
BASIS PURSUIT IN SENSOR NETWORKS

João F. C. Mota1,2, João M. F. Xavier2, Pedro M. Q. Aguiar2, and Markus Püschel3

1 Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA
2 Institute of Systems and Robotics, Instituto Superior Técnico, Lisbon, Portugal

3 Department of Computer Science, ETH Zurich, Switzerland

ABSTRACT

Basis Pursuit (BP) finds a minimumℓ1-norm vectorz that satisfies
the underdetermined linear systemMz = b, where the matrixM
and vectorb are given. Lately, BP has attracted attention because of
its application in compressed sensing, where it is used to reconstruct
signals by finding the sparsest solutions of linear systems.In this
paper, we propose a distributed algorithm to solve BP. This means
no central node is used for the processing and no node has access to
all the data: the rows ofM and the vectorb are distributed over a set
of interconnected compute nodes. A typical scenario is a sensor net-
work. The novelty of our method is in using an optimal first-order
method to solve an augmented Lagrangian-based reformulation of
BP. We implemented our algorithm in a computer cluster, and show
that it can solve problems that are too large to be stored in and pro-
cessed by a single node.

Index Terms— Convex optimization, basis pursuit, distributed
algorithm, sensor network, compressed sensing

1. INTRODUCTION

Basis Pursuit(BP) is the convex optimization problem [1]

minimize ‖z‖1
subject to Mz = b,

(BP)

where the optimization variable isz ∈ R
q, ‖z‖1 = |z1|+ · · ·+ |zq |

is theℓ1 norm of the vectorz, andM ∈ R
m×q is a matrix with more

columns than rows:m < q. Since the underdetermined linear sys-
temMz = b has potentially many solutions, BP finds the smallest
one in theℓ1 norm sense. The following assumption guarantees that
Mz = b, and thus (BP), is always solvable.

Assumption 1. M is full rank.

There is a large body of literature exploring BP as the relaxation
of the nonconvex problem obtained by replacing theℓ1 norm in (BP)
by theℓ0 pseudo norm‖z‖0, which is the number of nonzero ele-
ments ofz. The conditions that ensure anexactrelaxation underlie
the success of compressed sensing (CS) [2]. BP usually arises in CS
with a matrixM whose entries are drawn independently from some
probability distribution. In this context, Assumption 1 holds with
probability one whenever that distribution is non-degenerate.

Related work. Very recently, several algorithms have been pro-
posed to solve BP such as [3]. These approaches, however, cannot

Work supported by the grants SIPM PTDC/EEA-ACR/73749/2006and
SFRH/BD/33520/2008 (Carnegie Mellon/Portugal Program) from FCT, by
FCT (ISR/IST plurianual funding) through the PIDDAC Program funds, and
by NSF through award 0634967.

be easily adapted to distributed scenarios. On the other hand, since
BP can be recast as a linear program (LP) [1], any algorithm solving
LPs also solves BP. However, solving an LP in a distributed way is
also nontrivial. For example, [4] proposes a distributed method for
solving LPs, using a simplex-based approach. However, thatmethod
requires the network to be a complete graph, i.e., there is a link be-
tween any pair of two nodes. The algorithm we introduce in this
paper only requires the graph to be connected.

A problem closely related to BP is Basis Pursuit Denoising
(BPDN) [1]. BPDN was solved in a distributed way in [5], using
well-known optimization techniques similar to the ones we apply in
this paper. Specifically, [5] uses a first-order method knownas the
alternate direction minimization to solve a suitable reformulation of
BPDN. In our case, we also use a first-order method, but the nice
properties of our dual function enable us to use an optimal first-order
method: Nesterov’s first method [6]. The application of Nesterov’s
method to our problem is possible because we assume the network
does not vary along time, i.e., there are no link failures during the
execution of the algorithm. The case where the network topology
may vary along time has been studied before, e.g., in [7], which pro-
poses an algorithm to solve general optimization problems (and thus
also BP). However, the method is based on subgradient algorithms,
which are known to be much slower than Nesterov’s method.

























