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ABSTRACT

In this paper we address two closely related problems. The first is
the object detection problem, i.e., the automatic decision of whether
a given image represents a known object or not. The second is the
correspondence problem, i.e., the automatic matching of the features
of an object in two views. We use a feature-based approach for both
problems. In the first problem, we assume object rigidity and model
the distortions by a linear shape model. To solve the decision prob-
lem, we derive the uniformly most powerful (UMP) hypothesis test
that is invariant to the linear shape model. We use the UMP statistic
to formulate the correspondence problem in a model invariant frame-
work. We show that it is equivalent to a quadratic maximization
on the space of permutation matrices. We derive LASIC, an itera-
tive computationally feasible solution to the quadratic maximization
problem for the particular case where the linear shape model is the
affine model. Simulations benchmark LASIC against two standard
algorithms.

Index Terms— Correspondence, Linear Shape Model, UMP-
Invariant Test, Optimization methods

1. INTRODUCTION

The objective of this paper is to study two standard problems in
Computer Vision: object detection and correspondence. We use a
feature based approach to solve both problems. In object detection
the goal is to decide if a given image corresponds to a known object.
In the correspondence problem it is to establish the correspondence,
or matching, between the features in two views of the same object.

Object Detection We assume: 1) we are given a set of features that
represent the shape of the known object; and 2) if the image corre-
sponds to the known object, the location of the features in the image
can be related to the location of the known features by a parametric
linear shape model. We formulate the detection problem as an hy-
pothesis test. We require the test statistic to be invariant to the linear
shape model, i.e., the result of the test should not depend on the val-
ues of the parameters that relate the features in the image to the fea-
tures in the original representation. We obtain the Uniformly Most
Powerful (UMP) invariant test [1] [2] and thus establish a model
invariant framework. This is equivalent to the CFAR matched sub-
space filter developed for communication applications [2].

Correspondence Problem Correspondence is a standard problem
in Computer Vision. A common assumption uses image correla-
tion [3] [4] [5]. In not very fast videos, the solution is usually based
on proximity assumptions [3]. A more general assumption is scene

rigidity [6]. Most of the methods formulate correspondence as an
optimization problem and can thus be distinguished by the optimiza-
tion algorithms used: greedy algorithms, linear programming via re-
laxation of constraints [5], randomized search [6] [4], dynamic pro-
gramming [7], graph search [8] and convex optimization [3] have all
been used with various degrees of success.

We apply to correspondence the model invariant framework that
we develop for object detection. We model correspondence by a
permutation matrix Q and show that its solution leads to an integer
quadratic optimization problem. This is intractable due to its com-
binatorial structure. By particularizing the shape to the affine model
and relaxing the search space to doubly stochastic matrices, we can
design an iterative optimization algorithm for the integer quadratic
problem. This is the (linear) affine shape invariant correspondence
(LASIC) algorithm.

Paper Organization In Section 2, we present the solution to the
object detection problem and introduce the model invariant frame-
work. Section 3 uses this framework to formulate the correspon-
dence problem as an integer quadratic maximization problem. Sec-
tion 4 particularizes the problem to the specific structure of the affine
model, and Section 5 presents LASIC, the affine optimization algo-
rithm that solves the optimization problem. Finally, Section 6 de-
scribes experiments and Section 7 concludes the paper.

2. MODEL INVARIANT FRAMEWORK

This section focuses on the object detection problem. For clarity,
we start with the affine model as an introduction to the linear shape
model. We formulate the decision problem as a hypothesis test and
require invariance to the linear shape model. We derive the UMP
invariant test that establishes a model invariant framework.

2.1. Linear Shape Model

We assume we are given two sets of N features. The first set cor-
responds to a known object while the second set is extracted from
a new image. The goal of the object detection problem is to deter-
mine whether the features in the new image represent an observation
of the features of the known object. We follow the terminology of
shape theory, e.g. [9] [10].

