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ABSTRACT
This paper deals with the reconstruction of smooth, flexislemet-

an initial suboptimal solution is described in section 3.eTtobal
optimization is described in section 4. Finally results previded
in section 5 and conclusions are drawn.

rically embedded flat surfaces, such as a sheet of paper og a fla

waving in the wind, from a set of projected observations sash
camera images. To solve the problem, a set of matched featfire
the waving object at different poses is needed, which ane Hpe
plied to the reconstruction algorithm here described. Tdrepete
algorithm consists of 2 phases, the first obtaining an irégorox-
imation from local features, the second uses this resuletate a
global optimization algorithm. To validate the algorithaynthetic
data with noise is generated, reconstructed and compagrodod
truth data. Also, a second experiment consisting of reagjgaaf a
sheet of paper is shown.

Index Terms— Machine vision, Isometric Non-Rigid Recon-
struction, Manifold Learning

1. INTRODUCTION
This paper provides a solution to the problem of reconstrigdso-
metrically embedded flat surfaces in 3D from a set of paytiedili-
brated images where only intrinsic parameters are knowe. prb-
posed algorithm is inspired from manifold learning tectueig and
can be used in this setting as well.

The motivating application here is to infer the structure abn-
rigid isometric surface observed in multiple images. Thanegle
provided is to reconstruct a waving sheet of textured pagrea flag)
observed in multiple images.

Prior work in a similar area, inferring the 3D embedding fram

observed image assuming the surface model to be knowndieglu

[1] which provide a closed form solution to the problem ofiseg

tering a camera observation to an apriori known model emdxddd

in 3D. Also in [2] the authors propose to learn the statistitedor-
mation model of deformable surfaces and use the gained kwdige|
to recover 3D structure from a single camera, usable eveown |
texture settings. Other work include [3] which propose tineste
smooth image wraps (not necessarily isometric) by miningjziom-
pound energy while inferring a smoothing parameter as Welbur
knowledge, this is the first work that attempts to learn thaeulying
surface from multiple camera observations.

In a seemingly unrelated branch of non linear dimensionedi
duction, manifold learning attempts to infer low dimensibstruc-
ture from very high dimensionality data (see for exampleff4]a
survey). Here the problem has a different description, wlaerem-
bedded object is assumed to be completely known a-priotyepd
resented in such high dimensionality as to be awkward tolderce
the need to describe the same object (with little loss ofrmfion)
in a lower dimensional space sometimes with some addedatbara
istics such as linearity. Here the concepts of isometry andosh
embedding [5] are often used to justify the methods.

2. MATHEMATICAL FORMULATION

Flat Isometric 3D Camera Acquired
Surface Deformation Embedding Projection Images
> = - . 1T
/ C
T
= —a
/ C

(a) Acquisition model.
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(b) Close up and notation used.

Fig. 1. HereZ' : R? = R?® are embedding isometries and
C' : R®* = R? are camera projections. Image tangent vectors are
represented by/fj, while w;; is the corresponding reconstructed
tangent vector.

Mathematically the 2-D flat manifoldR?) is approximated by
a cloud of point feature®Q = {q; € R*}. A set of embedding
isometric functions (here loosely defined as functions tminot
change the intrinsic distance between points, see [5] fooie mig-
orous definition)Z* : R? — R? yield 3-D point cloudsZ*(Q) =
{Z"(q;) : @; € Q}. These 3-D point clouds are assumed to be ob-
served by cameras, yielding the observatigts = C* o 7%(Q),
whereC” is the camera projection function (see figure 1.a). Note
that camera motion is an isometry hence can be absorb&d by
lowing C* to be seen as the projection to a canonic camera at the
origin.

From these observations, the shape estimation problent-is fo
mulated: estimate the 2D point clog?l from multiple observations
P*. It can be formulated using orthographic cameras, scald-or
graphic cameras or other cameras, but it is assumed thabthe p
correspondence between edeh is known. This is a considered to
be a different problem and is not dealt with here. Also, thipgr
assumes all points are visible in all images.

