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Bi-Virus SIS Epidemics over Networks:
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Abstract—The paper studies the qualitative behavior of a set of ordinary differential equations (ODE) that models the dynamics of
bi-virus epidemics over bilayer networks. Each layer is a weighted digraph associated with a strain of virus; the weights y;; represent
the rates of infection from node 7 to node j of strain 2. We establish a sufficient condition on the y’s that guarantees survival of the
fittest—only one strain survives. We propose an ordering of the weighted digraphs, the *-order, and show that if the weighted digraph
of strain y is *-dominated by the weighted digraph of strain =, then y dies out in the long run. We prove that the orbits of the ODE
accumulate to an attractor that captures the survival of the fittest phenomenon. Due to the coupled nonlinear high-dimension nature
of the ODEs, there is no natural Lyapunov function to study their global qualitative behavior. We prove our results by combining two
important properties of these ODEs: (i) monotonicity under a partial ordering on the set of graphs; and (ii) dimension-reduction under
symmetry of the graphs. Property (ii) allows us to fully address the survival of the fittest for regular graphs. Then, by bounding the
epidemics dynamics for generic networks by the dynamics on regular networks, we prove the result for general networks.

Index Terms—Bi-virus epidemics, survival of the fittest, differential equations, qualitative analysis, attractor, basin of attraction

1 INTRODUCTION AND BRIEF REVIEW
OF THE LITERATURE

HISTORICAL remarks. The dynamics of physical systems
are often modeled by ordinary differential or differ-
ence equations (ODEs). Mathematical models for epidemics
have a long history starting possibly with the work of
Daniel Bernoulli in the mid-eighteen century, [1], defending
inoculation against smallpox. In the first three decades of
the twentieth century, among others, the works of Hamer
[2] and Kermack and McKendrick [3] laid the foundations
of mathematical epidemiology. The population is divided
in compartments, e.g., susceptibles, infectious, exposed,
removed, and the epidemics are modeled by ODEs govern-
ing the rates of flow between these compartments, see [4]
for a comprehensive collection of such models. These mod-
els have been established for many infectious diseases from
the historical plagues affecting millions over the centuries,
to outbreaks of cholera, malaria, influenza, or HIV.

ODE model motivation. Such logistic-like ODE models can
be motivated through mean-field approximation argu-
ments, e.g., [5], [6]. More formally, in [7], we proved that the
solutions to the susceptible-infected-susceptible (SIS) bi-
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virus ODEs (4)-(5) represent the exact weak limit (under
an appropriate topology on the set of sample paths) of a
stochastic process representing the fraction of infected
nodes at each partite on a complete-multipartite network
and evolving according to a peer-to-peer stochastic model
of infection (Harris contact process). Namely, we proved
that, as the number of nodes at each partite grows to infinite
(in a controlled way), the vector collecting the fraction of
infected nodes at each partite converges weakly to the solu-
tion of the ODE. For the sake of completeness, we remark
that multipartite structures find motivation in real life
epidemics. For example, the dengue disease is spread
between humans and Aedes Aegipty mosquitoes according
to a bipartite structure, refer to [8]. Indeed, a healthy human
gets infected once bitten by an infected mosquito. A healthy
mosquito gets infected once it bites an infected human
being. The disease does not spread among humans nor does
it spread among mosquitoes, i.e., only cross-species infec-
tion is allowed. Therefore, the underlying network of infec-
tions has two partites connected together: one comprised of
mosquitoes and the other of human beings. Therefore, such
ODEs conform to a natural model to study the evolution of
the fraction of infected nodes at each partite on a large-scale
complete-multipartite network (from [7]) as in Dengue-like
epidemics, or to study the evolution of the likelihood of
infection of nodes in an arbitrary network as, e.g., in [5], [6]
for single-virus, or [9] for bi-virus.

Equilibria versus qualitative analysis in the literature. There
is a vast body of literature dedicated to the study of single-
virus epidemics over networks. References [6], [10] provide
a comprehensive review of the epidemics literature. All
these references focus mostly on studying the equilibria of
imposed idealized differential equation models with a few
providing heuristics on the transitory behavior of such
dynamical systems. Reference [5] provides several bounds

2327-4697 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



18 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL.2, NO.f1,

on the equilibria of a single virus epidemics. These referen-
ces concentrate on studying the equilibria of such ODE
models, i.e., determining the equilibria, or properties of the
equilibria, or the local (often linearized) dynamics about the
equilibria. They do not study rigorously their qualitative
behavior, i.e., do not characterize the attractors and basins
of attraction of the dynamical system. Reference [6] also
attempts to briefly study the qualitative behavior of some
epidemics models resorting to heuristic arguments, e.g.,
linearizing the ODEs when the degree of infection is small.
We do not evoke such approximations in this work. We
remark that the discrete-time counter-part of such ODEs
present chaotic behavior and do not, in general, converge to
the equilibria (refer to the logistic map, e.g., in [11]), and
thus, results on the global stability of the system are crucial
to understand the behavior of its solutions from the initial
conditions to the attractors. Reference [12] does provide a
rigorous qualitative analysis for the single virus epidemics
dynamics—equation (3)—based on Lyapunov stability
theory. As we explain in Section 3, the results in [12] for the
single virus dynamics do not apply to the bi-virus case, and
we need to develop a new methodology. Reference [13]
studies via numerical simulations the epidemics over big
cities resorting to dynamical systems similar to the one in
equation (3), to model the mixing of different interacting
groups of individuals.

Bi-virus motivation and some references. Bi-virus dynamics
is motivated by the virus pandemic vs vaccination problem.
In many real life settings, once infected, an individual can-
not be vaccinated; and, if vaccinated, it is not prone (ideally)
to be infected. This partitions the population in disjoint sets:
infected; not infected and not vaccinated (susceptible); and
vaccinated (and thus, not susceptible). This exclusion princi-
ple couples the dynamics of spreading of the virus with the
dynamics of vaccines: one cannot understand the bi-virus
dynamics of virus-vaccines (ODE (4)-(5)) by studying it
separately (e.g., via the single-virus ODE (3)). While the
virus spreads across the population according to the under-
lying network of contacts, [14], [15] suggest that vaccines
obey similar dynamics: the social network of influences
plays a major role on the decision of parents vaccinating
their children. Also, recent research results in malaria vac-
cines (e.g., [16]) suggest that infection inhibition via mosqui-
toes bites is possible. In other words, the vaccines would
spread across the population via similar dynamics as the
main virus. In this case, one recovers the bi-virus epidemics
setting in the network where the vaccine may be cast
as another virus strain spreading similarly to the main virus
with mutual inhibition between the strains. Therefore, the
bi-virus dynamics, see (4)-(5) below, are a natural model to
study the evolution of infected and vaccinated individuals.
The analytic study of this dynamical system can inform the
regulatory policies of vaccination to preventing the persis-
tence of the epidemics. Similar models for bi-virus competi-
tion in a network are addressed in references [9], [17], [18].
The common feature among these papers and the majority
of the literature in epidemics is that they perform local

1. Technically, malaria is not caused by a virus, but by a protozoan.
For our purposes, the relevant feature lies in the dynamics of spread
and not in the nature of the viral agent.
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analysis—i.e., determine properties of the equilibria, or
study the dynamical system on small neighborhoods of the
equilibrium points. In contrast, we study our dynamical
system via global stability analysis.

