g : Ap → R as g(A) = 1>p A
−11p. We have the following result on the matrices in Ap.

Lemma 7 For all matrices A ∈ Ap, there holds:

1) Denote B := A−1. Then, for all i, j Bij ≥ 0.
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2) If Aij = 0, then g
(
A− hih

>
j − hjh

>
i

)
≥ g(A). (Recall that hi denotes ith canonical vector.)

3) g(A) ≤ p
2n−p+1 , where the equality holds if and only if A = A? := 2nI − 11> + I .

Proof: The claim 1) in Lemma 7 follows from the fact that the matrix A is an M matrix [26],

and, consequently, the matrix B = A−1 has all entries greater than or equal to zero [26]. We now show

the claim 2) in Lemma 7. Remark first that the function g(·) is convex and differentiable on the set of

positive definite matrices. Applying the first order Taylor expansion lower bound at A, we get:

g
(
A− hih

>
j − hjh

>
i

)
≥ g(A) + tr

(
∇g(A)

(
−hih

>
j − hjh

>
i

))
, (29)

where ∇g(A) stands for the (matrix form) gradient of g(·) at A and is equal to −A−11p1>p A
−1. Now,

by claim 1), all entries of A−1 are nonnegative, and, thus, the second term on the right hand side of the

inequality (29) is nonnegative as well. This completes the proof of claim 2.

We proceed and prove the claim 3) in Lemma 7. From claim 2) we know that the more −1’s a matrix

A ∈ Ap has on its off-diagonal entries, the higher the value g(A) can be. Therefore, A? is a maximizer

of g over the set Ap. Also, it is straightforward to check that g(A?) = p
2n−p+1 . We will show next that

A? is in fact the only maximizer of g (over Ap). To show this, it suffices to show that, for any choice

of 1 ≤ i, j ≤ p, i 6= j, the following strict inequality holds:

g
(
A? + hih

>
j + hjh

>
i

)
< g(A?). (30)

To this end represent the matrix hih
>
j + hjh

>
i as hih

>
j + hjh

>
i = HCH>, where H = [hi hj ] ∈ Rn×2

and C ∈ R2×2, C12 = C12 = 1, C11 = C22 = 0. Using the matrix inversion lemma, we get:

g
(
A? + hih

>
j + hjh

>
i

)
= 1>p B

?1p − 1pB
?H
(
C−1 +H>B?H

)−1
H>B?1p. (31)

After straightforward algebra, we obtain:

1pB
?H
(
C−1 +H>B?H

)
H>B?1p =

2n+ 1
n+ 1 + 1

2n−p+1

.

Since this term is greater than zero for all 1 ≤ p ≤ n, the inequality (30) follows. This completes the

proof of claim 3) and the proof of the Lemma

We proceed with the proof of Theorem (1). The decision version of (4), for k1 = k0 = +∞, is:

D–KL: Decision version of (4) “For given data: 1) vectors m0,m1 ∈ Rn; 2) positive definite matrices

S0 and S1; 3) positive integer p, p ≤ n; and 4) a number f•KL, determine whether there is a n× p sensor

selection matrix E, such that fKL(E) defined in eqn. (6) is at least f•KL.”

We now reduce the MQP to D-KL. Consider a simple, undirected graph G and consider MQP of
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determining whether there is a clique in G of the size at least p. Define the matrix S(G) by [S (G)]ij = 2n,

if i = j; [S (G)]ij = −1, if i 6= j, and {i, j} ∈ E ; and [S (G)]ij = 0, otherwise. Consider an instance of

D–KL, for some fixed p, with the following data: 1) m1 = 1n, m0 = 0n; 2) S1 = S0 = S(G); 3) p; and

4) f•KL = 1
2

p
2n−p+1 . Now, the answer to D–KL is YES (resp. NO) if and only if G has (resp does not

have) a clique of size at least p. Thus, MQP problem is reduced to D–KL.

MQP problem reduces to the decision version of problem (5) (denoted by D–C), for k1 = k0 =

+∞, in a very similar way as it reduces to D–KL, by considering the instance of D–C with the data

m1,m0, S1, S0, p, same as we considered for D–KL, but f•KL = 1
2

p
2n−p+1 is replaced by f•C = 1

8
p

2n−p+1 .