Assuming the point cloud is dense enough so that a locally pla
nar approximation is possible, the extrinsic distance argles be-
tween neighboring points is approximately preserved byigbme-
triesZ*. Note that this is always true for the intrinsic distance, bu
for the extrinsic distance it is only true if the consideregings are
contained in a planar submanifold. This is the approxinmattzat
will be exploited to allow reconstruction of the objectsn& gen-

The paper is structured as to first provide a mathematical deeral isometry functions are hard to characterize, the knpraper-

scription of the problem in section 2, then a fast method twvige

ties of their push-forwards (in a loose sense, their “déixies”) will



be exploited instead. The key observation is that wieis an isom-
etry then the corresponding push forward at a pqinthere denoted

for neighbor estimation might be summarized as: A pair ohfsoi
are considered neighbors as long as they're observed imatiés

asZ”q,,) is represented as a Stiefel matrix (i.e. two columns of awithin a certain ball, which can vary from image to image, ot
3 x 3 orthogonal matrix) in any orthonormal base. Hence, 2D tan{point to point. These balls can be chosen to make sure aertai

gent vectors oR? are sent to 3D vectors by matrix multiplication
by this Stiefel matrix. The push forward of the observationd-
tion is here represented lg*. Hence, by composition, the trans-
formation of tangent vectors at a poigi to tangent vectors in the
observed image is given by2ax 2 matrix S¥ = C*oZ",, . When

the cameras are orthograpt@” = [I>x2> 0] theseS} matrices
are2 x 2 submatrices of larger orthogonalx 3 matrices (i.e. a
Stiefel matrix without the bottom row). Henceforth theseticalar
matrices will be designated as Sub-Stiefel. Using the Calder-
lacing Theorem [6], these matrices can be characterizedeaset
of 2 x 2 matrices with the largest singular value equal t&S§: =

{SQ><2 : [f :] € S@(S)} = {S2x2 : Omaz(S) = 1}. These ma-
trices will play an important role in the next sections.

Hence the objective will be to solve the following optimimpat
problem, where the notatiofy] means thejth neighboring index
point of i: W]

. — 2
min 3>, |l — pF) — s7OF (a) — av)|

st. OF eSS, qi e R {sf} € camera model set

@)

which roughly states that at eaé¢th point in thekth image, there
must exist a Sub-Stiefel matrix describing its neighbjgts Please
see figure 1.b for a visual description of the variables. Héye
orthographic cameras the third constraint should/be= 1 (as de-
scribed above), for scaled orthography it should reéfae- s% vk €

minimum number of neighbors exist for each point.

Please note that the outbut of this algorithm does not gtegan
that all returned points are actual neighbors, but it seenpsdvide
good results, especially as the number of images increseis)iz-
ing the chance of a “collapsed” area of the surface in eveagin

3.2 Bilinear Factorization. As shown in [7], bilinear factorization
is a powerfull tool used to solve many engineering problerfs.
apply the factorization method, the constraints will be pernarily
relaxed, which also allows the’ to be fused with th€* matrices,
yielding the much simpler problem:

min ZZJk||(pﬁ] - pf) - Ofwi[i]“
st. O} € GL(2), wyy €R?

2

)

When all neighbors of all points are seen in every imagesginy
variables pointwise in observation, shape and model nestric

Vi o Vit 0]
V,; = 0O; = : W; = [Wi[l] Wz’[ni]}

allows the problem to be rewritten, decoupled at each point:
min V,— O,WZ 2
Z ( HA H ) (3)

st. 0, € GL(2K,2), W; € R**™
Here rank factorization techniques apply directly, yietga pair of
O; andW; matrices for each point. Since the solution is not unique

{1..K} and for a less constrained camera (even more than a pargor any matricesG; € GL(2), O;G; ' andG, W7 are also solu-

perspective camera) these parameters aresfreeR.

Considering the objective function and set of constraihts t
problem is not trivial to solve even in the simplest orthquiria cam-
era case. The approach taken is to first obtain a “good endbhghé
undefined) approximation and then use an iterative optitoizaal-
gorithm to improve the solution.

3. SUB-OPTIMAL SOLUTION TO ISOMETRIC
RECONSTRUCTION OF FLEXIBLE MANIFOLDS
This section provides a way to compute an initial approxiomafor
the problem in equation 1. The full problem is broken in saler
much simpler subproblems, chained together to obtain tla rfin
sult. This paper describes an approach that is applicatdeveral
types of cameras, and degrades gracefully in the presencagsf.

tions), there are some degrees of freedom that still need fixéd.
These will be used to approximate the discarded constraints

When occlusion is considered, matiix; is only partially de-
fined (has missing entries) so a rank completion algorithrstrha
applied [8]. Rank completion algorithms are usually hanthamd
with the factorization method already discussed so usihgri¢ is a
trivial extension.