M1

...

MP

























b1
...

bP

M = b =

Fig. 1. Partition of the matrixM ∈ R
m×q and vectorb ∈ R

m.

Contribution: BP in sensor networks. Our goal in this paper
is to devise an algorithm that solves (BP) when the given data, M
andb, are distributed across a network ofP nodes. More specifi-
cally, we partition the matrixM , as shown in Fig. 1, intoP blocks
where each blockMp ∈ R

mp×q containsmp rows ofM , withm1+
· · ·+mP = m. Vectorb is partitioned similarly intoP “small” vec-
torsbp in R

mp . Further, the problem is also solved distributed, i.e.,
there is no notion of central node for the processing. This scenario
can be associated with a network ofP nodes: thepth node of the
network only has access toMp and tobp, and all nodes participate
in computing the solution. For the network, we only assume the
following.

Assumption 2. The given network is connected and its topology
does not vary along time.

In summary, we obtain the following problem statement:Given

a connected network topology ofP nodes, each node storingMp

andbp, solve BP in a distributed way.
The work presented here is a major improvement over our pre-

vious work [8], which used a very different reformulation and an
algorithm that required a much larger number of iterations.

The main contribution of this paper is two-fold. First, we present
a novel distributed algorithm for (BP) by reformulating it to make
Nesterov’s efficient first method applicable. Second, for proper eval-
uation, we implemented the algorithm in C/MPI to run, validate, and
benchmark it on a distributed computer cluster. As we show, due to
its design, the algorithm can solve problems that are too large to be
stored in and processed by a single node. An extended versionof
this paper is available at [9].

Applications. Distributed basis pursuit has several potential ap-
plications in sensor network scenarios. For example, several dis-
tributed approaches to CS have been proposed, e.g., [10, 11], but
in all of them the reconstruction problem, of which BP is an exam-
ple, has always been solved at a central or fusion node. Usingour
method, distributed reconstruction becomes possible.

As a concrete application, consider a connected network ofP
nodes. The goal is to capture an ultra-wide band but spectrally
sparse signalz ∈ R

q , as described in [2]. For simplicity, we as-
sumem = P , i.e., each node only stores one row ofM . Using
a random demodulator [2], each node sensesz and obtains a num-
ber bp, for p = 1, . . . , P . This bp can be represented as the in-
ner productr⊤p z, wherer⊤p is thepth row ofM (stored in nodep).
Applying CS theory, it is possible to recoverz from the measure-
mentsbp by solving BP; and doing it in a distributed way falls into
our problem statement. Other possible applications include sparse
event detection [11] and distributed target localization [12].

2. ALGORITHM

In this section we derive an algorithm to solve our stated problem.
We start by suitably reformulating (BP) and then use a well known
algorithm to solve the dual problem.

Problem reformulation. BP can be recast as an LP [1]:

minimize 1⊤n x
subject to Ax = b , x ≥ 0 ,

(1)

wheren = 2q,A = [M −M] ∈ R
m×n, and1n is the vector of ones

in R
n. Notice that the knowledge of themp× q blockMp translates

into the knowledge of themp × n block Ap. In other words, the
pth node has access to the blockAp (we partitionA similarly toM)
whenever it knowsMp. By makingP copies ofx (nodep stores the
copyxp ∈ R

n), and by making the partition ofA explicit, (1) can
be written as

minimize 1
P

∑P

p=1 1
⊤
n xp

subject to Apxp = bp , p = 1, . . . , P
xp ≥ 0 , p = 1, . . . , P
xi = xj , (i, j) ∈ E ,

(2)

with (x1, . . . , xP) ∈ (Rn)P as the optimization variable, andE :=
{(i, j) : there exists a link between nodesi andj andi < j} as the
set of edges of the network. Assumption 2 ensures that problems (1)
and (2) are equivalent.

