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ABSTRACT

We show that distributed detection over random networks, or

using a random protocol, e.g., of the gossip type, is asymp-

totically optimal, if the rate of information flow across the

random network is large enough. Asymptotic optimality is in

the sense of Chernoff information; in other words, we deter-

mine when the exponential rate of decay of the error proba-

bility for distributed detection is the best possible and equal

to the rate of decay of the best centralized detector. The rate

of information flow is defined by | log r|, where r is the sec-

ond largest eigenvalue of the second moment of the random,

consensus weight matrix. We quantify interesting tradeoffs

in distributed detection, between the rate of information flow

and the achievable detection performance.

Index Terms— Chernoff information, distributed detec-

tion, random network, running consensus, information flow.

1. INTRODUCTION

We show that distributed detection over random networks is

asymptotically equivalent to optimal centralized detection,

if the rate of information flow across the random network

is large enough. That is, if the rate of information flow is

above a threshold, then the exponential rate of decay of the

error probability of distributed detection equals the Chernoff

information–the best possible rate of the optimal centralized

detector. When the random network has slower informa-

tion flow (asymptotic optimality cannot be achieved,) we

find what fraction of the best possible rate of decay of the

error probability distributed detection can achieve; hence,

we quantify the tradeoff between network connectivity and
achievable detection performance.

Specifically, we consider the problem where sensors co-

operate over a network and sense the environment to decide
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between two hypothesis. The network is random, vary-

ing over time k, or uses a random communication proto-

col, like gossip. The network connectivity is described by

{W (k)}∞k=1, the sequence of independent identically dis-

tributed (i.i.d.) consensus weight matrices. The sensors’

observations are Gaussian, correlated in space, and uncorre-

lated in time. We consider a stochastic approximation type

distributed detection algorithm. At each time k, each sensor:

1) communicates with its single-hop neighbors to compute

the weighted average of its own and the neighbors’ decision

variables; and 2) accounts for its new observation acquired at

time k. The network’s rate of information flow (i.e., the speed

of averaging,) is then measured by | log r|, where r is the

second largest eigenvalue of the expected value of W (k)2.

We show that, if | log r| exceeds a threshold, then distributed

detection is asymptotically optimal. If | log r| is below the

threshold, we find the achievable rate of decay of the error

probability as a function of r.

Several recent references consider different variants of

stochastic approximation type distributed algorithms, e.g.,

references [1, 2] in the context of distributed detection, and

reference [3] in the context of distributed estimation. We

consider here running consensus, the variant in [2]. Recent

work [4, 5] also examines exponential decay rate of error

probability (error exponent) for distributed detection. Dif-

ferently than stochastic approximation type detection, [4]

considers tree networks with a fusion node, and [5] considers

networks with a fusion node and feedback.

We now contrast this paper to reference [2], which consid-

ers a different problem. Reference [2] studies performance of

the running consensus detection when the means of the sen-

sors’ observations under the two hypothesis become closer,

at 1/
√

k rate, and there is an asymptotic, non zero, proba-

bility of a miss, and an asymptotic, non zero, probability of

false alarm. Within this framework, the running consensus

achieves the efficacy [6] of the optimal centralized detector,

under a mild assumption on the underlying network being

connected on average. In contrast, we assume that the means

of the distributions stay fixed with k; the Bayes error proba-

bility exponentially decays to zero, and we examine its rate
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of decay. To achieve the optimal decay rate, distributed de-

tection needs an assumption stronger than connectedness on

average, namely, that the random network or random commu-

nication protocol lead to stronger connectivity (or averaging

speed as measured by | log r|) than connectedness on average.

In prior work [7], we considered running consensus de-

tection when the underlying network is deterministically time

varying; we showed that asymptotic optimality holds if the

graph that collects the union of links that are online at least

once over a finite time window is connected. In contrast, we

consider here the case when the underlying network or the

communication protocol are random, and we establish a suf-

ficient condition for optimality in terms of averaging speed

(measured by | log r|.)
Paper organization. Section 2 describes the sensors ob-

servations’ model and the optimal centralized detector, as if

there was a fusion node that collects and processes all sensors’

observations. Section 3 describes the random network model

and the distributed detection algorithm. Section 4 presents

our main results on the asymptotic performance of distributed

detection. Finally, Section 5 concludes the paper.

