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Av. Rovisco Pais, 1049–001

Lisbon, Portugal
email: jxavier@isr.ist.utl.pt

Jonathan H. Manton

Department of Information Engineering
Research School of Information Sciences and Engineering

Australian National University
Canberra ACT 0200, Australia

email: j.manton@ieee.org

ABSTRACT

The autoregressive (AR) process is fundamental to linear signal pro-
cessing and is commonly used to model the behaviour of an object
evolving on Euclidean space. In real life, there are myriad examples
of objects evolving not on flat spaces but on curved spaces such as
the surface of a sphere. For instance, wind-direction studies in me-
teorology and the estimation of relative rotations of tectonic plates
based on observations on the Earth’s surface deal with spherical data,
while subspace tracking in signal processing is actually inference on
the Grassmann manifold. This paper considers how to extend the
AR process to one evolving on a curved space, or in a general, a
manifold. Doing so is non-trivial, and in fact, several different exten-
sions are proposed, along with their advantages and disadvantages.
Algorithms for estimating the parameters of these generalized AR
processes are derived.

1. INTRODUCTION

The autoregressive (AR) process is a popular model for a stochastic
source on Euclidean space. However, in many engineering scenarios
the observations lie on a curved space (spheres, orthogonal matri-
ces, etc) or are more naturally interpreted in a quotient space (pro-
jective spaces, Grassman manifolds, etc). The field of directional
statistics is filled with such examples: examining wind directions
corresponds to studying time-series on the unit-circle, spherical data
arises when examining relative rotations of Earth’s tectonic plates,
etc. See [1, 2, 3, 4] and the references therein for more examples. It
is thus of interest to extend the AR modelling tool to such spaces. A
common feature on the aforementioned observation spaces is the fact
that they can be structured as Riemannian manifolds. In this paper,
we discuss the extension of the AR process to Riemannian mani-
folds. We restrict our attention to the discrete-time case. Although
some particular continuous-time stochastic models have been pro-
posed for manifolds, e.g., Lévy processes in Lie groups [5], the spe-
cific AR discrete-time case has received little attention (also, there
are some striking differences between continuous-time and discrete-
time stochastic processes on manifolds: see [4] for an example on
the unit-circle).

2. REVIEW OF AR PROCESSES ON THE UNIT-CIRCLE

In order to put in perspective our generalization of AR models to Rie-
mannian manifolds, we start by reviewing the three main approaches
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taken in constructing AR processes on the unit-circle S1 = {z ∈
R

2 : ‖z‖ = 1}. See [1, 2] for a more in-depth discussion. To the
best of our knowledge, the unit-circle is the manifold for which most
AR models have been proposed. There are essentially three types of
approaches: projected processes, wrapped processes and linked pro-
cesses.

Projected processes: this approach induces a stochastic process
on S1 by radially projecting onto the unit-circle a process {(xk, yk) :
k = 1, 2, . . .} evolving on the plane R

2. The processes {xk} and
{yk} may be coloured. As a special case, if {xk} and {yk} represent
independent zero-mean Gaussian processes with the same variance,
then each zk = (xk, yk)/ ‖(xk, yk)‖ is uniformly distributed on S1;

Wrapped processes: let {xk} be an AR process of order p on
the real line R. By wrapping R onto the unit-circle as x �→ ei2πx

(here, we are identifying S1 with the subset of complex numbers
with unit-modulus) we construct the so-called circular wrapped au-
toregressive process of order p, see [3];

Linked processes: a link function is a bijective, odd monotone
map from R onto (−π, π). Popular choices: the inverse tan and
the scaled probit links given by g(x) = 2 tan−1 x and g(x) =
2π (Φ(x) − 0.5), respectively (Φ is the distribution function of the
standard normal). Similar to the wrapping map, link functions can
transfer processes {xk} on the real line to ones on the unit-circle as
{zk = (cos(g(xk)), sin(g(xk)))}. If {xk} denotes an AR process
of order p then {zk} is a so-called circular linked autoregressive
process of order p on the unit-circle. A mean direction µ can be as-
signed to {zk} through multiplication with the phasor eiµ. Within
this model, realizations of zk near ei(µ+π) are scarce, because only
realizations of xk with large magnitude are mapped there.

3. A NEW AR MODEL FOR RIEMANNIAN MANIFOLDS

When considering the construction of AR processes on arbitrary Rie-
mannian manifolds, it is natural to start by trying to extend the three
approaches delineated in section 2 for the unit-circle. However, we
argue that none is really suited for our purpose, which consists in
constructing AR processes on a Riemannian manifold with intrinsic-
only tools. We will make a new proposal for an AR model for arbi-
trary Riemannian manifolds – its particularization for the unit-circle
is discussed in section 5. Our objections to the aforementioned three
approaches are as follows.

