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ABSTRACT

This paper addresses the problem of locating a single source
from noisy range measurements in wireless sensor networks.
An approximate solution to the maximum likelihood location
estimation problem is proposed, by redefining the problem
in the complex plane and relaxing the minimization problem
into semidefinite programming form. Existing methods solve
the source localization problem either by minimizing the
maximum likelihood function iteratively or exploiting other
semidefinite programming relaxations. In addition, using
squared range measurements, exact and approximate least
squares solutions can be calculated. Our relaxation for source
localization in the complex plane (SLCP) is motivated by the
near-convexity of the objective function and constraints in the
complex formulation of the original (non-relaxed) problem.
Simulation results indicate that the SLCP algorithm outper-
forms existing methods in terms of accuracy, particularly in
the presence of outliers and when the number of anchors is
larger than three.

Index Terms— Single source localization, maximum
likelihood estimation, nonconvex and nonsmooth minimiza-
tion, semidefinite programming.

1. INTRODUCTION

The problem of estimating the position of a source using only
the distances to a set of points with known coordinates (called
anchors) appears in many engineering and scientific applica-
tions. This problem has been solved by different schemes and
using various types of range-like measurements such as time
of arrival (TOA) or received signal strength (RSS) [1, 2, 3, 4,
5, 6].

Maximum likelihood (ML) based solutions are of partic-
ular interest due to their asymptotically optimal performance.
However, the ML estimator requires the minimization of a
nonconvex and nonsmooth cost function. One approach for
finding a local solution of the ML problem is through the use
of iterative minimization techniques [1]. In [1], the authors
exploited the special structure of the cost function to derive a
fixed-point iterative scheme and another method where each
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iteration consists of solving a generalized trust region sub-
problem (GTRS) by using TOA based range measurements.
These algorithms might fail to find a global solution and have
either slow convergence rate or high computational cost. In
[2], the ML problem based on TOA range measurements was
reformulated and relaxed to construct a suboptimal but sim-
pler optimization problem. The resultant relaxed ML problem
is a semidefinite program (SDP), and therefore convex. How-
ever, as discussed in [3], the optimal solution of this relaxed
SDP does not always satisfy the near-rank-1 constraints of
acceptable solutions to the source localization problem.

An alternative approach is to define the source localiza-
tion problem as a least squares (LS) problem using squared
ranges (SR) or SR difference TOA based measurements. De-
spite its nonconvexity, the SR-LS problem can be solved glob-
ally and efficiently by resorting to GTRS [3]. The SR-LS
approaches are computationally simpler than iterative mini-
mization algorithms but they provide less accurate solutions
than those provided by ML approaches [3], because they are
suboptimal in the ML sense. Besides, SR-LS solutions are
known to undergo significant degradation in the presence of
outliers [7], which commonly affect practical range measure-
ment systems.

The SLCP and techniques described up to this point are
centralized methods. However, it can be interesting to solve
the source localization problem in a distributed manner in
wireless sensor networks. In [5], the authors proposed a dis-
tributed incremental gradient method to solve the ML prob-
lem using RSS measurements. Nevertheless, like most it-
erative methods applied to nonconvex problems, it may get
trapped in local minima. The problem can also be formulated
as a convex feasibility problem and solved via distributed pro-
jection onto convex sets (POCS) using RSS measurements
[6]. POCS converges to a limit point or to a limit cycle in
the vicinity of the true source position.

In this paper, we consider centralized ML source local-
ization because of its asymptotically optimal characteristics
and superiority compared to SR-LS in the presence of out-
liers [7]. Note that our ML function is built under the as-
sumption of Gaussian noise, which leads to a LS estimator
problem. We reformulate the ML problem as a two stage op-
timization problem, given that the problem has two sets of
variables. In the first step, one of the variable sets is fixed and
the unconstrained optimization part of the problem is solved



with respect to the other variable set. In the second step, con-
straints are described in the complex plane and the optimiza-
tion problem is relaxed to an SDP. This relaxation was found
to be more accurate than others which have been previously
published [2]. That behavior is heuristically interpretedin
Section 2 based on the convexity of the cost function and the
near-convexity of the constraint set. The accuracy of SLCP
makes it a convenient initialization method for iterative re-
finement methods, which therefore require fewer iterationsto
converge and/or are less likely to be trapped in undesirable
local extrema of the ML cost function.