2. CENTRALIZED DETECTION

Subsection 2.1 describes the sensors observations model;

Subsection 2.2 describes the (asymptotically) optimal cen-

tralized detector; and Subsection 2.3 studies the asymptotic

performance of this detector.

2.1. Sensor observations model
We assume that N sensors are deployed to sense the envi-

ronment and to decide between the two hypotheses, H1 and

H0. Each sensor i measures a scalar quantity yi(k) at each

time step k; for simplicity, we assume that all sensors mea-

sure synchronously at k = 1, 2, ... Collect all sensors obser-

vations at time k, yi(k), i = 1, ..., N , into the N × 1 vector

y(k) = (y1(k), ..., yN (k))�, that we assume:

Under Hl : y(k) = ml + ζ(k), l = 0, 1. (1)

The quantity ml is the constant signal; the quantity ζ(k) is a

zero-mean, Gaussian, spatially correlated noise, i.i.d. across

time, with distribution ζ(k) ∼ N (0, S), where S is a pos-

itive definite covariance matrix. The noise can be spatially

correlated, e.g., due to dense deployment of the sensor net-

work. Denote also by fl the probability density function of

y(k) under Hl, l = 0, 1.

2.2. Centralized detector: Log-likelihood ratio test
The optimal centralized detector forms the log-likelihood

(LLR) decision test:

1
k

k∑
j=1

L(j)
H1

≷
H0

γk, (2)

where L(k) = log (f1(y(k))/f0(y(k))) is the LLR and γk is

the test threshold. Under the Gaussian observations in Sub-

section 2.1, L(k) is the linear sufficient statistic: L(k) =
(m1 − m0)�S−1

(
y(k) − m1+m0

2

)
. Define v ∈ R

N :

v := S−1(m1 − m0). (3)

Then, the LLR L(k) is written as follows:

L(k) =
N∑

i=1

vi

(
yi(k) − [m1]i + [m0]i

2

)
=

N∑
i=1

ηi(k) (4)

The LLR at time k is separable, i.e., it is the sum of the ηi(k)
that depend affinely on the individual observations yi(k). We

will exploit this fact in Section 3 to derive the distributed,

running consensus, detection algorithm.

2.3. Asymptotic performance of centralized detection
We are interested in the Bayes probability of error P e

cen(k)
after k samples are processed by the centralized detector (2).

Specifically, we are interested in the exponential rate of de-

cay of P e
cen(k) as k → ∞, i.e., limk→∞ − 1

k log P e
cen(k). The

Chernoff lemma (see, e.g., [8]) states that the best achievable

rate, among all possible decision tests, is attained by the LLR

test with γk = 0, for all k, and this rate equals the Chernoff

information (see, e.g., [8]), which is, for the Gaussian case

studied here, given by:

C = Ctot =
1
8
(m1 − m0)�S−1(m1 − m0). (5)

In eqn. (5), the subscript tot designates the total Chernoff

information of the network, i.e., the Chernoff information

for the observations collected from all sensors. Specifi-

cally, if the sensor observations are uncorrelated (the noise

covariance matrix S = Diag(σ2
1 , ..., σ2

N ),) then Ctot =∑N
i=1

[m1−m0]
2
i

8σ2
i

=
∑N

i=1 Ci,, where Ci is the Chernoff in-

formation of the individual sensor i. That is, Ci equals the

best achievable rate of the Bayes error probability, as if sensor

i worked as an independent detector and did not cooperate

with other sensors. In this paper, we find the exponential

decay rate for the error probability for the running consensus

distributed detector. Moreover, we find conditions on the

network connectivity when this rate equals Ctot. When the

exponential decay rate of the error probability for distributed

detector equals Ctot at each sensor, we say that distributed

detection is asymptotically optimal.

