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ABSTRACT

Basis Pursuit (BP) finds a minimufi-norm vectorz that satisfies
the underdetermined linear systeéWiz = b, where the matrix\/

and vectom are given. Lately, BP has attracted attention because q

its application in compressed sensing, where it is usedctmstruct
signals by finding the sparsest solutions of linear systemghis
paper, we propose a distributed algorithm to solve BP. Tréama
no central node is used for the processing and no node hassaoce
all the data: the rows af/ and the vectob are distributed over a set
of interconnected compute nodes. A typical scenario is agaret-
work. The novelty of our method is in using an optimal firstier
method to solve an augmented Lagrangian-based reformwlafi
BP. We implemented our algorithm in a computer cluster, dnmivs
that it can solve problems that are too large to be storeddrpao-
cessed by a single node.

Index Terms— Convex optimization, basis pursuit, distributed
algorithm, sensor network, compressed sensing

1. INTRODUCTION

Basis Pursui{BP) is the convex optimization problem [1]

minimize ||z (BP)

subjectto Mz = b,

where the optimization variable is€ R?, ||z||1 = |z1| + - - - + | 2]
is the/; norm of the vector, andM € R™*? is a matrix with more

columns than rowsm < ¢. Since the underdetermined linear sys-

be easily adapted to distributed scenarios. On the othet, lsamce
BP can be recast as a linear program (LP) [1], any algoritHxirgp
LPs also solves BP. However, solving an LP in a distributey iwa
Iso nontrivial. For example, [4] proposes a distributedhoe for
olving LPs, using a simplex-based approach. Howevernikétod
requires the network to be a complete graph, i.e., thereiigkek-
tween any pair of two nodes. The algorithm we introduce is thi
paper only requires the graph to be connected.

A problem closely related to BP is Basis Pursuit Denoising
(BPDN) [1]. BPDN was solved in a distributed way in [5], using
well-known optimization techniques similar to the ones \pplg in
this paper. Specifically, [5] uses a first-order method knasrhe
alternate direction minimization to solve a suitable refatation of
BPDN. In our case, we also use a first-order method, but the nic
properties of our dual function enable us to use an optinstdirder
method: Nesterov’s first method [6]. The application of Mest's
method to our problem is possible because we assume therketwo
does not vary along time, i.e., there are no link failuresrduthe
execution of the algorithm. The case where the network tapol
may vary along time has been studied before, e.g., in [7]clvpio-
poses an algorithm to solve general optimization probleand thus
also BP). However, the method is based on subgradient Higsj
which are known to be much slower than Nesterov’s method.

M1 bl
M =

Mp bp

tem Mz = b has potentially many solutions, BP finds the smallest
one in the?; norm sense. The following assumption guarantees that Fig. 1. Partition of the matrix)/ € R™* and vectob € R™.

Mz = b, and thus (BP), is always solvable.
Assumption 1. M is full rank.

There is a large body of literature exploring BP as the relara
of the nonconvex problem obtained by replacingéhaorm in (BP)
by the ¢y pseudo normi|z||o, which is the number of nonzero ele-
ments ofz. The conditions that ensure axactrelaxation underlie
the success of compressed sensing (CS) [2]. BP usuallysani&&S

Contribution: BP in sensor networks. Our goal in this paper
is to devise an algorithm that solves (BP) when the given,data
andb, are distributed across a network Bfnodes. More specifi-
cally, we partition the matri¥\/, as shown in Fig. 1, intd blocks
where each blocR/, € R™»*? containsm,, rows of M, with m1 +
--++mp = m. Vectorb is partitioned similarly intaP “small” vec-
torsb, in R™7. Further, the problem is also solved distributed, i.e.,

with a matrix M whose entries are drawn independently from someth€re is no notion of central node for the processing. Themado

probability distribution. In this context, Assumption 1lde with
probability one whenever that distribution is non-degater

Related work. Very recently, several algorithms have been pro-

can be associated with a network Bfnodes: thepth node of the
network only has access id,, and tob,, and all nodes participate
in computing the solution. For the network, we only assume th

posed to solve BP such as [3]. These approaches, howeventcan following.

Work supported by the grants SIPM PTDC/EEA-ACR/73749/28068
SFRH/BD/33520/2008 (Carnegie Mellon/Portugal Prograrainf FCT, by
FCT (ISR/IST plurianual funding) through the PIDDAC Progréunds, and
by NSF through award 0634967.

Assumption 2. The given network is connected and its topology
does not vary along time.

In summary, we obtain the following problem stateme®iven



a connected network topology &f nodes, each node storingy,
andb,, solve BP in a distributed way.

The work presented here is a major improvement over our pre-

vious work [8], which used a very different reformulationdaan
algorithm that required a much larger number of iterations.