Main contribution of this paper. This paper focus on the
qualitative analysis of the bi-virus coupled nonlinear ODEs
dynamics (4)-(5). We do not focus on characterizing purely
the equilibria (or properties of the equilibria); we devise
tools that guarantee to where the orbits of the dynamical
system accumulate to. More precisely, we prove that, under
some condition on the rate parameters of the ODE (4)-(5),
the orbits accumulate to an attractor A that we characterize.
This is further interpreted as a natural selection phenome-
non taking course in the long run: the weaker strain dies out
whereas the stronger strain survives with a degree of infec-
tion above a threshold that we determine. Due to the high-
dimension and nonlinearity of the ODEs, the bi-virus
epidemics defies the use of Lyapunov methods. Our
approach explores three properties of the ODE (4)-(5) to
establish the sufficient condition for survival of the fittest:
(i) monotonicity under initial conditions; (ii) monotonicity
under an appropriate partial ordering on the set of graphs;
and (iii) complete qualitative characterization of (4)-(5) for
regular networks. By combining these three properties and
introducing a new ordering on the set of weighted digraphs
(referred to as *-order), we can obtain a sufficient condition
for survival of the fittest in general weighted digraphs: if
the strain y is *-dominated by the strain «, then y dies out,
i.e., it cannot co-habit the network along with the strain « in
the long run. Our approach is based on bounding the epi-
demics dynamics for generic networks by the epidemics
dynamics on regular networks. More precisely, one can
appropriately bound the dynamics of the strains of virus in
general networks by the dynamics over inner/outer regular
networks to show that the ODE over general networks
exhibit natural selection, as we will make clearer below. We
explore the fact that, if the underlying network is regular
with all infection rates constant across edges, then the global
attractor is an equilibrium point (to be proved). Remark that
the sub (or inner)/supper (or outer) regular graphs of a
graph G always exist, even if trivially—the isolated nodes
and the complete networks, respectively. Although there is
no closed form for the number of regular sub-networks on
n nodes, see [19], [20], [21], reference [22] shows that, in gen-
eral, for random networks in the asymptotic limit of large
networks there is a high probability that it contains a regular
non-trivial sub-network.

What this paper is about. This paper is about a rigorous
global qualitative analysis of a set of ODEs that model the
evolution of two strains of virus in a network. We determine
a sufficient condition on the parameters of these ODEs (a.k.
a., virus rates) under which the orbits of these ODEs con-
verge to a survival of the fittest attractor, regardless of the
initial conditions.

What this paper is not about. In this paper, we do not
study the original stochastic system giving rise (in the
limit of large network) to the ODE (4)-(5) as established
in [7]. In this paper, we do not resort to approximations
about the equilibria—such as linearizing the system
about the equilibria—nor do we pursue a local analysis
about the equilibria.
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Summary of the paper. Section 2 sets-up the main notation,
important inequalities between networks, and the ODEs to
be studied through out the paper. Section 3 illustrates our
model analysis in the simpler case of single-virus epidem-
ics. Section 4 establishes the main result on the survival of
the fittest associated with the bi-virus dynamics (4)-(5) in
Theorem 20. We include some auxiliary Theorems,
Theorems 22, 23, and 24, and the corresponding proofs in
Section 5. Such Theorems are crucial to establish the main
Theorem, Theorem 20, but, for the sake of clarity, we omit
them in Section 4. Concluding remarks are in Section 6.

Preliminary notation. Symbols R, and R, represent the
set of nonnegative and positive, respectively, real numbers;
N = {1,2,...} represents the set of natural numbers. We
define 15 € RY (and 0y € RY) as the vectors with all entries
equal to one (respectively, 0)—the subindex may be omitted
whenever the dimension is clear from the context. Let
x,y € RY, we define x > y as the pointwise inequality, i.e.,
z; >y forall i =1,...,N. We refer to x #0 as x¢ RY,.
Define |V| as the cardinality of the set V. Let z,y € R and
define x Ayas: x Ay =ux,if v <yorzAy=y, if otherwise.
Let 2,y € R and define xVyas: xVy=ux, if xt >y or x V
y =y, if otherwise. We define the Hadamard pointwise
product x © y as

X © y= (xlylv .. -va?JN)-

Let A ® y be the Kronecker product
A®y= (a’ijy)ij'

2 FLOW IN NETWORKS

In this Section, we present the bi-virus ODE model to be
studied along its associated flow, we set the main notation
and introduce basic definitions to be used throughout. We
present useful inequalities on networks, namely, we propose
the *-inequality ‘<*’ that will be important in Section 4 to
draw a sufficient condition for survival of the fittest: if
GY <* %, where GY, G* are the weighted digraphs—to be
defined—associated with the strains z, y, then the strain y
dies out. We start by defining some graph constructs.

Definition 1 (Graph). The ordered pair G = (V. E), is a graph;
where V- C N and E C 'V x V are the finite set of nodes and
edges, respectively.

Unless otherwise stated, V, with cardinality |V| = N, is
defined by default as V = {1,...,N}. Next, we define a
weighted digraph that we associate with a virus infection: it
couples the underlying graph of potential infections with
the rates of infection between nodes. In order to avoid
repeating the term “weighted digraph” recursively, we
denote it simply by “e-network”.

Definition 2 (E-network). The ordered pair G = (V,y) is an
e-network, where V C N is finite and y : V. xV — Ry isa
nonnegative function;

EV)={G=Vy) 1y : VxV >Ry}

is the set of e-networks with fixed node set V. If the particulars
of V are not relevant, we write E(|V|) instead of E(V).

Fig. 1. Representation of an e-network G = (V,y), with V' = {1,2,3,4}.
The edges associated with null rates y are not depicted. That is, y,, =
v = 0and y;5 = 0.

The N x N matrix/function y is the infection rate of a
virus between any two arbitrary nodes with y(i, j), or y;;,
standing for the rate of infection from node ¢ towards
node j. In Fig. 1, we depict an e-network.

The path-flow graph of infection is specified by the
support of y that we now define.