3. DISTRIBUTED DETECTION

We consider distributed detection, under the same assump-

tions on the sensor observations as in Subsection 2.1; now,

the fusion node is no longer available, and the sensors coop-

erate through a randomly varying network. A similar analysis

will hold if we consider a random communication protocol

like gossip. We study running consensus distributed detec-

tion, proposed in [2], extending it to spatially correlated ob-

servations. Recall the definition of the vector v in eqn. (3)
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and the scalar ηi(k) in eqn. (4). The update of xi(k), the lo-

cal decision variable of sensor i at time k, is then as follows:

xi(k + 1) =
k

k + 1
Wii(k)xi(k) + (6)

k

k + 1

∑
j∈Ωi(k)

Wij(k)xj(k) +
1

k + 1
ηi(k + 1),

for k = 1, 2, ..., and xi(1) = ηi(1). Here Ωi(k) is the

(random) neighborhood of sensor i at time k, and Wij(k)
are the (random) averaging weights. Hence, at each k,

sensor i averages its current decision variable with the

neighbors’ decision variables, and adds ηi(k + 1) to ac-

count for new observation yi(k + 1). The local sensor i’s
decision test at time k is as follows: if xi(k) > 0 (re-

spectively, xi(k) ≤ 0,) then H1 (respectively, H0) is ac-

cepted. Let x(k) = (x1(k), x2(k), ..., xN (k))� and η(k) =
(η1(k), ..., ηN (k))�. Also, collect the averaging weights

Wij(k) in the N × N matrix W (k), where Wij(k) = 0 if i
and j do not communicate at time step k. The algorithm in

matrix form becomes:

x(k + 1) =
k

k + 1
W (k)x(k) +

1
k + 1

η(k + 1), (7)

for k = 1, 2, ..., and x(1) = η(1). We allow the averaging

matrices W (k) (and hence, the network connectivity) to be

random. We next summarize the assumptions on W (k). First,

let J := (1/N)(11�) and W̃ (k) := W (k)−J . Here, 1 is the

N × 1 vector with unit entries.

Assumption 1 1) The sequence {W (k)}∞k=1 is i.i.d; 2) W (k)
are symmetric and stochastic (row-sums are equal to 1 and
the entries are nonnegative), with prob. one; and 3) W (l)
and y(s) are independent, ∀l, ∀s.

In section 4, we examine what (additional) conditions the ma-

trices W (k) have to satisfy, to achieve asymptotic optimality

of the distributed detection algorithm. Recall the definition of

the N × 1 vector v in (3). The sequence of N × 1 random

vectors {η(k)}, conditioned on Hl, is i.i.d. The vector η(k)
(under hypothesis Hl, l = 0, 1) is Gaussian with mean m

(l)
η

and covariance Sη:

m(l)
η = (−1)(l+1)Diag (v)

1
2
(m1 − m0) (8)

Sη = Diag (v) SDiag (v) . (9)

Here, Diag(v) is a diagonal matrix with the diagonal v.

4. DISTRIBUTED DETECTION: CONDITIONS FOR
ASYMPTOTIC OPTIMALITY

This section provides necessary and sufficient conditions for

asymptotic optimality for distributed detection. When dis-

tributed detection is not guaranteed to be optimal, this section

finds a lower bound on the exponential decay rate of the er-

ror probability, in terms of network connectivity and observa-

tions’ distributions. We start by finding a sufficient condition

for optimality and evaluating the lower bound on the decay

rate of the error probability.

4.1. Sufficient condition
Recall that r := λ2

(
E

[
W (k)2

])
= ‖E

[
W (k)2

]−J‖, where

λ2(·) and ‖ · ‖ are, respectively, the second largest eigenvalue

and the spectral norm. It is well known that r measures the

speed of averaging across network, like with standard consen-

sus and gossip, e.g., [9]. (The smaller r is, the faster averag-

ing is.) Theorem 2 shows that distributed detection is asymp-

totically optimal if r is small enough. The Theorem finds a

lower bound on the rate of decay of the error probability, even

when the sufficient condition for asymptotic optimality does

not hold. Denote by m
(l)
L and σ2

L, respectively, the mean and

the variance of the LLR in eqn. (4) under Hl, l = 0, 1; it can

be shown that m
(l)
L = (−1)l+1

2 (m1 − m0)T S−1(m1 − m0)
and σ2

L = (m1 − m0)T S−1(m1 − m0). Denote by m(l) =
maxi=1,...,N |[m(l)

η ]i| = m, i.e., the maximum-in-modulus of

the entries of m
(l)
η . The proof of the Theorem 2 is in [10].