We use the N × 1 vectors x1 and y1 to represent the x and
y locations of the features in the known object. Similarly, we use
the N × 1 vectors x2 and y2 to represent the features in the new
image. We assume object rigidity and far field so that, if the image
corresponds to the known object, the location of the features in the



new image (x2, y2) must be related to the location of the features in
the known object (x1, y1) by a linear shape model.

To introduce this model, we consider the affine model:
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where 1 represents a 1 × N vector of ones. To obtain a linear shape
model from equation (1), we re-write it as:

x = Sθ with

x =
[
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]T

θ =
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]T

S =

[
x1 y1 1 0

0 x1 y1 1

] (2)

where x is the observation vector, S is the shape matrix and θ is the
observation parameter vector.

Equation (2) represents the particular structure of the linear
shape model in the affine case. Its general formulation is simply
x = Sθ where the shape matrix S is a general n × m matrix with
no particular structure and x and θ are n × 1 and m × 1 vectors.

2.2. Object Detection: Hypothesis Test

We assume that the observation is perturbed by a vector n of i.i.d.
random variables with distribution N(0, σ2I) and write:

x = µSθ + n (3)

where we use the variable µ ≥ 0 to define the presence (µ > 0) or
absence (µ = 0) of the shape in the observation.

We formulate the following binary hypothesis testing problem:

Hypothesis 0: The observation is not compatible with the known
shape matrix. The parameter space associated with this hypothesis
is: S0 = { µ , θ , σ2 | µ = 0 , θ ∈ R

m\{0} , σ2 ∈ R
+}

Hypothesis 1: The observation corresponds to the known shape ma-
trix. The parameter space associated with this hypothesis is: S1 =
{ µ , θ , σ2 | µ > 0 , θ ∈ R

m\{0} , σ2 ∈ R
+}

This formulation shows that the decision of whether or not the
view corresponds to the given shape depends only on the parameter
µ. The remaining unknowns, the observation parameters θ and the
noise variance σ2, correspond to nuisance parameters whose pres-
ence is undesired. This motivates us to construct a decision test that
is invariant to θ and σ2.

2.3. Model Invariant Test

We present the UMP model invariant test. This test is equivalent to
the CFAR matched subspace filter [2]. We use the following model-
invariant test statistic:

M(x) =
‖P Sx‖2/m

‖(I − P S)x‖2/(n − m)
∼ F

(
µ2θT ST Sθ

σ2

)
(4)

where the notation F is used to designate the F distribution (with
parameters m and n − m). Note the physical interpretation of this
statistic: it measures the ratio of “energy per dimension” of the ob-
servation in the subspace 〈S〉 and in the subspace orthogonal to 〈S〉.

Using this statistic we write the UMP invariant test as:

φ (M(x)) =

{
1, M(x) > F0

0, M(x) ≤ F0
(5)

where the threshold F0 can be found by specifying the size of the
test (probability of false alarm) α = P [M(x) > F0 | H0 is true].
Under hypothesis H0, we have µ = 0 ⇒ M(x) ∼ F(m,n−m)(0),
so that we can derive F0 and design the test.

3. FEATURE CORRESPONDENCE

In section 2, we assumed that the observed image is in correspon-
dence with the known shape. In computer vision problems this is
seldom the case. In a typical setup, we are able to relate the obser-
vation vector x and the shape matrix S only up to a general permu-
tation matrix Q. In this and the subsequent sections, we present our
approach to effectively estimate Q.

If we knew the correct permutation matrix, Q?, we could replace
x with Q?x in M(x) in (4), which is the UMP invariant test statis-
tic. However, the performance of the test decreases significantly if
we use a Q 6= Q?. Hence, we estimate the permutation matrix by
finding the value of Q that maximizes the test statistic M(Qx):

Q̂ = arg max
Q∈P

‖P SQx‖2

‖(I − P S)Qx‖2
, (6)

where P denotes the space of the n × n permutation matrices. Be-
cause the objective function in equation (6) is monotonically increas-
ing with ‖P SQx‖2, we can write:

Q̂ = arg max
Q∈P

‖P SQx‖2. (7)

Equation (7) shows that Q can be estimated by maximizing a
convex (quadratic) problem in the space of N ×N permutation ma-
trices. Due to its combinatorial nature, this problem is intractable.
In the next sections, we particularize the problem to the affine shape
model, for which we are able to obtain an efficient heuristic.