Definition 3 (Support graph of an e-network). Let
G = (V,y) be an e-network. We call

supp(G) = (V’ Vﬁl(RJﬁ)) 1

the support graph of the e-network G, where y~'(R.) is the
inverse image of R, by y : V xV — R, or, in words, the
set of edges (i, j) where y (i, j) > 0.

The support graph represents the graph where an edge
from node i to node j is placed whenever y(i,j) > 0 and
not placed if otherwise y(i,j) = 0. This provides us with
the path-flow of infection of a virus associated with the
e-network G. Thus, an e-network G provides us not only
with the topology of the network environment as seen by
the virus, but also with the quantitative rates y(i,j) of
infection attached to each edge (i,j). We assume in this
work that e-networks are the defining feature of viruses:
each strain bears an underlying e-network and they are
assumed different (with possibly different topologies of
the corresponding support graphs). Therefore, the neigh-
borhood of a node a—set of nodes that can directly infect
the node a—is sensitive to the underlying strain of virus.
For instance, in Fig. 2, node 4 is neighbor to node 3 with
respect to strain y, but not with respect to strain x. Next,
we formally define the neighborhood of a node in e-net-
works and introduce the appropriate notation. The concept
of second order or, more generally, nth order neighbor-
hood is useful and will be also introduced.

Definition 4 (Neighborhood). Let G = (V, y) be an e-network,
and i € V be a node in G. Define N(i,G) as the one-hop
neighborhood of node i in G and write it as

N(@,G):={jeV :j—ci}, (2

where j —¢ i means y(j,i) > 0, i.e., node j can directly infect
node i. Write N (i, G) as the 2nd order neighborhood of i, that
is, € N*(i,G) if and only if the shortest path connecting
j to i (aka. geodesic) has length two hops. Inductively,
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Fig. 2. Representation of a bilayer e-network G*Y = (G*,GY), with
G = (V.y"), GY = (V,y¥), and V = {1,2,3,4}. The edges associated
with null rates y are not depicted. Each e-network G* and GY is associ-
ated with a single strain of virus = and y, respectively.

jeN" (i,G) if and only if there exists k € N™~' (i, G) with
Jj —a k, i.e., the geodesic connecting j to i, has a length of n
hops. If there is no ambiguity, we will suppress G, and we will
write N (i) and i — j, instead.

The degree of anodei € Vin G is
d;(G) == IN(i, G)|.
From the definition,
NG AN G =0

whenever [ # m, i.e., (N"(i)), partitions V.
We now present the single-virus epidemics ODE model
and its underlying flow.

Definition 5 (Flow of single-virus ODE). Let D(V') = |0, 1]|V“
Define the function

y:Ry xDV) xEV) — D(V),
(t,y0; G) — y(t,50; G),
where (y(t,yo; G));= 18 the solution to the ODE

Ui(t) = (Z (4, i)yj(t)) (1= wi(t) —wi(t) ®3)

jev

Fi(y(t);:G)

fori=1,...,N with N = |V|, initial condition y, € D(V),
and underlying e-network

G=Vy)e&(V).

For fixed G, (y(t,y0; Q) is the flow for t >0 of virus
y over the e-network G, starting from y, at time t = 0. When-
ever V' is clear from the context, we will write simply D and &.

We observe that, given an e-network G € £(V), the flow
(y(t,y9; G)) to the ODE (3) is well defined—it is uniquely
determined for all time ¢, ¢t > 0. Indeed, the underlying vec-
tor field

F(vG) = (Fl('vG)7"-aF1\"('7G))

is (globally) Lipschitz over the domain D = [0,1]" for all
G € E(V). Note that the set D is invariant with respect to the
dynamics, that is, y(t,y,; G) € D for all time ¢ whenever
Yo € D. The fact that D is compact further implies that the
solutions are defined for all ¢, ¢ > 0. Whenever the
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underlying e-network G is clear from the context or previ-
ously fixed, we will write y;(t) or yi(t,y,) instead of

Yi(t;y0; G).
Our goal in this paper is to study the bi-virus epidemics
dynamics that we introduce next.

Definition 6 (Flow of bi-virus ODE). Let
Dy(V):={(x,y) eD(V)xD(V) : x+y <1y},
with D(V) = [0,1)'V]. Define the function
(x,¥) : Ry x Do(V) x E2(V) — Do(V)
(t7 Zo; GT,Z/) — (X(t7 Z; G.r,y)7
y(tv Z); ny))v

where ((x,y)(t,20; G™Y)) is the solution to the ODE

a;(t) = (Z V', i)wj(t)) (1 —2i(t) =) —@(t) ()

jev

FF(x(1),y(1); G7)

(E}Mmmmﬁu—mw—ww%wﬁ> ®)
Jev

=: F(x(t),y(t); GY),

fori=1,...,Nwith N = |V|, with initial condition

i)

2y = (X0,¥o) € Dao(V)

and underlying bilayer e-network G™Y = (G*,GY) with
G* = (V,y") and GY = (V,y"). For a fixed G*Y, we refer to
((5,¥) (¢, (0. ¥0): (G, G")) = as the flow for >0 of
viruses x and y over the corresponding e-networks G* and GY,
starting from (xo,y,) at time t = 0.

The bi-virus dynamics evolves on a bilayer e-network
G*™Y = (G*,GY), where each e-network is associated with
the dynamics of a strain of virus as depicted in Fig. 2.
Remark that the dynamics of both strains are coupled
together, and one cannot in general extract valuable infor-
mation from the coupled system (4)-(5) by studying the
dynamics of each strain separately via (3).

Let 2y = (%0,y,) € D2 and G*Y = (G*,GY) € £, then, we
remark that z;(t,z9, G*Y) (respectively, v;(t,zo, G"Y)) may
model the fraction of nodes infected with virus = (respec-
tively, y) at time ¢, ¢t > 0, at island 4, of a bi-virus epidemics
with initial distribution z; = (x¢,y,) and associated com-
plete-multipartite networks whose super-topology plus
inter-island rates of infection are given by the e-networks
G" and GY. The corresponding flow z;(t,zo, G*Y) (respec-
tively, v;(t, 29, G*Y)) may also model the evolution of the
likelihood of infection of node ¢ at time ¢ by virus z (respec-
tively, y).