Theorem 2 Let Assumption 1 hold and consider the dis-
tributed detection algorithm in eqn. (6). Then, for the expo-
nential decay rate of the error probability, we have:

lim inf
k→∞

−1
k

log P e
i,dis(k) (10)

≥
{

Ctot if | log r| ≥ 1
8N2

(
1 + (1 − 1

N )K
) ‖Sη‖

Cdis otherwise, where

Cdis = −
(

1
2N2

σ2
Lμ2 +

1
N

m
(0)
L μ

)
, (11)

μ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
4

K
K+1 + 1

4

√
K2+

32| log r|
‖Sη‖ (1+K)

K+1 ,

if 1
8‖Sη‖ < | log r| < 1

8N2(1 + (1 − 1
N K))‖Sη‖;

1
4

√
K2 + 32| log r|

‖Sη‖ − 1
4K,

if | log r| ≤ 1
8‖Sη‖.

Here K = (8m) /‖Sη‖. Moreover, each sensor i is asymp-
totically optimal, i.e., limk→∞ − 1

k log P e
i,dis(k) = Ctot, ∀i,

provided that:

| log r| ≥ 1
8
N2

(
1 + (1 − 1

N
)K

)
‖Sη‖. (12)

Theorem 2 says that the network connectivity should be large

enough (i.e., r–small enough,) in order to achieve asymptotic

optimality. Specifically, there exists a threshold on | log r|,
above which asymptotic optimality is achieved. Consider fur-

ther (12) and, for simplicity, assume that the sensor observa-

tions are spatially uncorrelated and that the individual Cher-

noff information at each sensor is equal, i.e., Ci = Cj, i �= j.
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Then, it can be shown that the sufficient condition for asymp-

totic optimality becomes:
| log r|
3N−1 ≥ Ctot = NCi. The quan-

tity
| log r|
3N−1 depends solely on W (k), i.e., the network con-

nectivity, and may be interpreted as the “information capac-

ity” of the network. If the information capacity is greater

than the total Chernoff information Ctot offered by the sen-

sors’ observations, then asymptotic optimality is achieved.

Further, r = 0 corresponds to the fully connected network

(W (k) ≡ J), and, hence, to the optimal centralized detector.

In this case, the capacity is +∞, and asymptotic optimality

is achieved for any value of Ctot. Figure 1 plots the lower

bound in eqn. (10) for a network with N = 20 sensors, spa-

tially uncorrelated observations, Ci equal for all sensors, and

Ctot = NCi = 0.0047, illustrating what fraction of Ctot is

achievable for given network connectivity (for given r.)

4.2. Necessary condition
We have shown that a sufficient condition for asymptotic opti-

mality is that the network connectivity (measured by | log r|)
exceeds a certain threshold that depends on the Chernoff in-

formation. We now show that, for asymptotic optimality, it is

also necessary that certain measure of the network connectiv-

ity exceeds a Chernoff-information dependent threshold. De-

note by Ei(k) the event that, at time k, the sensor i is con-

nected to at least one of the remaining sensors in the network;

that is, Ei(k) := {maxj=1,...,N, j �=i Wij(k) > 0} . Further,

denote by Pi(k) = Pi = P(Ei(k)) We state the Theorem

(Theorem 3) for spatially uncorrelated sensors’ observations,

the proof of which is in [10].

Theorem 3 (Asymptotic optimality: Necessary condition)
Consider the distributed detection algorithm in eqn. (6), let
Assumption 1 hold, and let the sensor observations be spa-
tially uncorrelated, i.e., S = Diag(σ2

1 , ..., σ2
N ). Then, a nec-

essary condition for the asymptotic optimality of distributed
detection at sensor i is: | log(1 − Pi)| > Ctot − Ci.
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Fig. 1. Lower bound on the exponential decay rate of the

error probability (eqn. (10)) for a network with N = 20 sen-

sors, spatially uncorrelated observations, and Ctot = NCi =
0.0047. The rate is optimal (Ctot) for (1 − r) ≥ 0.29.

5. CONCLUSION

We studied distributed detection over random networks when

at each time step k each sensor: 1) averages its decision vari-

able with the neighbors’ decision variables; and 2) accounts

on-the-fly for its new observation. We found necessary and

sufficient conditions for asymptotic optimality of distributed

detection, in the sense of the exponential decay rate of the er-

ror probability, in terms of the network connectivity and the

Chernoff information of the sensors’ observations. When the

sufficient condition for optimality is not met, we find a lower

bound on this rate, as a function of the network connectivity

and the Chernoff information.
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