The organization of this paper is as follows. In Section 2,
ML location estimation is formulated and the SLCP algorithm
is introduced. In Section 3, simulation results for SLCP are
presented and its performance is benchmarked against other
methods. Finally, conclusions are drawn in Section 4. Vec-
tors and matrices are denoted by boldface lowercase and up-
percase letters, respectively. Thei-th component of a vector
a is written asai. The superscriptT (H) denotes the transpose
(Hermitian) of the given real (complex) vector or matrix. Be-
low, Im is them×m identity matrix and the1m is the vector
of m ones. For symmetric matrixX, X ≥ 0 means thatX is
positive semidefinite.

2. PROBLEM FORMULATION

Let x ∈ R
2 be the unknown source position,ai ∈ R

2 be
known sensor positions (anchors) fori = 1, ..,m, andri =
‖x−ai‖+wi be the measured range between thei-th anchor
and the source, contaminated by zero mean Gaussian noise
wi with varianceσ2. The ML source localization problem is
equivalent to

minimize f(x) =
∑m

i=1
(‖x − ai‖ − ri)

2.
x

(1)

The objective function in (1) is nonconvex and nonsmooth. If
we examine the terms‖x−ai‖ andri, the difference between
the true range and observed range is actually equivalent to the
distance between the source position and the circle with cen-
ter ai and radiusri, i.e., |‖x − ai‖ − ri| = ‖x − yi‖, where
yi is located in the intersection of the line connectingai and
x with the circle{z : ‖z − ai‖ = ri} (Fig. 1).

Fig. 1. Geometric interpretation of terms in ML cost function.

An equivalent formulation is therefore,

minimize
∑m

i=1
‖x − yi‖2

x, yi

subject to ‖yi − ai‖ = ri.
(2)

If we fix yi, the solution of (2) with respect tox is an uncon-
strained optimization problem whose solution is obtained by
invoking the optimality conditions

∂f(x)

∂x
=

m
∑

i=1

(x − yi) = 0 ⇒ x∗ = ȳ =
y1 + .. + ym

m
.

Now, (2) becomes a constrained variance minimization prob-
lem

minimize
∑m

i=1
‖ȳ − yi‖2

yi

subject to ‖yi − ai‖ = ri.
(3)

Geometrically, the constraints of (3) define circle equations,
which can be compactly described in the complex plane as

minimize
∑m

i=1
‖ȳ − yi‖2

yi, φi

subject to yi = ai + rie
jφi .

(4)

Invoking the centering operatorΠ = (Im − 1

m
1m1

T
m), which

subtracts the mean of a vector from each of its components,
(4) is rewritten in matrix form as

minimize (a + Rθ)HΠ(a + Rθ)
θ

subject to |θi| = 1,
(5)

wherea =
[

a1 · · · am

]T ∈ C
m, R = diag(

[

r1 · · · rm

]

) ∈
R

m×m andθ =
[

ejφ1 · · · ejφm

]T ∈ C
m. Expanding the

objective function in (5) and deleting the constant terms
yields

minimize 2 Re(aHΠRθ) − 1

m
θ

H
R1m1

T
mRθ

θ

subject to |θi| = 1.
(6)

DefineR
H
1 = r anda

HΠR = c
H . Thus,

minimize 2 Re(cH
θ) − 1

m
θ

H
rr

T
θ

θ

subject to |θi| = 1.
(7)

The value of Re(cH
θ) is in the interval[−|cH

θ|, |cH
θ|], and

for anyθ we can always find an auxiliary angleγ such that
the rotated vectorθ0 = θejγ satisfies Re(cH

θ0) = −|cH
θ0|

without affecting the other term in the cost function or the
constraints. With this modification, the optimization prob-
lem (7) becomes easier to handle.

minimize −2|cH
θ| − 1

m
θ

H
rr

T
θ

θ

subject to |θi| = 1.
(8)

Before relaxing (8) we further investigate the geometric prop-
erties of this formulation by introducing new variablesu and
v and writing the optimization problem as

maximize 2
√

u + 1

m
v

u, v

subject to {∃θ : |θi| = 1;u = θ
H
cc

H
θ, v = θ

H
rr

T
θ}.