For the same reasons as in the single-virus dynamics, the
flow ((x,y)(t, (%X0,¥0); (G*,GY))) is well defined—it is
uniquely determined for all time ¢, ¢t > 0, as the underlying
vector field

F( ) G:r,#y) = (F( 7Gm)7 F( ’ Gy))
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is Lipschitz over the invariant compact domain of interest
D,. Again, whenever clear from the context, we will write
vi(t), xi(t) or y;(t,z0), wi(t,20) instead of y;(t,29,G*Y) or

zi(t,z0, G™Y). We will also refer to (yn,t-) (t,z0,G"Y) or

(an) (t,z9, G*Y) as the nth derivative of the flow to (4)-(5) at

time ¢, t > 0. Next, we define a class of e-networks, called
regular e-networks, where one can fully characterize the
qualitative behavior of (4)-(5)—namely, determine the
attractors and basins of attraction. In words, an e-network is
regular if its support graph is regular and the rates between
connected nodes y;; = y are constant across edges (i, j).

Definition 7 (Regular e-network). We call G := (V,y) € £(V)
a regular e-network, whenever

supp(G) = (V. E)

is a regqular graph and y(i,j) =y € R, for all (i,j) € E,
i.e., the infection rates are the same across the edges of the
underlying support graph. For a reqular e-network G = (V. y),
we may refer to y as a scalar or as the matrix of rates, inter-
changeably. Further, the regular e-network G is called
d-regular, if

di(G) = IN(,G)| = d

for all nodes i =1,..., N and for some d € N, i.e., all nodes
i € V have degree d. We denote by R(V') C E(V') the subset of
reqular e-networks with node set V.

As we explore later, the qualitative dynamics of (3) or (4)-
(5) can be well understood for regular e-networks. Also, the
flow in (3) or (4)-(5) over an e-network G or bilayer e-net-
work G*¥ can be appropriately lower/upper bounded (in a
sense that will be precise later) by flows over sub (inner)/
supper (outer) e-networks of G or G*Y. We will be able to
show fairly general qualitative results for arbitrary e-net-
works G or G*Y on the infection dynamics by upper/lower
bounding its dynamics by the flow over well understood
classes of regular sub/supper e-networks that we refer to as
inner/outer regular e-networks of G or G"Y. Next, we
define inequalities that will provide us with the appropriate
notion of dominance of a virus (or an e-network) over
another virus.

Definition 8 (Inequalities). Let G' = (V') and G* = (V, y?)
be two e-networks.

o We say that G' < G? whenever supp(G') is a sub-
graph of supp(G?).

o Wesay that G' < G? whenever y' < y?, where the lat-
ter inequality is pointwise.

o Wesay that Gt < G? whenever y* < 2.

Note that the inequality < is stronger than <. In words,
G' =< G? if the rates of infection underlying G' lower-bound
the rates of infection of G* at every edge.

Definition 9 (*x-Inequality for regular e-networks). Let
G'= (V,y") and G? = (V,y*) be two regular e-networks.
We say that G* <* G?, in words, the reqular e-network G?
* -dominates the reqular e-network G, whenever y*d' < y*d?,

where y' € R and d’ are the rate (constant across edges) and
degree associated with the reqular e-network G'.

Definition 10 (Inner/outer regular e-network). Let
G = (V,y) be an e-network. We denote
G eargmax{S : S <G, SeR(V)} (6)

as a maximal regular e-network dominated by G. Correspond-
ingly,
G cargmin{S : S =G, SeR(V)} )

is defined as a minimal reqular e-network that dominates G.
We refer to G and G as an inner and outer, respectively, regu-
lar e-networks of G. Note that if G is a reqular e-network then,
G and G are unique (up to a possible relabeling). In general, G
and G are not uniquely determined.

Since the complete graph is regular, and it is a supper
graph for any graph, any graph admits a trivial regular
outer-graph. Similarly, the trivial e-network of isolated
nodes

G = (V,0nxn)

i.e., with no connections (y(i,5) =0 for all 4,5 € V), is an
inner-graph of any graph. But the picture is better than it
sounds. Reference [22] establishes that a typical large
(Erdos-Rényi random) graph admits regular (non trivial)
subgraphs with high probability.

Next, we introduce the most important order on the set
of e-networks £(V) in this paper.

Definition 11 (*x-Inequality for general e-networks). Let
G' = (V,yY) and G? = (V,y?) be two e-networks. We say that

1 .
G' <* G?, whenever G° <* G? for some outer and inner

regular e-networks G.¢ of G' and G?, respectively. That
is, we say that G? *-dominates G', whenever there exists
a non-trivial inner-reqular e-network G* of G* that *-domi-
nates (in the sense of definition 9) some non-trivial outer-

reqular e-network a' of G',ie., 71d' < 2.

Note that definition 11 extends the definition 9 for regu-
lar e-networks to general e-networks. One can readily check
that ‘<*’ defines a strict-order (irreflexive and transitive) on
the set of non-regular e-networks £(V) \ R(V), and a preor-
der (reflexive and transitive) when restricted to the regular
e-networks. We shall stress that the inequality ‘<*’ is not
stronger than ‘<’, i.e.,, one may find e-networks G¥ and G*
for which

GY <* G, but GYAG".

Fig. 3 illustrates a counter-example, with GY and G* being
regular e-networks with degrees d¥ =2 and d” = 3. Thus,
GY <* G*, but G £ G* as, for instance, ¥4, = 0 < y¥,.

3 MODEL ANALYSIS—SINGLE-VIRUS

In this Section, we present an overview of our approach
addressing, for simplicity, the single-virus epidemics. We do
not prove the Theorems in this Section as they are trivial
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G_\' __<‘A' Gx
but

(‘;_\f ﬁ G.\’

Fig. 3. Representation of a bilayer e-network G*¥ = (G*, GY), where the
layers G (in blue/lighter color) and GY (in red/darker color) are regular
e-networks with degrees d* = 3 and d¥ = 2, and identical rate parame-
ters. Only edges with positive rate weights are depicted. For instance,
vi, = ¥4, = 0 as the corresponding edge connecting nodes 1 and 2 are
not represented in the support graph of G*.

Corollaries to the Theorems proved in Section 4 for bi-virus
over general bilayer e-networks, where our contribution lies.
More precisely, Theorem 12 below is a single-virus version of
the survival of the fittest Theorem, Theorem 20, in Section 4.

Theorem 12. Let G be an e-network. Let G = (V,y) and

G = (V,y) be inner-reqular and outer-reqular e-networks of
G.If yd(G) > 1, then

1
1—-——=<liminfy(¢,y,,G)

rd(G) ~ 1
1
< i £y G)<1———o0.

Ifyd(G) < 1, then
Jim y (2, yo, G)—0.

Theorem 12 states that if the effective rate yd(G) > 1
then, the set

N

A=|1-

d(G)" " yd(G)
is an attractor to (3) with basin of attraction

B={y,€D(V) : y, #0}.

If otherwise ¥d(G) < 1, then the origin is the corresponding
global attractor.