Dual problem. We propose to solve a dual problem of (2). The
dualization strategy we adopt is to dualize each constraintxi = xj in
the augmented Lagrangian sense. This means that we associate the
Lagrange multiplierλij to this constraint and take the augmented

Lagrangian

L(x1, . . . , xP ;λ) =
1

P

P
∑

p=1

1⊤n xp +
∑

(i,j)∈E

λ⊤
ij(xi − xj)

+
∑

(i,j)∈E

ρ

2
‖xi − xj‖2 , (3)

whereρ > 0 is a pre-chosen constant, andλ ∈ (Rn)P is the vec-
tor collecting all the Lagrange multipliers:λ = ({λij}). The dual
problem is then

maximize L(λ) ,
λ

(4)

where the dual function is given by

L(λ) = inf{L(x1, . . . , xP ;λ) : Apxp = bp, xp ≥ 0 for all p} .
(5)

Given a fixedλ, we represent byx(λ) := (x1(λ), . . . , xP (λ)) ∈
(Rn)P the vector that achieves the infimum in (5). It can be shown
that this infimum is always finite due to our Assumption 1.

Next, we address the problem of solving the dual problem (4)
in a distributed manner; and then we will see how one can obtain
a primal solution (i.e., a solution of (2) and thus of (BP)) from an
optimal dual solutionλ⋆.

Solving the dual. The dual functionL, defined in (5), satisfies
the following properties.

Lemma 1 ([9]). LetL be the dual function in(5). Then:

1. L is concave and finite-valued everywhere;

2. L is continuously differentiable everywhere and the gradient
of L at the pointλ = (. . . , λij , . . .) is

∇L(λ) = (. . . , xi(λ)− xj(λ), . . .) ; (6)

3. L has a Lipschitz gradient with constant1/ρ.

Property1 ensures thatλ has no implicit constraints in (4).
Hence, (4) is indeed unconstrained. Due to these propertiesof L,
first Nesterov’s method [6, §2.2.1] can be used to solve the dual
problem (4). Using Nesterov’s method the error in the objective
function decreases withO(1/k2), wherek denotes the iteration
number, whereas if we used the standard gradient method, it would
decrease withO(1/k) [6].

In every iteration of Nesterov’s method we are required to com-
pute (6), the gradient ofL. This implies findingx(λ), the solution
of the optimization problem in (5). Letλ be fixed. This means we
have to solve

minimize L(x1, . . . , xP , λ)
subject to Apxp = bp , xp ≥ 0 ,

p = 1, . . . , P ,
(7)

where the variable is(x1, . . . , xP). The following properties
of L(x1, . . . , xP , λ), whenλ is fixed, enable us to use Nesterov’s
(projected) method again.

Lemma 2 ([9]). Let gλ(x1, . . . , xP) := L(x1, . . . , xP ;λ), i.e.,gλ
is obtained fromL by fixingλ. Then:

1. gλ is convex, continuously differentiable everywhere and the

gradient ofgλ with respect toxp at (x1, . . . , xP) is

∇xpgλ(x1, . . . , xP) =
1

P
1n + γp + ρDpxp − ρ

∑

j∈Np

xj ,

(8)
whereNp is the set of neighbors of nodep, Dp = |Np|,
andγp =

∑

j∈Np
sign(j − p)λpj ;

2. The largest eigenvalue of the Hessian matrix ofgλ isρλmax(L),
whereL is the Laplacian [13] of the network andλmax(L) its
largest eigenvalue.

If B is any bound forλmax(L), thenρB will be a Lipschitz con-
stant for∇gλ. The works [13, 14] propose bounds forλmax(L)
that are easily computed in a distributed way. In the sequel,given
a fixed network, we will useB to denote the minimum of those
bounds. Now, in every iteration of Nesterov’s projected method we
have to project the gradient (8) onto the the constraint set of (7),
i.e., {y : Apy = bp, y ≥ 0}. This projection, which we denote
with [·]+Ap,bp

, corresponds to solving an optimization problem which
we do using a very efficient Barzilai-Borwein algorithm [15]. See [9]
for details.

