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ABSTRACT

This paper deals with the reconstruction of smooth, flexible, isomet-
rically embedded flat surfaces, such as a sheet of paper or a flag
waving in the wind, from a set of projected observations suchas
camera images. To solve the problem, a set of matched features of
the waving object at different poses is needed, which are then ap-
plied to the reconstruction algorithm here described. The complete
algorithm consists of 2 phases, the first obtaining an initial approx-
imation from local features, the second uses this result to iterate a
global optimization algorithm. To validate the algorithm,synthetic
data with noise is generated, reconstructed and compared toground
truth data. Also, a second experiment consisting of real images of a
sheet of paper is shown.

Index Terms— Machine vision, Isometric Non-Rigid Recon-
struction, Manifold Learning

1. INTRODUCTION
This paper provides a solution to the problem of reconstructing iso-
metrically embedded flat surfaces in 3D from a set of partially cali-
brated images where only intrinsic parameters are known. The pro-
posed algorithm is inspired from manifold learning techniques and
can be used in this setting as well.

The motivating application here is to infer the structure ofa non-
rigid isometric surface observed in multiple images. The example
provided is to reconstruct a waving sheet of textured paper (or a flag)
observed in multiple images.

Prior work in a similar area, inferring the 3D embedding froman
observed image assuming the surface model to be known, includes
[1] which provide a closed form solution to the problem of regis-
tering a camera observation to an apriori known model embedded
in 3D. Also in [2] the authors propose to learn the statistical defor-
mation model of deformable surfaces and use the gained knowledge
to recover 3D structure from a single camera, usable even in low
texture settings. Other work include [3] which propose to estimate
smooth image wraps (not necessarily isometric) by minimizing com-
pound energy while inferring a smoothing parameter as well.To our
knowledge, this is the first work that attempts to learn the underlying
surface from multiple camera observations.

In a seemingly unrelated branch of non linear dimensionality re-
duction, manifold learning attempts to infer low dimensional struc-
ture from very high dimensionality data (see for example [4]for a
survey). Here the problem has a different description, where an em-
bedded object is assumed to be completely known a-priory, but rep-
resented in such high dimensionality as to be awkward to use.Hence
the need to describe the same object (with little loss of information)
in a lower dimensional space sometimes with some added character-
istics such as linearity. Here the concepts of isometry and smooth
embedding [5] are often used to justify the methods.

The paper is structured as to first provide a mathematical de-
scription of the problem in section 2, then a fast method to provide

an initial suboptimal solution is described in section 3. The global
optimization is described in section 4. Finally results areprovided
in section 5 and conclusions are drawn.

2. MATHEMATICAL FORMULATION
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Fig. 1. Here Ii : R
2 ⇒ R

3 are embedding isometries and
Ci : R

3 ⇒ R
2 are camera projections. Image tangent vectors are

represented byvk
ij , while wij is the corresponding reconstructed

tangent vector.

Mathematically the 2-D flat manifold (R
2) is approximated by

a cloud of point featuresQ =
˘
qi ∈ R

2
¯

. A set of embedding
isometric functions (here loosely defined as functions thatdo not
change the intrinsic distance between points, see [5] for a more rig-
orous definition)Ik : R

2 → R
3 yield 3-D point cloudsIk(Q) =˘

Ik(qi) : qi ∈ Q
¯

. These 3-D point clouds are assumed to be ob-
served by cameras, yielding the observationsPk = Ck ◦ Ik(Q),
whereCk is the camera projection function (see figure 1.a). Note
that camera motion is an isometry hence can be absorbed byIk al-
lowing Ck to be seen as the projection to a canonic camera at the
origin.

From these observations, the shape estimation problem is for-
mulated: estimate the 2D point cloudQ from multiple observations
Pk. It can be formulated using orthographic cameras, scaled ortho-
graphic cameras or other cameras, but it is assumed that the point
correspondence between eachPk is known. This is a considered to
be a different problem and is not dealt with here. Also, this paper
assumes all points are visible in all images.