Regqular e-networks. We do not prove here the Theorem,
but sketch its proof, starting with the simpler case of regular
e-networks. In this case, clearly, the lower and upper
bounds in Theorem 12 coincide.

Let G = (V, y) be regular—i.e., supp(G) is a regular graph
and y = y, is constant across the edges—and assume a sym-
metric initial condition y, = 1y, with yo € [0,1] and 1 € RY
being the N-dimensional vector with all entries equal to
one. Then, (y(¢,y01; @)) is solution to

)1y = [dyyz(t)(1 — 2(t)) — 2(t)|1x ®)

where d is the degree of the regular e-network G. In other
words,

1 (tyl;G) = =yn(t,yo1;G) Vt > 0. 9)
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It is easy to study the one-dimensional system (8) and in
particular to show that if y, > 1 and yy # 0 then,

yo)—(1- 7)1

otherwise,

y(t)—0.

The next Theorem allows us to drop the previous assump-
tion on the symmetry of the initial conditions and, thus,
fully characterize the global attractor of the dynamical
system (3), when the underlying e-network is regular.

Theorem 13 (Monotonicity on the initial conditions). Let G
be any e-network and yo < y(0). Then,

y(t.yo,G) <y(t.y(0),G), ¥ t>0.

In other words, the Theorem states that the flow
(v(t,y9, G)) preserves the order of initial conditions. Now,
assume again that G is a regular e-network. We can combine
the analysis in the beginning of this sketch-proof with
Theorem 13 to yield Theorem 14.

Theorem 14 (Regular e-network). Let G = (V,y) be a reqular
e-network. If

y>1landy,#0¢ecRY

then,

1
Y(ta Yo, G)—> (1 - 7) 1:
otherwise,

y(t,yo, G)—0.

Indeed, let yd > 1 and G be regular. If for some € > 0 we
havey, > €1, then,

1
y(t.y0,G) = y(t, el,G)—>(1 — d_y)l'

On the other hand,

1
< 1 —1—— 1.
Y(ta Yo G) —= y(ta ) G) ( d)/)

Therefore, Theorem 14 is established for strictly positive ini-
tial conditions y, > 0. To further prove the Theorem for the
more general case where y, # 0 (with possibly yy;, = 0 for
some node i), we need to combine the next Theorem,
Theorem 15, with Theorem 22 in Section 5. Theorem 15
states that a node i sitting n hops away from a node j
impacts node j via its nth (or higher) order derivatives. In
words, nth order neighbors of j affect only the nth (or
higher) order derivative of (y;(t)).

Theorem 15. Let y;(t) > 0 and y;(t) =0,V j # i for some time
t>0.Then, VI <n

(n) ()

j€N"(i) =y;(t) > 0and y.(t) = 0.

i (10)
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More precisely, if some entry of the initial condition vec-
n
tor y, is positive, then y(¢,y,, G) > 0 for some n € N, as the
e-network G is assumed to be connected and finite. Now,
Theorem 22 implies that

y(taYOa G) > Oa vt € (078) (11)

for some § > 0. Therefore, for ¢y € (0,8), we have
lim inf y(t,yo) = lim infy (¢, y(to, y0))

m y — e
, € v y

T t—oo

for some € > 0 (that depends on the choice of t;). Thus,
Theorem 14 is proved and we have a complete qualitative
characterization of the ODE (3) when the underlying e-net-
work G is regular.

Monotonicity under the partial order ‘<" on the set of
e-networks. Now, we observe that the flow (y(¢,y,, G)) to
(3) also preserves upper/lower bounds—with respect to
the partial order ‘<"—on e-networks.

Theorem 16. Let Gi= (V,yV) <Gy = (V,y?) be two
e-networks and yo < y(0). Then,

y(t,y0,G1) < y(t,y(0),Gs), ¥ t>0.

This Theorem combined with Theorem 14 readily implies
Theorem 12. Indeed, let

G=<G=G (12)
where

G=(Vy)and G = (V,7)

are inner and outer, respectively, regular e-networks for G.
Assume, for instance, that Zd(Q) > 1. Then,

1 .
1 - ey = lim y(t,y,, G)
<lim infy(t,y,, G)
t—o0

< lim supy(t, y,, G)

t—00
— 1
<lmy(t,y,G) =1———1,
_HOOY( Yo ) 7d(G)

where the first and last equalities hold from Theorem 14,
and the first and third inequalities hold from Theorem 16.

In the next Section, we formally prove survival of the fit-
test (Theorem 20) through exploring a generalization of the
properties studied in this Section: (i) we establish survival
of the fittest on regular e-networks; (ii) we prove that the
system is monotonous in a certain sense; (iii) we combine
(i) and (ii) jointly with a new order ‘<*. The Theorems in
Section 4 generalize the Theorems discussed in this Section,
and they will be formally proved.

4 GENERAL E-NETWORKS: BI-VIRUS

The qualitative analysis of dynamical systems comprises
characterizing their attractors and corresponding basins of

attraction as depicted in the previous Section. In general,
this is achieved by either Lyapunov theory or numerical
simulations. For instance, reference [12] studies the qualita-
tive behavior of the single virus dynamics (3) via a Lyapu-
nov stability approach. In contrast, in this paper, we are
interested in studying the bi-virus dynamics (4)-(5). Our
qualitative analysis of (4)-(5) does not follow from the sin-
gle-virus results in [12]. Indeed, the results in [12] rely on
the irreducibility of the matrix y = (Vij)i,- underlying the lin-
ear term of the vector field ‘

F(y) = (v — Inxn)y — N(y)

for the single virus ODE (3), where

N(y)=(yy) Oy

comprises the nonlinear term of F(y) in (3), and ® is the
Hadamard pointwise product. If y is reducible then, one
can still study the single-virus dynamics at each of the con-
nected components individually (the system is uncoupled)
as the nonlinear term N(y) decouples accordingly. For the
bi-virus case, the linear term of

F(z) = (y" — Lvxon)z — N(2)

is reducible, with z := (x,y), but the nonlinear term N still
couples the epidemics dynamics in each network connected
component associated to y* and y¥. Therefore, its dynamics
cannot be studied independently for each subsystem and
the Lyapunov methods of [12] that relied on the matrix y*¥
being irreducible do not apply. So, we need to develop new
methodologies to analyze the global stability and qualitative
behavior of (4)-(5).

To prove the survival of the fittest, Theorem 20, we
follow similar steps as in the previous Section: study the
ODE (4)-(5) on regular e-networks, and then we prove
the result on general e-networks by combining the analy-
sis in regular e-networks with a skewed-monotonous
property of the dynamical system (4)-(5), as will be
made clearer. Also, we resort to the inequality <*
in the set of e-networks introduced in definition 11, in
Section 2.