Once the dual problem (4) is solved, the solution of (2) is im-
mediately available. This is a well known feature of augmented La-
grangian duality and is formally captured in the following lemma.

Lemma 3 ([9]). If λ⋆ solves(4), thenx(λ⋆) solves(2).

Since each node holds a copy of the BP variable, this means
that it will immediately know an optimal solution to BP after(4) is
solved.

The resulting algorithm. We can implement the method de-
scribed above in a truly distributed manner. To see how, notethat
the relevant variables are theλij ’s, each of which is associated to
the edge connecting nodesi andj, and thexp(λ)’s, each of which
is associated to nodep. We assume that a copy ofλij is held in both
nodesi andj. The only information nodep will exchange with its
neighbors isxp (and it will also receive the respectivexp’s from its
neighbors). This is done in every iteration of the inner Nesterov loop.
Note that operating this way every node has the required information
to compute (8). Once this inner loop has converged, not onlyxp(λ

k)
will be available at nodep, but alsoxj(λ

k), wherej is any neighbor
of p. Here,λk denotes the value ofλ at thekth iteration. Therefore,
nodep is able to compute the required parts of (6) for updatingλpj

or λjp.
Algorithm 1 gives a detailed description of our method. Lines 4

and 5 implement the outer Nesterov loop, i.e., the one that updates
theλij ’s. The variablesηij are auxiliary variables intrinsic to Nes-
terov’s method. Note that∇Lλij

(η(k−1)) in line 4 was computed in
line 7 in the previous iteration by calling the function ComputeGL
(Algorithm 2). This function implements Nesterov’s inner loop in
lines 3 and 4. Note that now the auxiliary variables are theyp’s.

Algorithms 1 and 2 also contain explicit stopping criteria for
both loops (which are based on the value of the norm of the respec-
tive gradients), and a “safety communication” protocol that ensures
that, whenever a node converges either in the inner or in the outer
loops, its neighbors know that in the next iteration the respective
node will not be active. This protocol is implemented using the vari-
ables StopIn and StopOut for the inner and outer loops, respectively.

3. EXPERIMENTAL RESULTS

We implemented Algorithms 1 and 2 in C and MPI (message pass-
ing interface) for the communication and used icc Version 11.0 with

Algorithm 1 Row partition: algorithm for nodep

Require: Ap ∈ R
mp×n stored at thepth node and each node knows

ρ (predefined constant), the boundB, ǫin, andǫout

Input: bp ∈ R
mp

Output: x⋆ solving (1) at nodep

Initialization: k = 1, y(0)
p = 0 andλ(0)

ij = η
(0)
ij = 0 for all (i, j)’s

such thati = p andj ∈ Np or j = p andi ∈ Np; StopOut= 0

1: {∇Lλij
(η(0))} = ComputeGL(η(0))

2: loop
3: for all (i, j) : i = p, j ∈ Np or j = p, i ∈ Np do
4: λ

(k)
ij = η

(k−1)
ij + ρ∇Lλij

(η(k−1))

5: η
(k)
ij = λ

(k)
ij + k−1

k+2

(

λ
(k)
ij − λ

(k−1)
ij

)

6: end for
7: {∇Lλij

(η(k))} = ComputeGL(η(k))

8: if ‖∇Lλij
(η(k))‖/√n ≤ ǫout for all (i, j), or all neighbors

have stopped computingthen
9: StopOut= 1

10: end if
11: Communicate StopOut to the neighbors
12: if StopOut = 1then
13: break loop
14: end if
15: k ← k + 1
16: end loop

Algorithm 2 ComputeGL

Input: η
Output: Set of gradients{∇Lλij

(η)}

Initialization: Sety(0)
j , for j ∈ Np ∪ {p}, with the values from the

last iteration;t = 1, Lg = ρB, StopIn= 0

1: Compute∇ypg(y
(0)
p) = 1

P
1n+γp+ρDpy

(0)
p −ρ

∑

j∈Np
y
(0)
j

2: loop

3: x
(t)
p =

[

y
(t−1)
p − 1

Lg
∇ypg(y

(t−1)
p)