B. Proof that the Kullback-Leibler and Chernoff distances are not submodular functions

See [20] for the definition of a submodular function. Consider two Gaussian distributions N (mi, Si),

i = 0, 1, with parameters m0 = m1, S0 = I3 and S1 = I3 + ε(h2h
>
3 + h3h

>
2 ) (h2, h3 ∈ R3), where

0 < ε < 1. Let E1 = h1 ∈ R3, E13 = [h1 h3], E12 = [h1 h2] and E123 = I3. Computing the

Kullback Leibler distance for E1, E12 and E13, we get fKL(E1) = fKL(E12) = fKL(E13) = 0, whereas

fKL(E123) = −1
2 log(1 − ε2) > 0. Thus, fKL(E13) − fKL(E1) < fKL(E123) − fKL(E12) which proves

that function fKL is not submodular. The proof for Chernoff distance can be done in a similar way.

C. Solution to problem (26)

We consider the Lagrangian form for the problem (26), which equals L(P,M) = 1
2

(
tr(P>SP )−

log
∣∣P>SP ∣∣− p) + tr

(
M(P>P − I)

)
, where M is a symmetric matrix of the Lagrange multipliers

associated with the constraint P>P = Ip. (We note that, since S is positive definite and P is full rank,

the matrix P>SP is also positive definite, and, thus, invertible.) A necessary condition for P to be a

maximizer of (26) is that P is a stationary point of the Lagrangian form. Lemma 8 characterizes the set

of candidates for stationary points of the Lagrangian form.

Lemma 8 Let QP and ΛP denote, respectively, the (orthogonal) matrix of eigenvectors and the matrix of

eigenvalues of P>SP , i.e., P>SP = QP ΛPQ
>
P . Then, stationary points P of the Lagrangian L(P,M)

have the following form: P = [U1A]Q>P , where U1 is a matrix of some p1 ≤ p eigenvectors of S, and

the matrix A (that depends on S) is such that A>SU1 = 0 and A>SA = Ip−p1 .

We now find the maximizer of (26) by searching over the set of stationary points of L(P,M). By Lemma

8, a stationary point is of the form P = [U1A]Q>P . Note that ΛP = [U1A]> S [U1A] = Λ1⊕ Ip−p1 , where

⊕ denotes the matrix direct sum operation, and Λ1 denotes the matrix of eigenvalues of S that correspond
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to the eigenvectors U1. Then, the value of the objective function in (26) at P equals:

f(P ) =
1
2

(tr (ΛP )− log |ΛP | − p) =
1
2

(tr (Λ1)− log |Λ1| − p1) . (32)

The quantity f(P ) in (32) equals the sum of the functions φKL(x) = x − log x − 1 evaluated at some

p1 (p1 ≤ p) eigenvalues of S. Clearly, since φKL(x) > 0 for x 6= 1, (32) is maximized for P for which

p1 = p (A is an empty matrix), and PQP equals the set of the p maximal eigenvectors of S − logS. As

f(·) is invariant with respect to rotations (f(PG) = f(P ) for any orthogonal p × p matrix G), (26) is

also maximized at P ′ = PQP , which we needed to show. We proceed with the proof of Lemma 8.

Proof: Taking the derivative of L(P,M) with respect to P , setting the derivative to zero, and

multiplying the corresponding equality from the left by (I − PP>) yields:

(I − PP>)SP (I − (P>SP )−1) = 0 (33)

Since (I−PP>) is a projection matrix onto the orthogonal complement of P , condition (33) is satisfied if

and only if all columns of SP (I−(P>SP )−1) belong to span(P ), i.e., when SP (I−(P>SP )−1) = PR,

for some R ∈ Rp×p; multiplying the latter condition by P> from the left, and using the fact that P>P = I ,

we get R = P>SP − I . Therefore, P satisfies:

SP (I − (P>SP )−1) = P (P>SP − I). (34)

Then, plugging in (34) the eigenvalue decomposition of P>SP , multiplying both sides in equality (34)

by QP from the right, and using the identity ΛP − I = ΛP (I − Λ−1
P ), (34) implies:

SPQP (I − Λ−1
P ) = PQP ΛP (I − Λ−1

P ). (35)

Without loss of generality, we can reorder the columns of PQP , such that ΛP = Λ1⊕ Ip−p1 , where Λ1

collects the eigenvalues of ΛP not equal to one. Then, condition (35) does not “see” the last p−p1 columns

of the matrix PQP , whereas the condition on the first p1 columns of PQP , denoted by (PQP )1, becomes:

S(PQP )1 = (PQP )1Λ1. Therefore, (PQP )1 must be equal to a matrix U1 of some p1 eigenvectors of

S. Summing up, a stationary point takes the form PQP = [U1A], where A>SA = Ip−p1 , A>SU1 = 0.
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