The main contribution of this paper is two-fold. First, wegent
a novel distributed algorithm for (BP) by reformulating dt tnake
Nesterov’s efficient first method applicable. Second, foppr eval-
uation, we implemented the algorithm in C/MPI to run, valejand
benchmark it on a distributed computer cluster. As we show,td
its design, the algorithm can solve problems that are taqelts be
stored in and processed by a single node. An extended ves§ion
this paper is available at [9].

Applications. Distributed basis pursuit has several potential ap-

plications in sensor network scenarios. For example, abwis-
tributed approaches to CS have been proposed, e.g., [10butl]
in all of them the reconstruction problem, of which BP is aarax
ple, has always been solved at a central or fusion node. Wsing
method, distributed reconstruction becomes possible.

As a concrete application, consider a connected networR of
nodes. The goal is to capture an ultra-wide band but sphctral
sparse signat € R?, as described in [2]. For simplicity, we as-
sumem = P, i.e., each node only stores one rowMf. Using
a random demodulator [2], each node sensasd obtains a num-
berb,, forp = 1,...,P. Thisb, can be represented as the in-
ner productr, z, wherer, is thepth row of M (stored in node).
Applying CS theory, it is possible to recoverfrom the measure-
mentsb,, by solving BP; and doing it in a distributed way falls into
our problem statement. Other possible applications irckphrse
event detection [11] and distributed target localizatib?)] [

2. ALGORITHM

In this section we derive an algorithm to solve our statedlerm.
We start by suitably reformulating (BP) and then use a wetivkm
algorithm to solve the dual problem.

Problem reformulation. BP can be recast as an LP [1]:

minimize 1]z )
subjectto Az =0b, >0,
wheren = 2¢q, A = [M —M] € R™*", andl,, is the vector of ones
in R™. Notice that the knowledge of the,, x ¢ block M, translates
into the knowledge of then, x n block A,. In other words, the
pth node has access to the blagk (we partitionA similarly to M)
whenever it knows\,,. By makingP copies ofx (nodep stores the
copyz, € R™), and by making the partition ofl explicit, (1) can
be written as
minimize £ 1.,
subjectto Apz, =b,,p=1,...,P
zp2>20,p=1,...,P
v =w;, (1,7) €E,

@)

with (z1,...,zp) € (R™)” as the optimization variable, arfd:=
{(4,7) : there exists a link between nodeand; and: < j} as the
set of edges of the network. Assumption 2 ensures that preb{)
and (2) are equivalent.

Dual problem. We propose to solve a dual problem of (2). The
dualization strategy we adopt is to dualize each const#gigt z; in
the augmented Lagrangian sense. This means that we assiheat
Lagrange multiplier);; to this constraint and take the augmented

Lagrangian

> Al — )

P
1
L(z1,...,xzp;A\) = FZlpr—k
p=1 (i,4)€&

+ > Lai—ail?, @

(i,j)€E

wherep > 0 is a pre-chosen constant, ahde (R"™)” is the vec-
tor collecting all the Lagrange multiplierst = ({\;;}). The dual
problem is then
maximize L()),
A

where the dual function is given by

(4)

LX) =inf{L(z1,...,zp;A) : Apzp = by, x, > 0forall p}.

®)
Given a fixed\, we represent by:(\) := (z1(N),...,zp(N)) €
(R™)" the vector that achieves the infimum in (5). It can be shown
that this infimum is always finite due to our Assumption 1.

Next, we address the problem of solving the dual problem (4)
in a distributed manner; and then we will see how one can wbtai
a primal solution (i.e., a solution of (2) and thus of (BP)rr an
optimal dual solution\*.

Solving the dual. The dual functionZ, defined in (5), satisfies
the following properties.

Lemma 1([9]). Let L be the dual function if5). Then:

1. L is concave and finite-valued everywhere;

2. L is continuously differentiable everywhere and the gratlien
of L atthe pointh = (..., Ayj,...)Is

(...

3. L has a Lipschitz gradient with constahtp.

VL) = (coooai(A) = 25V ) (6)

Property1 ensures that has no implicit constraints in (4).
Hence, (4) is indeed unconstrained. Due to these propeatiés
first Nesterov’s method [6, §2.2.1] can be used to solve thad du
problem (4). Using Nesterov's method the error in the olpject
function decreases witl)(1/k?), where k denotes the iteration
number, whereas if we used the standard gradient methoduidw
decrease witlD(1/k) [6].

In every iteration of Nesterov’s method we are required to-co
pute (6), the gradient of. This implies findingz(\), the solution
of the optimization problem in (5). LeX be fixed. This means we
have to solve

minimize  L(z1,...,zp, )
subject to  Apz, =bp, xp >0, @)
p=1,..., P,
where the variable igz1,...,zp). The following properties

of L(z1,...,zp,A), when\ is fixed, enable us to use Nesterov's
(projected) method again.