]+

Ap,bp

4: y
(t)
p = x

(t)
p + t−1

t+2
(x

(t)
p − x

(t−1)
p)

5: if ‖∇ypg(y
(t−1)
p)‖/√n ≤ ǫin or any of the neighbors has

stoppedthen
6: StopIn= 1
7: end if
8: Sendy(t)

p and StopIn to all neighbors and receivey(t)
j from

all of them
9: Compute∇ypg(y

(t+1)
p) = 1

P
1n + γp + ρDpy

(t)
p −

ρ
∑

j∈Np
y
(t)
j

10: if StopIn= 1 then
11: break loop
12: end if
13: t← t+ 1
14: end loop
15: Sendx(t)

p to all neighbors and receivex(t)
j from all of them

16: Compute∇λij
L(η) = sign(j − i)(x

(t)
i − x

(t)
j) for all pairs of

neighbors

Table 1. Comparison between Algorithm 1 (per node results) and spgl1. Algorithm 1 was executed in a cluster with1 Gbit/s links.

Algorithm 1 (distributed) spgl1 (centralized)

m q mp ‖Mx − b‖/‖b‖ Sum of inner iterations Time [s] ‖Mx − b‖/‖b‖ Time [s] ‖x − xspgl1‖/‖xspgl1‖

513 1000 57 3.75 × 10
−7

244 6 1.19 × 10
−5

0.1 3.01 × 10
−5

2574 5000 286 2.14 × 10
−7

214 122 6.09 × 10
−6

2.6 3.40 × 10
−5

5148 10000 572 1.59 × 10
−7

281 438 4.15 × 10
−6

14.9 4.78 × 10
−5

10296 20000 1144 1.31 × 10
−7

342 1400 —————— —— ——————

20601 40000 2289 1.22 × 10
−7

336 5239 —————— —— ——————

30897 60000 3433 1.10 × 10
−7

427 15500 —————— —— ——————

flags -Wall -ansi -O3 -xWPT -mcpu=pentium4. As platform we use
a computer cluster withP = 9 nodes. Each node has an Intel
Xeon processor (six X3220, two E5430, and one E5440) with 2.4–
2.8 GHz; the bandwidth of the links is 1 Gbit/s. We use the library
MKL for the linear algebra operations, and generate the input data
using Matlab.

Table 1 shows the results of computer experiments that were
conducted as follows. For each problem dimension, we generated10

times a random matrixM ∈ R
m×q , whereMij

i.i.d.∼ N (0, 1/m), and
a vectorb ∈ R

m, created by multiplyingM by ak-sparse vector,
wherek is the closest integer to0.04q. Each time we generatedM
and b, we also created a connected network with a random topol-
ogy using the Erdös-Rényi model, where each edge is present with
a probability of25%. With this data and network we then ran Al-
gorithm 1 in the cluster. On the same data we ran the centralized
spgl1 algorithm [3] in Matlab and on a single computer (IntelXeon
X3220 processor with 2.40GHz). Every number in Table 1 repre-
sents the average value of a set of10 experiments.

The problem size is specified in the first two columns of Ta-
ble 1: the number of rows and the number of columns ofM . The
next column containsmp = m/P , the number of rows ofM stored
in each node. Note that whenq ≥ 20000 we could not declareM
due to Matlab memory limitations. Consequently, we were notable
to execute spgl1 for those scenarios. For both algorithms weshow
the infeasibility‖Mx − b‖/‖b‖, which is a measure of the results’
accuracy, and the execution time. For our algorithm, we alsoshow
the cumulative number of inner iterations, i.e., the sum of inner itera-
tions for all outer loops. Finally, the last column containsthe relative
error between both algorithms’ output, which was always less than
0.005%. This indicates that Algorithm 1 and spgl1 produce solu-
tions of the same quality.