Assuming the point cloud is dense enough so that a locally pla-
nar approximation is possible, the extrinsic distance and angles be-
tween neighboring points is approximately preserved by theisome-
triesIk. Note that this is always true for the intrinsic distance, but
for the extrinsic distance it is only true if the considered points are
contained in a planar submanifold. This is the approximation that
will be exploited to allow reconstruction of the objects. Since gen-
eral isometry functions are hard to characterize, the knownproper-
ties of their push-forwards (in a loose sense, their “derivatives”) will



be exploited instead. The key observation is that whenIk is an isom-
etry then the corresponding push forward at a pointqi (here denoted
asIk

qi∗
) is represented as a Stiefel matrix (i.e. two columns of a

3 × 3 orthogonal matrix) in any orthonormal base. Hence, 2D tan-
gent vectors ofR2 are sent to 3D vectors by matrix multiplication
by this Stiefel matrix. The push forward of the observation func-
tion is here represented byCk. Hence, by composition, the trans-
formation of tangent vectors at a pointqi to tangent vectors in the
observed image is given by a2×2 matrixSk

i = Ck ◦Ik
pi∗

. When

the cameras are orthographicCk =
ˆ
I2×2 0

˜
theseSk

i matrices
are2 × 2 submatrices of larger orthogonal3 × 3 matrices (i.e. a
Stiefel matrix without the bottom row). Henceforth these particular
matrices will be designated as Sub-Stiefel. Using the Cauchy Inter-
lacing Theorem [6], these matrices can be characterized as the set
of 2 × 2 matrices with the largest singular value equal to 1:SS =
n

S2×2 :
»

S ∗

∗ ∗

–

∈ SO(3)
o

= {S2×2 : σmax(S) = 1}. These ma-

trices will play an important role in the next sections.
Hence the objective will be to solve the following optimization

problem, where the notation[j] means thejth neighboring index
point of i:

min
P

i,j,k

‚
‚(pk

[j] − pk
i ) − sk

i O
k
i

wi[j]

z }| {

(q[j] − qi)
‚
‚2

s.t. O
k
i ∈ SS, qi ∈ R

2, {sk
i } ∈ camera model set

(1)

which roughly states that at eachith point in thekth image, there
must exist a Sub-Stiefel matrix describing its neighbors[j]. Please
see figure 1.b for a visual description of the variables. Here, for
orthographic cameras the third constraint should besk

i = 1 (as de-
scribed above), for scaled orthography it should readsk

i = sk
j ∀k ∈

{1..K} and for a less constrained camera (even more than a para-
perspective camera) these parameters are freesk

i ∈ R.
Considering the objective function and set of constraints the

problem is not trivial to solve even in the simplest orthographic cam-
era case. The approach taken is to first obtain a “good enough”(here
undefined) approximation and then use an iterative optimization al-
gorithm to improve the solution.

3. SUB-OPTIMAL SOLUTION TO ISOMETRIC
RECONSTRUCTION OF FLEXIBLE MANIFOLDS

This section provides a way to compute an initial approximation for
the problem in equation 1. The full problem is broken in several
much simpler subproblems, chained together to obtain the final re-
sult. This paper describes an approach that is applicable toseveral
types of cameras, and degrades gracefully in the presence ofnoise.

To describe how an approximate solution is obtained the prob-
lem is broken into 4 chained sub-problems, described individually
in the next sub sections:1. Discover local neighbors from the ob-
served images;2. Use bilinear factorization to freeze some degrees
of freedom in problem 1;3. Impose the shape consistency constraint
wij ≈ qi − qi where the approximation is properly defined in the
next sections;4. Impose the model consistency constraintOk

i ∈ SS

by freezing the remaining degrees of freedom not previouslyused.

3.1 Neighbor Estimation. The formulation presented hints at the
need to find local neighbors. This problem is not trivial since the
actual distances between points is not known, only the distance be-
tween camera projected points. The problem is that if the surface
appears folded in an image, some intrinsically far points might seem
close together. The converse holds more information though: as long
as there is a single image observing a pair of points as not being near
each other they’ll be excluded as neighbors. So a simple algorithm

for neighbor estimation might be summarized as: A pair of points
are considered neighbors as long as they’re observed in all images
within a certain ball, which can vary from image to image, andfrom
point to point. These balls can be chosen to make sure a certain
minimum number of neighbors exist for each point.