The next Lemma represents a simpler version of the main
Theorem, Theorem 20, when symmetry is assumed.
Namely, it observes that if all nodes are evenly infected
with the virus strains « and y in regular e-networks G* and
GY then, they will remain equally infected for all time ¢,
and moreover the weaker strain dies out. Remark that
(x(t, (x0,¥0): G™)) and (y(t, (30, ¥0): G*)) stand for the
flows to the ODE (4)-(5) associated with the strains x and y,
respectively, over the bilayer e-network G*¥, for ¢t > 0, and
starting from the state (x¢,y,) at time ¢t = 0.

Lemma 17. Let G*,GY € R(V) be two regular e-networks. Let
o, Yo € R. Then,
x(t, (w0, y0) @ 1n; G™) = x(t, (20, 90); G*Y)1n
y(t, (w0, y0) ® Ln; G™Y) = y(t, (zo, y0); G*) 1y

forallt,t > 0, where ‘®" is the Kronecker product. In this case,
if ygd* > yd¥ with y§ > 3=, we have



24 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL.2, NO.f1,

T -—

y(t) — Oy
otherwise, if y§ < 1, then
X(t) — ON

y(t) — ON.

Proof. When the nodes are evenly infected, i.e.,
v(0) = yo1 and x(0) = zo1,

and provided that the underlying e-networks G* and G
are regular then, the flow

(%, ¥)(t, (20, y0) @ 1;G*Y))
reduces to the solution of the 2D ODE

()1 = (rgd(G")y(t) (1 — = (t) — y(t)) — y(t))1

(1)1 = (ypd(GMz(t)(1 — x(t) — y(t)) — =(t))1.

The ODE (13)-(14) also describes the dynamics of
diffusion of two strains of virus in a self-linked single-
node e-network and it was studied in Reference [23],
from where the asymptotics follows. ]

(13)

(14)

The next Theorem is an extension of the monotonous
property for a single virus in Theorem 16 to the bi-virus
epidemics case: skewed bounds on the initial conditions and
e-networks are preserved by the flow of the dynamical sys-
tem (4)-(5).

Theorem 18 (Bi-virus monotonicity). Let G*Y = (G*, GY)
and G¢ = (G?, GY%) be two bilayer e-networks with
GY < G" and GY, = GV.

Define the initial conditions

20 = (%0, ¥y) and 2(0) = (x(0), y(0)),
with xo < x(0) and y, > y(0). Then,

y(t 20, G%) = y(t,2(0), G™) (15)

x(t, 20, G1g) < x(t,2(0), G™) (16)
for all time t, t > 0.

Proof. Assume that

y(0) # y, or x(0) # xo.

We write y(t,2), x(t,2,) instead of y(t,zo,Gf:g) and
x(t, 20, G(¢); or y(t,2(0)), x(t,2(0)) instead of y(t,2(0),
G*¥) and x(t,z(0), G*Y). Define

T =inf{t : t >0, y(t,z(0)) £ y(t z) or
x(t,2(0)) # x(t,z0)}.
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Assume that T < oo. Then, for
i,jef{l,... N} withi#j,
we have one of the following;:
vi(T,2(0)) = yi(T, 20) and y;(T,2(0)) < y;(T, 2o)

zi(T,2(0)) = z;(T, zp) and z;(T,z(0)) > ;(T, 2o).

an
(18)

Without loss of generality, choose configuration (17)
and assume j € N/"(i) is the closest node to i where we
have strict inequality y;(7,z(0)) < y;(T, zo)-

Case 1. If =;(T,z(0)) +y;(1,2(0)) <1, then, from
Theorem 24 we have

(n) )
y; (1,2(0)) < y; (T.2).

Therefore, from Theorem 22 in Section 5, we have that
de >0: yl(t,Z(O)) < yi(t,Z()), VT<t<T+e.
Also,

y;(T,2(0)) < y;(T,20) =
Jdey > 0:y;(t,2(0)) <w;(t.20), VI <t <T + es.
Thus,
y(t,z(0) <y(t,z0), VT<t<T+e
with € = ¢ A €. Similarly, we have that
x(t,z(0)) > x(t,z0), V T<t<T+a

for some « > 0.
Case 2. If z;(T,2(0)) + y;(T,z(0)) = 1, then,

i(T,2(0)) + 9:(T,2(0)) = —(:(T) + 4:(T)) <0

Je > 01 2i(t,2(0)) + yi(t, 2(0)) < 1,

forallt € (17,71 + ¢). In any case, we reach a contradiction
on the definition of 7', and the Theorem is proved. ad

We can now drop the symmetry on the initial conditions
assumed in Lemma 17.

Theorem 19 (Regular bilayer e-network). Let
G™ = (G*,GY) € E4(V') be regular e-networks with y* = v
and y¥ = y§. Let zg = (xo,y,) be the initial condition with
xo #0.If GY <* G* and yid® > 1 then,

- 1
s Gr) — (1= )1

Y(ta Z; Gﬂmy) I 0N7

otherwise, if y§d* <1

x(t,zg; G*)—0y. (19)

In words, if in a bilayer regular e-network the strain y is
*-weaker than the strain z, then the strain y dies out,
whereas the *-stronger strain persists, if strong enough.



SANTOS ET AL.: BI-VIRUS SIS EPIDEMICS OVER NETWORKS: QUALITATIVE ANALYSIS 25

Proof. First, let us assume that x; > el >0 for some
positive € (all entries are strictly positive). Define the
symmetric initial conditions

z, = (x},yp) = (el,1) € ]R]\{ x RY
z; = (x3,y5) = (1,00 € R¥ xRV
If y*d” > 1 then,
L= g = Jm x(t, 7, ") (20)
< li¥n inf x(t, 29, G*Y) (21)
< lim supx(t,zy, G"Y) (22)
t—o00
< lmx(t,22,GY) =1 - —— (@)
< Jim x(t,25, G) =1 - o
and
lim sup y(t, 2o, G*Y) < tlim y(t,z5, G"Y) (24)
t—00 -
=0, (25)

where the first and last equalities in equations (20)-(23)
hold from Lemma 17, and the first and third inequalities
in equations (20)-(23) hold from Theorem 18.
Equations (24)-(25) are now obvious.