The entries for spgl1 that are missing are due to too large prob-
lem sizes: the matrixM could not be stored in the RAM of the
machine used. Algorithm 1, due to its distributed nature, could still
solve these problems.

For small problem sizes, those that spgl1 can solve, the dis-
tributed Algorithm 1 is 30–60x slower than spgl1. This is dueto
the distributed processing which is inherently computationally more
expensive. The real benefit is in larger problem scenarios that cannot
be stored within a single node and for which spgl1 is not applicable
anymore. A computer cluster is no perfect model for a sensor net-
work, but captures the distributed memory nature and the need for
explicit communication.

4. CONCLUDING REMARKS

We proposed a truly distributed algorithm that solves BP in acon-
nected network of arbitrary topology. This means the algorithm has

no notion of a special or central node, and no node has access to
all the data at any time. The distributed nature makes the algo-
rithm computationally more expensive than standard algorithms but,
in turn, enables the processing of problems that do not fit into the
memory of a single node. Further, our algorithm can be used as
a starting point to develop more advanced algorithms that are robust
to link or node failures or that can dynamically incorporatenew data.

5. REFERENCES

[1] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by ba-
sis pursuit,”SIAM, vol. 20, no. 1, pp. 33–61, 1998.

[2] E. Candès and M. Wakin, “An introduction to compressive sampling,”
IEEE Sig. Proc. Magazine, vol. 25, no. 2, pp. 21–30, 2008.

[3] E. Berg and M. Friedlander, “Probing the pareto frontierfor basis pur-
suit solutions,”SIAM J. Sci. Comput., vol. 31, no. 2, pp. 890–912, 2008.

[4] H. Dutta and H. Kargupta, “Distributed linear programming and re-
source management for data mining in distributed environments,” in
IEEE Int. Conf. Data Mining Workshops, 2008, pp. 543–552.

[5] J. Bazerque and G. Giannakis, “Distributed spectrum sensing for cog-
nitive radio networks by exploiting sparsity,”IEEE Trans. Sig. Proc.,
vol. 58, no. 3, pp. 1847–1862, March 2010.

[6] Y. Nesterov,Introductory Lectures on Convex Optimization: A Basic
Course. Kluwer Academic Publishers, 2003.

[7] I. Lobel, A. Ozdaglar, and D. Feijer, “Distributed multi-agent optimiza-
tion with state-dependent communication,” April 2010, submitted.

[8] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed algorithms
for basis pursuit,” in2nd Intern. Workshop Sig. Proc. with Adaptive
Sparse Structured Representations, Saint-Malo, France, April 2009.

[9] ——, “Distributed basis pursuit,” August 2010, arxiv link:
http://arxiv.org/abs/1009.1128.

[10] J. Haupt and R. Nowak, “Signal reconstruction from noisy random pro-
jections,” IEEE Trans. Inf. Th., vol. 52, no. 9, pp. 4036–4048, 2006.

[11] J. Meng, L. Husheng, and Z. Han, “Sparse event detectionin wireless
sensor networks using compressive sensing,” in43rd CISS Conf., 2009.

[12] V. Cevher, M. Duarte, and R. Baraniuk, “Distributed target localization
via spatial sparsity,” in16th Eur. Sig. Proc. Conf., Eusipco2008, 2008.

[13] J. Heuvel and Pejić, “Using laplacian eigenvalues and eigenvectors in
the analysis of frequency assignment problems,” Department of Math-
ematics, London School of Economics, Tech. Rep., December 2000.

[14] J. Li and Y. Pan, “Upper bounds for the laplacian graph eigenvalues,”
Acta Mathematica Sinica, vol. 20, no. 5, pp. 803–806, 2004.

[15] M. Raydan, “The barzilai and borwein gradient method for the large
scale unconstrained minimization problem,”SIAM J. Optimization,
vol. 7, no. 1, pp. 26–33, February 1997.