Lemma 2([9]). Letgx(z1,...,xp) := L(x1,...
is obtained fromL by fixingA. Then:

, TPy A), i.e.,gx

1. g, is convex, continuously differentiable everywhere and the



gradient ofgy with respect tac, at (z1,...,zp) is

1

plot Wt Dz —p 3 @i,

JEND
(8)

where \V,, is the set of neighbors of node D, = |\,
andvy, = ZjENT_, Sign(j — p) Aps;

2. The largest eigenvalue of the Hessian matrixof pAmax(L),
where, is the Laplacian [13] of the network anbihax(£) its
largest eigenvalue.

Va,ga(z1,...,2p) =

If Bis any bound fot\max(£), thenpB will be a Lipschitz con-
stant forVgy. The works [13, 14] propose bounds famax(L)
that are easily computed in a distributed way. In the seaqieén
a fixed network, we will useB to denote the minimum of those
bounds. Now, in every iteration of Nesterov’s projectedhodtwe
have to project the gradient (8) onto the the constraint 5€7)o
i.e., {y : Apy = bp, y > 0}. This projection, which we denote

with [~]Xp’bp, corresponds to solving an optimization problem which

we do using a very efficient Barzilai-Borwein algorithm [15ee [9]
for details.

Once the dual problem (4) is solved, the solution of (2) is im- o:

mediately available. This is a well known feature of augradrita-
grangian duality and is formally captured in the followirgrima.

Lemma 3([9]). If \* solves(4), thenz(\*) solves(2).

13:
Since each node holds a copy of the BP variable, this means,.

that it will immediately know an optimal solution to BP aft@) is
solved.

The resulting algorithm. We can implement the method de-
scribed above in a truly distributed manner. To see how, tiae
the relevant variables are thg;’s, each of which is associated to
the edge connecting nodésind j, and thex,(\)’s, each of which
is associated to node We assume that a copy &f; is held in both
nodes:i andj. The only information node will exchange with its
neighbors isc, (and it will also receive the respectivg’s from its
neighbors). This is done in every iteration of the inner Nest loop.
Note that operating this way every node has the requiredrrdtion
to compute (8). Once this inner loop has converged, noteply*)
will be available at node, but alsaz; (\*), wherej is any neighbor
of p. Here,\* denotes the value of at thekth iteration. Therefore,
nodep is able to compute the required parts of (6) for updatipg
or )\jp.

Algorithm 1 gives a detailed description of our method. lside
and 5 implement the outer Nesterov loop, i.e., the one thdates
the \;;'s. The variables);; are auxiliary variables intrinsic to Nes-
terov’s method. Note thaf Ly, (n* ")) in line 4 was computed in
line 7 in the previous iteration by calling the function CamgGL
(Algorithm 2). This function implements Nesterov’s inneop in
lines 3 and 4. Note that now the auxiliary variables areutlie.

Algorithms 1 and 2 also contain explicit stopping critera f
both loops (which are based on the value of the norm of theecesp
tive gradients), and a “safety communication” protocot #masures
that, whenever a node converges either in the inner or in titer o
loops, its neighbors know that in the next iteration the eetige
node will not be active. This protocol is implemented usimg vari-
ables Stopln and StopOut for the inner and outer loops, ctisply.

3. EXPERIMENTAL RESULTS

We implemented Algorithms 1 and 2 in C and MPI (message pass-

ing interface) for the communication and used icc Versio® iiith

Algorithm 1 Row partition: algorithm for nodg

Require: A, € R™»*" stored at theth node and each node knows
p (predefined constant), the boui ein, andeout

Input: b, € R™?

Output: z* solving (1) at node

Initialization: & =1,y5” = 0andA{) = 1) = 0forall (4, )'s
such that = p andj € NV, orj = p and: € N,; StopOut= 0

1 {VLx,, (n®)} = ComputeGln©)
2: loop
for all (4, 7)

ci=p,jENyOrj=p,i €N,do
AR
iJ
(k)

4 = 775;?71) +pVLx,; (77““1))

5 Ny~ = /\Ef) + 5 (/\z('f) - )‘5571))
6: end for
7

8

k42
{VLx,, (n™)} = ComputeGl(n™)
if [|[VLx,, (n*)||/v/n < eaufor all (i, 5), or all neighbors
have stopped computirthen

StopOut= 1
10: end if
11 Communicate StopOut to the neighbors
12: if StopOut = lthen

break loop

end if

15: k—Ek+1
16: end loop

Algorithm 2 ComputeGL

Input: n
Output: Set of gradient§V Ly, (1)}

Initialization: Sety](.o), for j € N, U {p}, with the values from the
last iterationt = 1, Ly = pB, Stopln= 10
1: ComputeVy, g(yp”) = $1n+3p +pDpts” = pXjen, ¥y
2: loop