3.3 Shape ConsistencyThis section will use the degrees of free-
dom left in matriceds; to approximate, in a later defined sense, the
constraintsw;(;; = qp;] —q: that were relaxed between problem for-
mulations 1 and 2. Up to now, the solution is not anchored atsp
consisting only of sets of “free” vectors. Furthermore stheectors
are not consistent with each other, in the sensewhat# —wj;

To describe how an approximate solution is obtained the-probwhenever both vectors exist and that, # wi; + w;, Whenever

lem is broken into 4 chained sub-problems, described iddaliy
in the next sub sectionst. Discover local neighbors from the ob-

served images2. Use bilinear factorization to freeze some degrees
of freedom in problem 13. Impose the shape consistency constraint
wi; ~ q; — q; Where the approximation is properly defined in the

next sections4. Impose the model consistency constradjt € SS
by freezing the remaining degrees of freedom not previouséd.

these 3 vectors exist.
Defining the surface neighbor vector matrices as

Q:

(notice the neighbdf] notation). Imposing shape consistency means
finding matricesG; and pointsy; such thatG; W; —Q; ~ 0. Since
the left side is clearly linear on a larger matrix containaigpoints

[ap) — Qi Q2 — iy - Gpn] — G

3.1 Neighbor Estimation. The formulation presented hints at the Q = [q: g2 ... qn] and matricesG;, there are matriced; and

need to find local neighbors. This problem is not trivial sinbe
actual distances between points is not known, only the ntistde-
tween camera projected points. The problem is that if théaser
appears folded in an image, some intrinsically far pointghmseem
close together. The converse holds more information thoagtong
as there is a single image observing a pair of points as nogeiar
each other they’'ll be excluded as neighbors. So a simpleitigo

X =1Q, Gi, G2 ..

written asX A; ~
There’s an additional property that needs to be understdiod.

stems from the fact that if a matriX is given that satisfieX A; =

0, then any pre-multiplication of this by another matfi is also

a solution: GXA; = 0. This means that the problem is ill deter-

mined, and that the best that can be done is provide a solugida

. Gn] such that the previous equation can be



a global linear transformation. There is also a trivial soluwhich
consists of making the lines @ constant (i.e. all points the same)
andG; = 0, implying that matricesA; have a kernel with eigen-
vector[l, ... 1, 0, ..., 0]. This trivial solution must be excluded by
allowing only solutions on the orthogonal complement o§ ttdn-
straint. With this in mind, an optimization problem can benfa-
lated as

min 3, [ XAi|ZL @
st. X €GL(2,3N), X[11.x 012x]T =0

Here the norm subscript is used to hint that this must B&L.42)
left-invariant function. This problem reduces to a spaigeralue
problem of a sparse symmetric matrix when a standard lefirinv
ant function with a simple solution that serves the purpssasid:

X A2y ) = tr {A,-TXT (xx7)~! XAi}. Using the property
of the trace function {tAB) = tr(AB), the change of variables

Y = (XX”)"?X, and the fact that the function BI(2) left
invariant, the problem results in a sparse eigenvalue probl

min  tr{YAY"}

T 2,3N T (5)
st. YY =I YeR™", Y[lin O12n] =0
This is exactly the formulation problem of the second anddthi
eigenvalue of a symmetric matriA = >, A;A with a least
eigenvector known to bgl 0] (as is the case). This can be ob-
tained efficiently with available software taking into aaot the
sparcity of matrixA (see for example [9]).

SinceY is obtained fromX by left multiplication by a matrix,
and since the cost function is left invariaX;” = Y™ is a solution
to the original problem. MatriX* contains all matrice€* andG;
as desired. MatriXQ™* contains an initial embedding of the points,
up to aGL(2) transformation that will be computed next.

3.4 Camera Model Consistency.Bear in mind that there is still
a globalG € GIL(2) ambiguity which, along with the merged
constants inD; will be used to “straighten the axes” by imposing
the still ignored camera acquisition model. The idea is aycefor
aG € GL(2) matrix that forces the matricdd; G /s¥ to minimize
some sort of distance to the Sub-Stiefel matrix set. Duedattar-
acterization given previously, we know that this) should depend
on the maximum singular value of its argument, but other thén
(and the fact that it should be a distance function) thereigatu-
rally given choice of function, the best that can be done roowa
the choice is impose desired properties for the solutiorthadigh
no motivation is presented here, the following optimizatwoblem
is proposed, to force a set of given matricesto be as close as
possible to the Sub-Stiefel set;

min 3", 10g” (0maz (Si G)) ©)
st. G eGL(2)
whereonq. () returns the largest singular value.
This problem can be reduced to an optimization probleRiA,
which makes it significantly easier to solve, since it is a paot two
dimensional differentiable manifold, definitely withinethreach of
branch and bound algorithms if nothing better is possiblayié
equally important is that the function can now be visualjzdtbw-
ing intuition and a clearer idea of how hard it is to solve. &nf
tunately sometimes it shows 2 different local minima. Desfhis

shortcoming, when used to solve the problem at hand it dogs pr

duce seemingly good results without much concern over whbiczd
minimum is used (usually the minima are very close togethdis-
tinguishable when the function is seen globally).