4. AFFINE SHAPE MODEL

In this section, we return to the affine model, and particularize the
correspondence optimization problem (7) to the specific structure of
this model 2. Using the structure of S and the fact that in (7) only the
projector P S matters, we can remove the means and orthonormalize
the vectors x1 and y1, i.e., we can make:

x1 ⊥ y1 ⊥ 1 ‖x1‖ = ‖y1‖ = 1 (8)

Given the structure of x and S in (2), the permutation matrix Q
is restricted to have the form:

Q =

[
Q 0

0 Q

]
(9)

where Q is a generic N × N permutation matrix (where N is the
number of features). With the structure in (9), and after simple ma-
nipulations, we can write the objective function in (7) (the “energy”
of x in the shape plane) as:

f(q) = ‖PSQx‖2 =

4∑

i=1

(
u

T
i q
)2

(10)

where we introduced the N2 × 1 vectors q = vec(Q), and u1 =
x1 ⊗ x2, u2 = y1 ⊗ x2, u3 = x1 ⊗ y2, u4 = y1 ⊗ y2.

Note that the objective function (10) measures the sum of the
“energy” of the projection of the vector q into four known vectors.



5. LASIC: MAXIMIZATION ALGORITHM

In Section 3, we formulated the correspondence problem as an inte-
ger quadratic maximization problem. In section 4, we showed that
for the affine shape model, a special structure appeared in the ob-
jective function (10). In this section, we explore this structure to
derive the (linear) affine shape invariant correspondence (LASIC)
algorithm, an efficient iterative heuristic for the problem.

5.1. Relaxation: Doubly Stochastic Matrices

Our goal is to maximize the objective function in (10) with respect
to q = vec(Q) where Q ∈ P, the space of the N × N permuta-
tion matrices. We introduce the set of the N × N doubly stochastic
matrices, DS, defined as:

0 ≤ Qij ,
∑

i

Qij ≤ 1 ,
∑

j

Qij ≤ 1. (11)

Birkhoff’s theorem [11] states that the set of N × N doubly
stochastic matrices is a compact convex set whose extreme points
are the N × N permutation matrices. Because we are maximizing a
convex (quadratic) function over a compact convex set, DS, the so-
lution will be an extreme point of the set and so in P. Thus, relaxing
the problem from the set P to DS does not change its solution, i.e.,

max
q=vec(Q)
Q∈P

4∑

i=1

(
u

T
i q
)2

⇔ max
q=vec(Q)
Q∈DS

4∑

i=1

(
u

T
i q
)2

(12)

The proposed LASIC algorithm solves this in two steps: an
initialization algorithm and an iterative optimization procedure.
The initialization algorithm generates an initial solution that is then
used by the iterative optimization procedure. After multiple re-
initializations, the limiting point that achieves the largest value of
the objective function is taken as the maximum.

5.2. LASIC Initialization Procedure

To obtain an initial vector q0, we approximate problem (12) by:

max
q=vec(Q)
Q∈DS

4∑

i=1

∣∣∣uT
i q

∣∣∣ , (13)

This is a sum of four absolute values. Each one can be replaced
with its original value or its symmetric. We solve for all the 16 (24)
combinations of positive and negative factors, thus writing 16 linear
optimization problems of the form:

max
4∑

i=1

(−1)kiu
T
i q , ki = {0, 1}, (14)

subject to q = vec(Q), Q ∈ DS and (−1)kiuT
i q ≥ 0 with

i = 1, 2, 3, 4. Writing the objective function as a sum of only four
factors is a key step to obtain an efficient method, since the number
of linear programs to solve grows exponentially with the number of
factors in (13). After solving all the 16 problems, the solution that
attains the maximum of the objective function is taken as q0.