. @ _ [ -1 1 t-1\1"
3 Tp = |Yp —L_gvypg(yp )Ap,bp
t t — t t—1
W = a4 A )

L [[Vy,g(us T )]I/v/A < en or any of the neighbors has
stoppedhen

6: Stopin=1
7 end if
8: Sendyzﬁt) and Stopln to all neighbors and rece'g;éé) from
all of them
9 Compute Vypg(y,(f“)) $ln + 1 + pDyys) —
(t)
P ien, Y5
10: if Stopln= 1 then
11 break loop
12: end if
13: t—t+1
14: end loop
15: Sendzy” to all neighbors and receive,”’ from all of them
16: ComputeV s, L(n) = sign(j — i)(z!" — ') for all pairs of

neighbors




Table 1. Comparison between Algorithm 1 (per node results) andlsggborithm 1 was executed in a cluster withGbit/s links.

Algorithm 1 (distributed)

spgll (centralized)

m q my [|Mz — b||/||b]] Sum of inner iterations  Time [s] [| Mz — b||/|b]| Time [s] [z — spgiall /|| zspgial|
513 1000 57 3.75 x 1077 244 6 1.19 x 107° 0.1 3.01 x 107°
2574 5000 286 2.14 x 1077 214 122 6.09 x 1076 2.6 3.40 x 1077
5148 10000 572 1.59 x 107 281 438 4.15 x 107 14.9 4.78 x 1077
10296 20000 1144 1.31 x 1077 342 1400 —_
20601 40000 2289 1.22 x 1077 336 5239 —
30897 60000 3433 1.10 x 1077 427 15500 —

flags -Wall -ansi -O3 -xXWPT -mcpu=pentium4. As platform we us no notion of a special or central node, and no node has acgess t

a computer cluster witlP = 9 nodes.

Each node has an Intel all the data at any time. The distributed nature makes the-alg

Xeon processor (six X3220, two E5430, and one E5440) witk 2.4 rithm computationally more expensive than standard algms but,

2.8 GHz; the bandwidth of the links is 1 Ghit/s. We use theslifpr
MKL for the linear algebra operations, and generate thetidata
using Matlab.

in turn, enables the processing of problems that do not fit tine
memory of a single node. Further, our algorithm can be used as
a starting point to develop more advanced algorithms theataust

Table 1 shows the results of computer experiments that werto link or node failures or that can dynamically incorponagev data.

conducted as follows. For each problem dimension, we gesgtta

times a random matrix/ € R™*4, whereM;; e N(0,1/m), and

a vectorb € R™, created by multiplyingV/ by ak-sparse vector,
wherek is the closest integer 1.04q. Each time we generatetd
andb, we also created a connected network with a random topo
ogy using the Erdds-Rényi model, where each edge is presént w
a probability of25%. With this data and network we then ran Al-
gorithm 1 in the cluster. On the same data we ran the cerediliz
spgll algorithm [3] in Matlab and on a single computer (IXebn
X3220 processor with 2.40GHz). Every number in Table 1 repre
sents the average value of a sel 6fexperiments.

The problem size is specified in the first two columns of Ta-
ble 1: the number of rows and the number of columngbf The
next column contains:, = m/P, the number of rows ol stored
in each node. Note that when> 20000 we could not declaré/
due to Matlab memory limitations. Consequently, we wereaté
to execute spgll for those scenarios. For both algorithmsheer 6]
the infeasibility|| Mz — b||/||b||, which is a measure of the results’
accuracy, and the execution time. For our algorithm, we sismv

&
2]
(3]

(4]

(5]

the cumulative number of inner iterations, i.e., the sunmpér itera- Y
tions for all outer loops. Finally, the last column containe relative
error between both algorithms’ output, which was always tean (8]

0.005%. This indicates that Algorithm 1 and spgll produce solu-
tions of the same quality.

The entries for spgl1 that are missing are due to too large-pro [9]
lem sizes: the matrix}/ could not be stored in the RAM of the
machine used. Algorithm 1, due to its distributed natureldestill
solve these problems.

For small problem sizes, those that spgll can solve, the dig11)
tributed Algorithm 1 is 30-60x slower than spgll. This is doe
the distributed processing which is inherently computetity more [12]
expensive. The real benefitis in larger problem scenaratscmnot
be stored within a single node and for which spgl1 is not applie

(10]

anymore. A computer cluster is no perfect model for a senstr n [13]
work, but captures the distributed memory nature and thd fae
explicit communication.
[14]
4. CONCLUDING REMARKS [15]

We proposed a truly distributed algorithm that solves BP aoa-
nected network of arbitrary topology. This means the atborihas
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