Please note that the outbut of this algorithm does not guarantee
that all returned points are actual neighbors, but it seems to provide
good results, especially as the number of images increases,minimiz-
ing the chance of a “collapsed” area of the surface in every image.

3.2 Bilinear Factorization. As shown in [7], bilinear factorization
is a powerfull tool used to solve many engineering problems.To
apply the factorization method, the constraints will be temporarily
relaxed, which also allows thesk

i to be fused with theOk
i matrices,

yielding the much simpler problem:

min
P

i,j,k

‚
‚(pk

[j] − pk
i ) − Ôk

i wi[j]

‚
‚2

s.t. Ô
k
i ∈ GL(2), wi[j] ∈ R

2 (2)

When all neighbors of all points are seen in every images, grouping
variables pointwise in observation, shape and model matrices
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5 Ôi =

2

6
4

Ô1
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allows the problem to be rewritten, decoupled at each point:
X

i

„
min

‚
‚Vi − ÔiWi

‚
‚2

s.t. Ôi ∈ GL(2K, 2), Wi ∈ R
2×ni

«

(3)

Here rank factorization techniques apply directly, yielding a pair of
Ô∗

i andW∗

i matrices for each point. Since the solution is not unique
(for any matricesGi ∈ GL(2), Ô∗

i G
−1
i andGiW

∗

i are also solu-
tions), there are some degrees of freedom that still need to be fixed.
These will be used to approximate the discarded constraints.

When occlusion is considered, matrixVi is only partially de-
fined (has missing entries) so a rank completion algorithm must be
applied [8]. Rank completion algorithms are usually hand inhand
with the factorization method already discussed so using ithere is a
trivial extension.

3.3 Shape Consistency.This section will use the degrees of free-
dom left in matricesGi to approximate, in a later defined sense, the
constraintswi[j] = q[j]−qi that were relaxed between problem for-
mulations 1 and 2. Up to now, the solution is not anchored in space,
consisting only of sets of “free” vectors. Furthermore, these vectors
are not consistent with each other, in the sense thatwij 6= −wji

whenever both vectors exist and thatwik 6= wij + wjk whenever
these 3 vectors exist.

Defining the surface neighbor vector matrices as

Qi =
ˆ
q[1] − qi, q[2] − qi, ..., q[n] − qi

˜

(notice the neighbor[·] notation). Imposing shape consistency means
finding matricesGi and pointsqi such thatGiW

∗

i −Qi ≈ 0. Since
the left side is clearly linear on a larger matrix containingall points
Q = [q1 q2 ... qN ] and matricesGi, there are matricesAi and
X = [Q, G1, G2 . . . GN ] such that the previous equation can be
written asXAi ≈ 0.

There’s an additional property that needs to be understood.It
stems from the fact that if a matrixX is given that satisfiesXAi =
0, then any pre-multiplication of this by another matrixG is also
a solution:GXAi = 0. This means that the problem is ill deter-
mined, and that the best that can be done is provide a solutionup to



a global linear transformation. There is also a trivial solution which
consists of making the lines ofQ constant (i.e. all points the same)
andGi = 0, implying that matricesAi have a kernel with eigen-
vector[1, ... 1, 0, ..., 0]. This trivial solution must be excluded by
allowing only solutions on the orthogonal complement of this con-
straint. With this in mind, an optimization problem can be formu-
lated as

min
P

i ‖XAi‖
2
GL(2)

s.t. X ∈ GL(2, 3N), X[11,N 01,2N ]T = 0
(4)

Here the norm subscript is used to hint that this must be aGL(2)
left-invariant function. This problem reduces to a sparse eigenvalue
problem of a sparse symmetric matrix when a standard left invari-
ant function with a simple solution that serves the purpose is used:

‖XAi‖
2
GL(2) = tr

n

AT
i XT

`
XXT

´
−1

XAi

o

. Using the property

of the trace function tr(AB) = tr(AB), the change of variables

Y =
`
XXT

´
−1/2

X, and the fact that the function isGL(2) left
invariant, the problem results in a sparse eigenvalue problem:

min tr
˘
YAYT

¯

s.t. YY
T = I, Y ∈ R

2,3N , Y[11,N 01,2N ]T = 0
(5)

This is exactly the formulation problem of the second and third
eigenvalue of a symmetric matrixA =

P

i AiA
T
i with a least

eigenvector known to be
ˆ
1 0

˜
(as is the case). This can be ob-

tained efficiently with available software taking into account the
sparcity of matrixA (see for example [9]).