(9)



(a) three anchors (b) five anchors

Fig. 2. The constraint set(u, v) for randomly generatedθ that
satisfies|θi| = 1 for three and five anchors.

The objective function in (9) is concave with respect tou and
v. Fig. 2 depicts points in the constraint set(u, v) for ran-
domly generatedθ that satisfies|θi| = 1 andm = 3 or 5
anchors. As seen from the figure, these constraint sets are
almost convex, such that (9) describes an “almost convex” op-
timization problem. To motivate our proposed relaxation we
hypothesize that dropping a subset of constraints which de-
stroy convexity should not severely disrupt the solution ofthe
problem. To this end (8) is expanded and rewritten as

maximize 2
√

tr(ccHθθH) + 1

m
tr(rrT

θθ
H)

θ

subject to |θi| = 1.
(10)

Following standard manipulations we introduce the new vari-
ableΦ = θθ

H and an associated rank constraint,

maximize 2
√

tr(ccHΦ) + 1

m
tr(rrT

Φ)
Φ

subject to Φ ≥ 0
Φii = 1

rankΦ = 1.

(11)

Finally, a relaxed SDP formulation is obtained by introducing
the epigraph variablet and dropping the rank constraint,

maximize t + 1

m
tr(rrT

Φ)
Φ, t

subject to Φ ≥ 0
Φii = 1

4cH
Φc ≥ t2.

(12)

Remark that the solution of the optimization problem (12)
is a positive semidefinite matrix, hopefully with near-1 rank.
Afterwards, the source coordinates are estimated by singular
value decomposition (SVD) ofΦ [4].

3. SIMULATIONS AND COMPARISONS WITH THE
EXISTING METHODS

In this section we will demonstrate the performance of the
SLCP algorithm in simulation and compare it with other
existing methods from [1, 3]. In [3], the authors consider
LS approaches for locating a source from SR measurements,
which is termed SR-LS. The problem is cast as minimizing

a quadratic function subject to a single quadratic constraint,
which is efficiently solved by GTRS. Despite a fundamental
mismatch with the likelihood function, that method is fre-
quently more accurate than the ML relaxation of [2], which
may fail to find a valid solution satisfying rank-1 constraints.
In this section, however, we will see that as a relaxed ML
method, SLCP outperforms SR-LS for more than three an-
chors. The difference in performance is more significant in
the presence of outliers.

We also use SLCP as initialization of iterative methods,
in which case its impact on the number of required iterations
for convergence is of concern as well. We have used the
simple fixed point (SFP) method described in [1]. SFP is
derived by using optimality conditions and mimicking the
Weiszfeld method which is used to solve the localization
problem to minimize the sum of euclidean distances. We
used‖∇f(xk)‖ ≤ 10−7 as a stopping criterion for SFP,
where∇f(xk) is the gradient of the objective function in (1)
atk-th iteration.
Example 1:In this example, SLCP is compared with SR-LS
using five anchors. We performed 1000 Monte Carlo runs
where in each run the anchor locationsai and the sourcex
were randomly generated from a uniform distribution over
the square[−10, 10] × [−10, 10]. The observed rangesri

are generated as described in Section 2, whereσ takes on
four different values: 1,10−1, 10−2, 10−3. Table 1 lists the
average squared position errors‖x̂−x‖2 over all realizations,
wherex̂ denotes the solution of SR-LS or SLCP. The best re-
sult for eachσ is marked in boldface, showing the superiority
of SLCP. This example and Table 1 are provided for direct
comparison with Example 2 and Table 1 in [3], where SR-LS
was shown to outperform other methods.

σ SR-LS SLCP
1e-3 3.22e-6 1.72e-6
1e-2 1.93e-4 1.39e-4
1e-1 2.24e-2 1.61e-2

1 2.13 1.86

Table 1. Mean squared position error of SR-LS and SLCP

Example 2:To further investigate the accuracy of the meth-
ods, the performances of several algorithms (SR-LS, SLCP,
SFP initialized by SLCP, SFP initialized by SR-LS) are tested
for five anchors with 10 different noise levels,σ ∈ [0.01, 0.1].
The performance metric is root mean square error (RMSE),

defined as
√

1

K

∑K

k=1
‖x − x̂k‖2, wherex̂k denotes an es-

timated source position in thek-th Monte Carlo run for the
specific noise realization. The number of Monte Carlo runs
is K = 200. Fig. 3a shows that plain SLCP has better accu-
racy than SR-LS, although the performance gap closes after
iterative refinement by SFP. To compare the RMSE of the
algorithms in the presence of outliers, modified range mea-
surements are created according tori = ‖x− ai‖+ wi + |ǫ|,
whereǫ is a white Gaussian noise term with standard devi-
ation σoutlier ∈ [0, 1]. The disturbance|ǫ| only affects the
measured range between the second anchor and the source,
whereaswi with σ = 0.04 is present in all observations.