Projected processes: this approach relies on projecting an AR
process evolving on an ambient Euclidean space onto our Rieman-
nian manifold M . Clearly this construction is not intrinsic to M : we
need first to represent M as a submanifold of some R

n. Although
such a smooth embedding can always be found at least theoretically



by Whitney’s theorem [6] (even an isometric one exists by Nash’s
theorem) the main drawback here is that all the subsequent analysis
will depend on the particular choice of the embedding we adopted;

Linked processes: essentially, the same argument used in the
previous paragraph applies here. Indeed, this approach requires again
the presence of an extrinsic object to M , the link map, and all the
features of the resulting AR process will depend strongly on the par-
ticular link adopted (we leave aside the discussion about the easiness
of finding such a link for a generic manifold);

Wrapped processes: this approach is an intrinsic one and can
readily be extended to Riemannian manifolds, at least those which
are connected and geodesically complete. Indeed, for this class of
manifolds the Riemannian exponential map at p ∈ M , denoted
Expp : TpM → M , which acts from the tangent space to M at
p is an onto map (this is Hopf-Rinow’s theorem [6]). Thus, we can
create a standard AR process on the linear tangent space TpM of
a particular point p ∈ M and wrap it onto M through Riemannian
exponentiation. Note that, for the particular case of M = S1, we do
recover the circular wrapped autoregressive process discussed ear-
lier (by letting p = (1, 0) and assuming, as usual, that S1 is viewed
as a Riemannian submanifold of R

2). Our main discomforts regard-
ing this approach are: (i) a particular point p is granted a privileged
role among all the others in the manifold M ; (ii) the manifold M
(and any additional structure that it might possess, e.g., a Lie group
structure) is essentially ignored in the construction of the AR pro-
cess: the latter evolves on the flat tangent space TpM and M enters
the picture only as the range space of the Expp map.

New AR model. Let (M, g) be a Riemannian manifold. For simplic-
ity, we shall assume that M is connected and the Riemannian metric
g makes M geodesically complete (e.g., compactness of M is a suf-
ficient condition for this to occur). Our inspiration for the new AR
model originates in a possible interpretation of an AR model on R

n.
Let {xk} be an AR process of order p evolving on R

n. We have

xk = A1xk−1 + · · · + Apxk−p + noise (1)

where each Ai denotes an n × n matrix. Defining the increments
∆k = xk − xk−1 we have

xk = xk−1 + ∆k (2)

where the sequence of increments is governed by the recursive iter-
ation

∆k = A1∆k−1 + · · · + Ap∆k−p + noise. (3)

Viewing R
n as a Riemannian manifold (the usual flat Riemannian

metric is assumed) we can interpret (2) as

xk = Expxk−1
(∆k) . (4)

That is, xk is found by travelling along the geodesic which departs
from xk−1 in the direction of the tangent vector ∆k ∈ Txk−1R

n �
R

n during a unit time interval (this geodesic is Expxk−1
(t∆k) =

xk−1 + t∆k for t ≥ 0). Moreover, equation (3) can be inter-
preted as the stochastic law which generates the “fresh” increment
∆k from the previous p ones ∆k−1, . . . , ∆k−p. Each increment
lives in a distinct tangent space: ∆k−i = Logxk−i−1

(xk−i) =

xk−i − xk−i−1 ∈ Txk−i−1R
n for i = 0, 1, . . . , p. Here and for

future reference, we use the notation Logp to denote the Riemannian
log map at p ∈ M . Since R

n is a flat space (curvature tensor van-
ishes identically everywhere) any given two tangent spaces TaR

n

and TbR
n are naturally identified by parallel-transportation Pa,b :

TaR
n → TbR

n, e.g., along the geodesic which runs from a to b. Un-
der the canonical isomorphism TpR

n � R
n we have Pa,b = idRn .

Thus, equation (3) can be equivalently rewritten as

∆k = A1Pxk−2,xk−1

(
Logxk−2

(xk−1)
)

+ · · · +

ApPxk−p−1,xk−1

(
Logxk−p−1

(xk−p)
)

+ wk, (5)

where wk denotes a random vector in Txk−1R
n – this implements

the additive noise term in (3). In (5), we view each Ai as the matrix
representation of an endomorphism (linear map) Ai : Txk−1R

n →
Txk−1R

n. The ith map processes the increment Logxk−i−1
(xk−i)

(more exactly, its parallel-transported version at xk−1).
We take (4) and (5) as the description of our AR model for

generic Riemannian manifolds M . More precisely, we construct an
AR process {xk} of order p on M as

∆k =

p∑
i=1

AiPxk−i−1,xk−1

(
Logxk−i−1

(xk−i)
)