SinceY is obtained fromX by left multiplication by a matrix,
and since the cost function is left invariant,X∗ = Y∗ is a solution
to the original problem. MatrixX∗ contains all matricesQ∗ andG∗

i

as desired. MatrixQ∗ contains an initial embedding of the points,
up to aGL(2) transformation that will be computed next.

3.4 Camera Model Consistency.Bear in mind that there is still
a globalG ∈ GL(2) ambiguity which, along with the mergedsk

i

constants inÔ∗

i will be used to “straighten the axes” by imposing
the still ignored camera acquisition model. The idea is to search for
aG ∈ GL(2) matrix that forces the matriceŝO∗

i G/sk
i to minimize

some sort of distance to the Sub-Stiefel matrix set. Due to the char-
acterization given previously, we know that thisd(·) should depend
on the maximum singular value of its argument, but other thanthis
(and the fact that it should be a distance function) there is no natu-
rally given choice of function, the best that can be done to narrow
the choice is impose desired properties for the solution. Although
no motivation is presented here, the following optimization problem
is proposed, to force a set of given matricesSi to be as close as
possible to the Sub-Stiefel set:

min
P

i log2 (σmax (Si G))
s.t. G ∈ GL(2)

(6)

whereσmax(·) returns the largest singular value.
This problem can be reduced to an optimization problem inRP

2,
which makes it significantly easier to solve, since it is a compact two
dimensional differentiable manifold, definitely within the reach of
branch and bound algorithms if nothing better is possible. Maybe
equally important is that the function can now be visualized, allow-
ing intuition and a clearer idea of how hard it is to solve. Unfor-
tunately sometimes it shows 2 different local minima. Despite this
shortcoming, when used to solve the problem at hand it does pro-
duce seemingly good results without much concern over whichlocal
minimum is used (usually the minima are very close together,indis-
tinguishable when the function is seen globally).

Since theσmax is smooth almost everywhere (it is non-smooth
when both eigenvalues are equal), gradient vector and Hessian are
computable for every function involved. It is relatively straightfor-
ward to implement a Newton-like method on the projective space
(see for example [10]).

Since the maximum eigenvalue function is invariant to rotations,
this cost function provides a solution up to a global rotation. This is
to be expected since no global referential has been imposed.

Looking back, up to this section a set of matricesÔi∗

k (already
multiplied by G∗

i
−1 computed in the previous section) have been

computed. These matrices are known up to a globalG matrix. When
equation 2 was written, the variablessk

i were fused with theOk
i

matrices:Ok
i = Ôk

i /sk
i . These are the matrices that need to be as

close to Sub-Stiefel as possible:

min
P

(i,k) d2
SS

“

Ôk∗

i G/sk
i

”

s.t. G ∈ GL(2), {sk
i } ∈ camera model set

When simple orthographic cameras are used (sk
i = 1) the problem

assumes the exact form as problem 6. Interestingly, the sametrick
used to describe the problem as an optimization problem in projec-
tive space can be re-used to allow use of more complicated camera
models. When scaled orthographic cameras are used,sk

i = sk
j hence

there’s a unique scale factorsk for each image:

min
P

k

 

min
P

i d2
SS

“

Ok
i
∗

G/sk
”

s.t. sk ∈ R

!

s.t. G ∈ GL(2)

The only change is that there’s an additional scale ambiguity in the
final reconstruction (adding to the global rotation matrix). This is
expected when using scaled orthography.

If the camera model is the least constrained possiblesk
i ∈ R,

the problem is trivial, with solutionsk
i = σmax(Ôk∗

i ). SinceG is
not used, this is the global ambiguity. Hence the solution obtained
in the previous section is the best that can be hoped for.