Now, assume x( # 0, with some entry possibly equal
to zero. Theorems 22 and 24 (refer to Section 5) imply
that there exists § > 0 such that

x(t, 29, G*Y) > 0 Vt € (0,9). (26)
Choose ty € (0,6), and we have
tlim x(t,zg) = tlirn x(t, z(ty, zo)) (27)
1
={1——1 28
( dy) ; (28)

where the first equality is due to the semi-group property
associated with the flow to autonomous ODEs, and the
second equality holds from our previous argument that
assumed x> 0. In other words, as long as there is
some—possibly tiny—degree of infection of the stronger
virus strain z in the bilayer regular e-network, such
strain will prevail eventually, with a degree of infection
given by the equation (28). ]

As a simple illustration, Fig. 4 shows the possibility of
bounding any configuration by simpler symmetric well-
characterized configurations. Such bounds are preserved
forall ¢, ¢ > 0 as established in Theorem 18.

We can now establish the main Theorem of this paper,
Theorem 20.

Theorem 20 (Natural Selection). Let GY <* G*. Then,
y(t,zo; G*) — 0.
Additionally, if y*d" > 1 then,

1— (29)

1
il < liﬂglfx(t, zo; G*Y)

Fig. 4. Population of blue (lighter color) in the center bipartite network is
lower and upper bounded by the corresponding populations in the left
and right bipartite networks. The same goes, in the other way around,
for the red (darker) population. The symmetric configurations in the left
and right bipartite networks induce well-known solutions that bound the
qualitative behavior of the middle configuration.

< lim sup x(¢t, zg; G*Y) (30)
t—oo
<11 31
y'd

In words, the *-weaker strain y dies out and the
*-stronger strain persists if strong enough. For instance,
assuming that the ODE (4)-(5) models a Dengue versus vac-
cines epidemics, then a policy of vaccination that could
guarantee the *-inequality

GDengue <* GP()licy of Vaccination

could, in theory, exterminate the epidemics.

Proof. Let G’ (respectively, G“) be an outer (respectively,
inner) regular e-network of GY (respectively, G*) such
that

G’ <G,

(32)

which is possible to choose as by assumption G¥ <* G*.
Let also G' be an outer regular e-network of G“.
Define the bilayer e-networks G,”:=(G*,G’) and
G, = (ém,O). If y*d” > 1, then

1 —T,
(1 i y—d> = fim x(t i)
< lim inf x(t, 20; G™)

< lim sup x(t, zg; G*Y)

t—o00

< Jim x(t,20; G, ")

7'

lim sup y (¢, zg; G*Y) < lim y(t,zo;Qf‘y) =0,
t—o0 t—00

where the convergences are due to Theorem 19 and the

inequalities follow from Theorem 18. The remaining case

7°d" < 1is now obvious. O

The next Theorem extends Theorem 20 to the case of
multivirus epidemics. It states that if G' *-dominates all
the other strains in the network then, the weaker strains
necessarily die out. The ODE governing the multivirus epi-
demics is given by,
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yu« (Z V;i¥ik(t) ) <1 - ZW ) —v(t), (33)

fori=1,...,Nand k =1,..., K, where y;,(t) stands for the
degree of infection at node 7 by virus type k. This is the cor-
responding dynamics obtained from the peer-to-peer rules
of infection in the limit of large networks for the multivirus
case (refer to [7]). Also, for simplicity, we write (with only
one sub-index)

Vilt) = (y1e(®)s - ywi(?))

as the vector stacking the degree of infection across nodes
due to the virus k.

Theorem 21. Let G' =* G2 > ... = GX be the e-networks
associated with viruses k=1,..., K governed by the ODE
(34). Then,

Ym(t)—0

for all m > 2. Additionally, if y'd'
inequalities (29)-(31).

> 1 then, (y,(t)) obeys

Proof. First, it is easy to check that if (y(¢)) is solution to the
ODE (33) and if y;(0) = Oy for some k € {1,..., K} then,
yi(t) = 0 for all time ¢ > 0. In words, if a virus strain is
not present in the network at time ¢y > 0 then, it will
remain extinct for all future times ¢ > ty. Now, let

> ¥.(0)

{Y1(0)
2 Ye(0) < ¥,(0).

. ~ ~ —12 .
Define (y(1)) := ((v1,¥2)(t, (51(0), ¥2(0)); G 7)) as the bi-
virus flow over the bilayer regular e-network

(34)

G =(G,G) (35)

with initial condition (y,(0),¥,(0)). The inequalities (34)
are preserved by the dynamics, i.e.,

{Y1() > yi(t)
SaYirt) < ¥a(t)

for all ¢ > 0, where (y(t)) and (y(¢)) are solutions to (33)
with initial conditions

(36)

y(0) € RY*X and y(0) € RV*? (37

obeying inequalities (34). We can establish this fact
through similar invariance type of arguments as, for
instance, in the proof of Theorem 18: let T" be the hitting
time to invalidate any of the inequalities in equation (36),
assume that 7' < co and reach a contradiction (we do not
repeat the steps here). Now, from Theorem 19

3 1
{ y1(t) =z yi(t)— (1 - W) v (39
Y Ye®) < ¥a(t) — On.
The remaining upper/lower bounds can be obtained
similarly and the Theorem is proved. ]

Theorem 20 (or more generally 21) states that if y*d" > 1
and G¥ <* G” then, the set
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1 1 N
T\’ 1- —T x {0 N
rd@) yd(@ )} 0
is an attractor to (4)-(5) with basin of attraction
B ={(x0,yy) € D2(V) : x9 # 0}. Theorem 19 states that,

when symmetry is assumed, namely, G* is regular then, the
attractor 4 reduces to the singleton

{1-dam) 0"

5 AUXILIARY RESULTS

This Section contains three auxiliary Theorems that are nec-
essary to prove the Theorems in Section 4. We simply enun-
ciate and prove them.

Theorem 22. Let f : (0,400) — R be an analytic function. If
for someT" € R we have

A= i

(%)

F ) >0and F (1) =0,

Vm=0,1,...,k—1and k > 1 then, there exists ¢ > 0 such
that f(t) > 0 forallt € (T, T + ¢).