Since theo .. IS Smooth almost everywhere (it is non-smooth
when both eigenvalues are equal), gradient vector and hdfesse
computable for every function involved. It is relativelyaghtfor-
ward to implement a Newton-like method on the projectivecepa
(see for example [10]).

Since the maximum eigenvalue function is invariant to fotes,
this cost function provides a solution up to a global rotatidhis is
to be expected since no global referential has been imposed.

Looking back, up to this section a set of matri(fbg (already
multiplied by G ! computed in the previous section) have been
computed. These matrices are known up to a gl@balatrix. When
equation 2 was written, the variable§ were fused with theD¥
matrices:OF = OF/s*. These are the matrices that need to be as
close to Sub-Stiefel as possible:

min 3. % (OF G/st)
st. G e GL(2), {sf} € cameramodel set

When simple orthographic cameras are uséd=t 1) the problem
assumes the exact form as problem 6. Interestingly, the sacke
used to describe the problem as an optimization problemdjepr
tive space can be re-used to allow use of more complicate@rzam
models. When scaled orthographic cameras are uéed,sf hence

there’s a unique scale factsf for each image:

H 2 k* k
min o, (™0 zkidsg (oi G/s)
st. s"eR
st. GeGL(2)

The only change is that there’s an additional scale amlyignithe
final reconstruction (adding to the global rotation matrixhis is
expected when using scaled orthography.

If the camera model is the least constrained posszif)leg R,
the problem is trivial, with solution’ = ¢4 (OF*). SinceG is
not used, this is the global ambiguity. Hence the solutiotaioled
in the previous section is the best that can be hoped for.

4. GLOBAL OPTIMIZATION
From the beginning the objective has been to obtain a solditio
problem 1. While the previous section has provided an inia
proximation to this problem, it does so through a series wiptii
fications. This section now proposes to take the previoustisal
and actually achieve a (possible local) minimizer for thelem.
Since the problem is not smootBY is not a smooth manifold), it
is hard to implement even a gradient descent method. Hereave p
pose to take a much simpler approach of coordinate cyclotgirg
a conceptually important sub-problem in the process.

Taking into account that the previous section obtained@fpr
mate solution®¥*, q; ands’, the proposal is to iteratively obtain
a better estimate for one set of these variables, while kgepk re-
maining ones fixed. Since of these 3 sets@{¢ are the only ones
that do not obey the constraints (the previous section qoyci-
mated them), this is the set of variables that shall be usstatothe
iterative process.

4.1 Solving for OF. Grouping the problems variables in indgx
similarly to what was done in problem 3, and fixing all varibl
exceptO¥, the subproblem to be solved is

min 3, [V - OfVVfH2

, 7
st. OFess )

where hereW’ = s*W, absorvess® as well asq;. Notice that
the terms are not related, hence this can be broken into many s
problems, each involving a sing@* matrix. This problem will be



known as the x 2 Sub-Stiefel Procrustes problem. Although not

presented here, this problem has an exact solution up tom{intie
real roots of a 6 degree polynomial, obtained through a “dacall
time” computation of a Grobner basis from Algebraic Geamet

4.2 Solving for q; and s¥. The cost function is linear in each of

these variables hence they can be iterated using simplesigaare
regression techniques.

5. RESULTS
Two experiment sets are shown, one with synthetic noisy, da¢a

neighbors were used.

with a significant amount of gaussian noise added (standarigd
tion about half the intergrid distance). These images wee fed to
the algorithmin 2 runs, one where only 6 images were useatties
using all 18 images. The results were then rotated and riattipy
a scalar (global ambiguity of using scaled orthographiceras) to
best fit the ground truth data. Notice that the final recorsitvaos
are close to the ground truth image, without any noticediasng.

.|‘ N

(a) Acquired image.
other with hand clicked real images. In both cases the 8 sfose Fig. 4. Results of applying the algorithm to 7 camera acquired im-

(a) Results obtained.

In the synthetic image case (see fi@uresagdes.
and 3) a set of 18 images were generated similar to the onesisho

In the future it would be interesting to improve the global al
gorithm, and maybe integrate second order informatiomgu#ie
the information contained in neighboring Sub-Stiefel nicas. This
would probably correct the pinching effect occurring whea defor-
mations are biased to occur in a particular manner in therohefole
object. Also, due to space requirements, some ideas wengitaf

As expected, the number of images helps reduce the amouaisef n - out proof. These are available on demand.

in the reconstruction.
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