4. GLOBAL OPTIMIZATION
From the beginning the objective has been to obtain a solution for
problem 1. While the previous section has provided an initial ap-
proximation to this problem, it does so through a series of simpli-
fications. This section now proposes to take the previous solution
and actually achieve a (possible local) minimizer for the problem.
Since the problem is not smooth (SS is not a smooth manifold), it
is hard to implement even a gradient descent method. Here we pro-
pose to take a much simpler approach of coordinate cycling, solving
a conceptually important sub-problem in the process.

Taking into account that the previous section obtained approxi-
mate solutionsOk∗

i , qi andsk
i , the proposal is to iteratively obtain

a better estimate for one set of these variables, while keeping the re-
maining ones fixed. Since of these 3 sets theOk∗

i are the only ones
that do not obey the constraints (the previous section only approxi-
mated them), this is the set of variables that shall be used tostart the
iterative process.

4.1 Solving for Ok
i . Grouping the problems variables in indexj,

similarly to what was done in problem 3, and fixing all variables
exceptOk

i , the subproblem to be solved is

min
P

i,k

‚
‚Vk

i −Ok
i Ŵ

k
i

‚
‚2

s.t. O
k
i ∈ SS

(7)

where hereŴk
i = sk

i Wi absorvessk
i as well asqi. Notice that

the terms are not related, hence this can be broken into many sub-
problems, each involving a singleOk

i matrix. This problem will be



known as the2 × 2 Sub-Stiefel Procrustes problem. Although not
presented here, this problem has an exact solution up to finding the
real roots of a 6 degree polynomial, obtained through a “oncefor all
time” computation of a Gröbner basis from Algebraic Geometry.

4.2 Solving for qi and sk
i . The cost function is linear in each of

these variables hence they can be iterated using simple least square
regression techniques.

5. RESULTS
Two experiment sets are shown, one with synthetic noisy data, the
other with hand clicked real images. In both cases the 8 closest
neighbors were used. In the synthetic image case (see figures2
and 3) a set of 18 images were generated similar to the ones shown,
with a significant amount of gaussian noise added (standard devia-
tion about half the intergrid distance). These images were then fed to
the algorithm in 2 runs, one where only 6 images were used, theother
using all 18 images. The results were then rotated and multiplied by
a scalar (global ambiguity of using scaled orthographic cameras) to
best fit the ground truth data. Notice that the final reconstructions
are close to the ground truth image, without any noticeable shearing.
As expected, the number of images helps reduce the amount of noise
in the reconstruction.

(a) cylinder (b) sine wave (c) swiss roll

Fig. 2. Input data wrapped around different shapes. The set contains
18 images similar to the ones shown.

(a) 6 Images. (a) 18 Images.

Fig. 3. Result of the algorithm (red crosses) after applying 5 global
iterations. Ground truth (without noise) is provided in blue circles
for comparison.

In the real image case, 7 images were obtained, using a laptop
webcam, at different distances from a waving sheet of paper with
an easily identifiable printed pattern. The images were thenhand
clicked and the points were fed to the algorithm. The resultsobtained
are shown in figure 4. Note that globally the reconstruction appears
to have a slight pinch in the middle probably due to some bias in the
distortions applied to the sheet of paper; with hand made distortions
the central part is usually the most curved.

6. CONCLUSION
An algorithm for performing reconstructions of images observing
isometrically embedded flat surfaces is described. The algorithm
consists of two separate phases, first obtaining an approximate solu-
tion and then improving it with a global algorithm. Validation was
provided, demonstrating that the algorithm produces the expected
results.

(a) Acquired image. (a) Results obtained.

Fig. 4. Results of applying the algorithm to 7 camera acquired im-
ages.

In the future it would be interesting to improve the global al-
gorithm, and maybe integrate second order information, using the
the information contained in neighboring Sub-Stiefel matrices. This
would probably correct the pinching effect occurring when the defor-
mations are biased to occur in a particular manner in the deformable
object. Also, due to space requirements, some ideas were left with-
out proof. These are available on demand.
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