Proof. Without loss of generality, assume 7 = 0. Since
f € C?(R) then,

F0) = FO) + Ot + O + -+ f (O)F +
— 5(0) + (3@ 0+ (”) i,

r(t)

tk

with % — 0ast — 0. Choose § such that

(k)
Ol O oy
t 2
Then,
(k) t
7 (0) +% >0,V te(0,8).
Therefore,

r(t
%)tk >0, ¥V te(0,8).

a

For notational simplicity, in the Theorems 23 and 24, we
define the flows

= ((x,y)(t,2(0); G™))
= (%, ¥)(t,2(0); G™))

over the same bilayer e-network G*¥ but, with possibly dif-
ferent initial conditions

z(0) = (x(0),¥(0))
2(0) = (x(0), y(0))-
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Theorem 24 extends Theorem 15 for the bi-virus dynam- Recall the assumption
ics case. Theorem 24 relies on the next Theorem 23. ~
() =T0) g g ™) (A1)
Theorem 23. Let y;(0)=7%;(0) and x;(0) =7;(0). Let z1(0) = Z(0) '

v P n 0, . .
N(@) == U N (). Then: From the induction hypothesis, V je N (i),

(0) ) ()
{ (0 =30y J W=1,...,n—1, y0)=g,(0), ¥(0)=x,0) and also
24(0) = 7x(0) ® o
U y;(0) = ;(0), ¥ £ <n—1. Therefore, by inspection,
we conclude that the terms A, B, C, and D for both
() 0 ® () equations (39) and (40) match together, and, thus,

y; (0) =y; (0). The same reasoning goes with
(n) o)

Proof. We apply induction on n. Forn = 1, z; (0) =z; (0), and we conclude the proof of the
Theorem. O
- <Z o ) wlt) - ) -ty eorem AL (0 = 5i(0), m(0) = w(0) and
{ y(0) = 5(0) YV k€ N7171(i) and
i(t) = (Z yzi@xt)) (1= %) - 5i(t) = i(8). #i(0) = i(0)
j yr(0) > 7x(0) ¥ ke N (@) {m)
{ 24(0) < Zx(0)

Note that y;(0) =y;(0), ¥ je N (i) and x;(0) = z,(0).

By inspection, 5.(0) = 3:(0) and (by assumption) with strict inequality y,,(0) > 4,,(0) for some m € N"(3).

_ (n) )
%i(0) = %i(0). Then, y; (0) >; (0).
Now, assume Theorem 23 holds for n — 1. We estab-
lish that it holds for n. We have Proof. We apply induction on the number of hops n.
Case 1. For n=1, from the assumptions of the
(n) (n-1) Theorem, namely, y,,(0) > ¥,,,(0) for some m € N (i) we
_ Y )
4:(0) = g Y (0) ) (1= wi(0) —i(0)) conclude that ¢;(0) > ¥;(0) since
j
A
1 - 3#(0) = (Z y%y;-(m) (1= 2:(0) = () - :(0)
Y n 3
-3 ( ) WY _ve v, (0) J
=1 q o~
¥ > Z ¥59i(0) | (1 = 2:(0) — %:(0)) — :(0)
J
(n—1) .
- y; (0) (39) = 3.(0).
nilc Case 2 (Induction step). Assume that Theorem 24 holds
_ Z < n—1 ) %l) (0) Z v <”_y1,_é> (0) for n — 1 and let us prove that it holds for n. We consider
7 ) ; 7 / successively the terms A, B, C, and D in equations (39)
X and (40).
A: Note that for some je AN(i) we have that
m € NV (j) where m is defined in the assumptions of
(n) , (n—1) ~ ~ the Theorem. Thus, by the induction hypothesis, we
4i(0) = Vi ¥; (0) | (1 =%i(0) — z;(0)) (ne1) (n=1)
J have "y; (0) > y; (0), and, hence, the term A in equa-
A tion (39) is greater than its counterpart in equation (40).
n=l /1 (z) (n—1— Z B and C: From Theorem 23, it should be now clear
( ) Z Vo g that these terms match together between equations (39)
(=1 and (40) © (0)
B (40) D: From Theorem 23, it follows that z; (0) =z; (0) for
(n-1) all/=1,...,n—1 and thus, term D is the same for both
- 4 (0) equatlons ) (n)
C Therefore, y; (0) >¥; (0) and the Theorem is proved. O
n—1 n—1 (n—1-0)
- Z ( > Z yﬂ Yj
1 6 CONCLUDING REMARKS

D In this paper, we established a sufficient condition for
survival of the fittest in a bi-virus epidemics over bilayer
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Fig. 5. Epidemics evolution over three-node e-networks G* = (V, y*) and
GY = (V,y¥). Curves in blue (lighter color) and red (dark color) represent
the evolution of the degree of infection at each node by virus strains
z and y (one curve per node).

e-networks via a qualitative analysis of the ODE model (4)-
(5). More precisely, we have proved that if G¥ <* G7, then
the set

N
1 1 N

A= {1—@,1—W} x {0}

is an attractor of the dynamical system (4)-(5), with basin of
attraction given by B = {(x¢,y,) : X0 # 0}, where GY and
G* are the e-networks associated with the strains = and y.
We recall that the inequality ‘<*” introduced in this work is
defined as

e e T T

where G* = (V, ZI)' G = (V,7") are inner and outer regu-
lar e-networks of G* and GY, respectively, and G’ <* G*
means 7d’ < y“d". These concepts allowed us to prove
the survival of the fittest sufficient condition without having
to resort to Lyapunov stability theory—a Lyapunov func-
tion is not known. Namely, we proved that the flow to (4)-
(5) of bi-virus epidemics in a general pair of e-networks
G"Y = (G*,GY) preserves skewed bounds on bilayer
e-networks: if 5% < G¥, S¥ = GY then,

x(t, (50, ¥0): G*) 2 x(t, (50, 70); )
y(t, (x0,¥0); G™Y) < y(t, (x0,¥0); S™Y).

Then, we combined this result with a qualitative result on
regular e-networks (that we proved): if $¥ <* S are regular
e-networks, then

y(t, (x0,¥0); ") — 0.

and x(t, (x9,¥y); 9™Y) accumulates to the attractor A, if the
strain x is strong enough. And that was how we proved the
natural selection phenomenon for general e-networks in the
main Theorem, Theorem 20.

The ODE (4)-(5) also admits a non-trivial co-resilient situ-
ation: both strains survive in the long run as shown in a
numerical simulation depicted in Fig. 5. By non-trivial, we
mean that the co-resilience takes place for a subset on the
rate parameters space of non-zero Lebesgue measure. Fig. 5
considers the evolution of a bi-virus epidemics over two e-
networks G* and GY where the condition G* =* G¥ is
violated. In this case, Fig. 5b shows that the two strains of
virus may persist in the network.

JANUARY-MARCH 2015

As future work, we plan to establish the conditions on
the underlying e-networks G* and GY such that there may
emerge attractors in the dynamical system (4)-(5) that defy
natural selection.

Finally, as we mentioned in the Introduction, the
discrete-time counter-part of such logistic ODEs exhibit cha-
otic behavior and its solutions do not, in general, converge
to the equilibria (refer to [11]). Therefore, results on the
global stability of such dynamical systems are crucial to
understand the behavior of its solutions from the initial
conditions to the attractors. Currently, we understand that
the overall literature on epidemics, population dynamics,
response analysis in bio-chemical chain reactions, food
chain or on the study of general logistic dynamical systems
over networks is lacking rigorous qualitative analysis. One
of the goals of our work is to lay down novel techniques
other than Lyapunov stability theory to help close this gap.
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