5.3. LASIC Iterative Optimization Procedure

After the initialization, in subsection 5.2, we use an iterative algo-
rithm to solve problem (10). Since (10) is quadratic, convex up-
wards, given an estimate qk of q, we can use the tangent to lower
bound f(q):

f(q) ≥ f(qk) + O
T
q f(qk) · (q − qk), (15)

where O is the gradient operator. To maximize f(q), we maximize
this lower bound. This leads to the LASIC iterative algorithm:

qk+1 = arg max
q=vec(Q)
Q∈DS

(
4∑

i=1

(
u

T
i qk

)
u

T
i

)
q. (16)

The process is repeated until a convergence criterium is met.

5.4. Multiple Initializations

The LASIC iterative maximization algorithm (16) is not guaranteed
to convergence to the absolute maximum of the objective function.
We run it with several initializations and keep the overall maximum.
The question is how to generate these several initializations. We ob-
serve that the original problem is (12) is invariant to rotations in the
vectors (x1, y1) but the LASIC initialization algorithm (13) is not.
So we re-initialize the algorithm with a new set of vectors (x1, y1)
that is a rotation of the original set (x1, y1).

6. EXPERIMENTAL RESULTS

We benchmark LASIC against the proposed method to two corre-
spondence algorithms: image correlation correspondence [5] and
feature location correspondence. These algorithms attempt to solve
the problem by maximizing measures of correlation between the fea-
tures. The first method extracts an image patch (we use a 21 × 21
square) around each feature and maximizes the correlation in the
image values. The second method maximizes the correlation in the
feature locations using an objective function similar to [12]. Like
LASIC, both comparison algorithms formulate correspondence as
an optimization problem in the space of permutation matrices.

We develop three synthetic situations to compare the perfor-
mance of the algorithms: addition of Gaussian noise to the loca-
tion of the features, isotropic zoom in the object, and rotation of the
object. We measure the performance of the algorithms by the aver-
age of the correspondence error rate (CER) defined as the ratio of
mismatches to the total number of features. In all experiences, the
number of features is set to 30 and LASIC is re-initialized 20 times.

Figures 2, 3, and 4 summarize the results. Figure 1 shows the
features of the known object. Figure 2 plots CER versus the noise
standard deviation, σ. Figure 3 displays CER versus the isotropic
zoom parameter, z, for a constant noise level. Note that the isotropic
zoom can be modeled by the affine model (1) where A is a scalar
times the identity and there is no translaction. Finally, figure 4 illus-
trates the CER versus the rotation parameter, θ. Again, the rotation
can be modeled by an affine model (1) where A is a rotation matrix
and there is not translation.

The image correlation correspondence is known to be very ro-
bust to to noise added on the image pixel values [5], while here the
noise is added to the feature location. Our experiments show that it
fails when noise is added directly to the feature locations, or when
either zoom or image rotation occur.



Figures 2 and 3 show that LASIC is robust under noise and
zoom, its performance is slightly worst than the location correspon-
dence method. Further exploration into the zoom experience is
needed in order to determine if we are preventing full convergence
by restricting the number of initializations to 20. Rotation demon-
strates the strength of LASIC: while the comparison algorithms,
especially the location correspondence algorithm, break down even
for small rotations, LASIC obtains nearly perfect results.

7. CONCLUSION

We considered the problem of deciding if a given image corresponds
to a known object. We took a feature based approach and modeled
the distortions between the new image and the known object by a
linear shape model. We presented an invariant framework and de-
veloped the corresponding UMP test. We then formulated the corre-
spondence problem in this invariant framework as a quadratic maxi-
mization on the space of permutation matrices. For affine shapes, we
can derive an efficient iterative optimization algorithm, the (linear)
affine shape invariant optimization (LASIC) algorithm. Experiments
showed that LASIC handles situations where other methods fail, e.g.,
large rotations.
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Fig. 1. Original image
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Fig. 2. Adding noise to feature locations
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Fig. 3. Zooming in on the object
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Fig. 4. Rotating the object