Fig. 3b shows an increased RMSE gap between plain SR-LS
and SLCP. Regarding convergence speed in SFP refinement,
the mean number of iterations,N , over all Monte Carlo
runs was calculated for initialization using SLCP or SR-LS.
For σ = 0.1 and no outliers, we haveNSLCP+SFP= 19 and
NSR-LS+SFP = 35, whereas forσoutlier = 1 andσ = 0.04
these becomeNSLCP+SFP = 7 andNSR-LS+SFP = 33. These
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Fig. 3. RMSE vs. disturbance power for five anchors. The
curves for SLCP, SR-LS+SFP and SLCP+SFP are nearly
overlapping in the two figures.

results show that plain SLCP has better accuracy than plain
SR-LS, while their computational times in our implementa-
tion are similar. Besides, when the solution of SLCP is given
as an initialization to SFP, it significantly reduces the number
of iterations compared with SR-LS initialization. Actually,
plain SLCP has very good accuracy in this example, and SFP
refinement only provides marginal improvements.

The improvement of SLCP over SR-LS is not as signif-
icant for three anchors, because the set illustrated in Sec-
tion 2 more often becomes markedly nonconvex for some
noise/anchor realizations, and the SDP relaxation does not
yield a desirable nearly rank-1 solution. Extracting the source
location by SVD might then be inappropriate.
Example 3: This example demonstrates that, in addition to
increasing the convergence speed of SFP, SLCP initialization
also alleviates the problem of convergence to local extrema
of the ML cost function. The five-anchor setup is similar to
that of the previous example forσ ∈ [0.02, 0.1] and no out-
liers, but the anchor positions are chosen such that the ML
cost function has one local minimum in addition to the global
one. Fig. 4 shows that now SFP refinement does not close the
performance gap between SLCP and SR-LS initialization be-
cause in the latter case the algorithm converges more often to
the undesirable solution, thus producing a larger RMSE.
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Fig. 4. RMSE vs. disturbance power for five anchors with one
local and one global minimum.

4. CONCLUSION

The nonconvex ML based source localization problem was
tackled by formulating it as an optimization problem in the
complex plane and then taking advantage of the nearly con-
vex nature of the resulting cost function and constraint setto
obtain a SDP relaxation. This essentially involves dropping a
rank constraint, which was found to have a negligible impact
on the accuracy of the solution in many scenarios. Simula-
tion results showed that SLCP provides very accurate results
compared to other existing methods. Moreover, when used
for initialization of iterative refinement methods it provides a
good starting point that reduces both the number of required
iterations and the probability of convergence to local extrema.

Future work will focus on finding a better rank-1 approxi-
mation than SVD to the matrix output of SLCP when very few
anchors are used. Formulating SLCP in higher dimensions is
also a topic of interest, e.g., for 3D source localization.
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[4] P. Oğuz-Ekim, J. Gomes, J. Xavier, and P. Oliveira, “ML-
based sensor network localization and tracking: Batch and time-
recursive approaches,” inProc. 17th European Signal Process-
ing Conference (EUSIPCO), Glasgow, Scotland, August 2009.

[5] M. G. Rabbat and R. D. Nowak, “Decentralized source local-
ization and tracking,” inProc. ICASSP, Montreal, Canada, May
2004, vol. 3, pp. 921–924.

[6] A. O. Hero and D. Blatt, “Sensor network source localization
via projection onto convex sets (POCS),” inProc. ICASSP,
Philadelphia, USA, March 2005, vol. 3, pp. 689–692.

[7] S. M. Kay, Fundamentals of Statistical Signal Processing: Es-
timation Theory, Prentice-Hall, Englewood Cliffs, NJ, 1993.