+ Wk (6)

xk = Expxk−1
(∆k) . (7)

Some remarks follow.
Remark 1: In (6) the symbol Wk denotes a random tangent vec-

tor in Txk−1M (may be correlated with parallel-transported versions
of Wk−1, Wk−2, . . .);

Remark 2: In general, the Riemannian log map Logp is only
defined in a neighborhood of p. However, in our case, we are con-
sidering M to be connected and geodesically complete. As a con-
sequence, for any given p ∈ M , our manifold can be written as the
disjoint union M = Vp ∪ Cut(p) where Vp is an open subset and
Cut(p) is the cut locus of p [7]. In fact, Vp is the diffeomorphic im-
age under Expp of an open subset Up ⊂ TpM which is star-shaped
with respect the origin of TpM . Thus, Logp is well-defined on Vp.
Note that Expp

(
Logp(q)

)
= q for all q ∈ Vp. However, it is crucial

to note that it is not necessarily true that Logp(Expp(Xp)) = Xp

for any tangent vector Xp ∈ TpM satisfying Expp(Xp) ∈ Vp (the
latter equality holds only when Xp ∈ Up). The subset Cut(p) has
measure zero with respect to the canonical Riemannian measure, say
µM , carried by M [7]. Thus, if the noise model induces a probability
measure which is continuous with respect to µM then, almost surely,
for two consecutive points we have xk+1 	∈ Cut(xk) which means
that Logxk−i−1

(xk−i) is well-defined;
Remark 3: In (6) we use the notation Pp,q : TpM → TqM to

denote parallel-transportation along the geodesic which runs from p
to q (this geodesic is unique for q 	∈ Cut(p) which we suppose oc-
curs with probability one – see previous remark);

Remark 4: In (6) each symbol Ai denotes a smooth section of the
tensor bundle T 1

1 (M). In equivalent terms, each Ai is a smooth field
of endomorphisms on M : Ai assigns a linear map TpM → TpM for
any given p ∈ M . We let AiXp be the linear map Ai|p : TpM →
TpM acting on Xp ∈ TpM , e.g., in (6) all these linear maps are
operating on Txk−1M . By smoothness of each field Ai we mean
that the vector field p �→ AiXp ∈ TpM is smooth, for any given
smooth vector field X on M . Note that the fields A1, A2, . . . , Ap

generalize the matrices A1, A2, . . . , Ap appearing in AR processes
on R

n, see (1).

4. TWO ALTERNATIVE EXTENSIONS

The appearance of Cut(p) in remark 2 of section 3 is not aestheti-
cally pleasing. Since Cut(p) can only cause problems if the AR pro-



cess takes too big a step, the way to remove this problem is to con-
sider instead the infinitesimal generator of the AR process. Specifi-
cally, a discrete time AR process on a manifold can be obtained by
first defining a linear stochastic differential equation on the mani-
fold, such as an Ornstein-Uhlenbeck process, and then sampling it
at unit intervals, or equivalently, integrating the differential equation
over unit intervals to form a discrete time process. Needless to say,
in general there will not be a closed form expression for the resulting
discrete time process.

Yet another interpretation of a stable discrete time AR process
on R

n is the following. The origin in R
n plays a distinguished role;

if the noise excitation goes to zero, then a stable AR process will
approach the origin. Moreover, the AR can be rewritten in the form
that the next point is equal to the weighted centre of mass of the
previous p points together with the origin, followed by a perturbation
caused by noise. By replacing centre of mass by Karcher mean, this
idea extends to an arbitrary Riemannian manifold. Note though that
for manifolds with positive curvature, if the points of the AR process
are too far apart, the Karcher mean may not be unique and some
mechanism for handling this needs to be introduced.

5. AR MODEL FOR THE UNIT-CIRCLE

We specialize our AR model in (6) and (7) to the unit-circle S1,
viewed hereafter as a Riemannian submanifold of R

2. To obtain
compact expressions, we shall identify R

2 � C and S1 � {z ∈ C :
|z| = 1}. Thus, the tangent space to S1 at z corresponds to TzS1 �
span{ız} where ı =

√
−1. Within this identification the Rieman-

nian metric is 〈δ, ω〉 = Re{δω} for δ, ω ∈ TzS1 (z represents the
complex conjugate of z). For z ∈ S1 we have Cut(z) = {−z}
and Logz(w) = z log(z−1w) whenever w 	∈ Cut(z) (here, log de-
notes the complex logarithm associated with the branch (−π, π)).
Moreover, Expz(δ) = z exp

(
z−1δ

)
for any δ ∈ TzS1 (here, exp

denotes the complex exponential). Finally, parallel-transportation
Pz,w : TzS1 → TwS1 is given by Pz,w(δ) = wz−1δ. To specify
an AR process of order p we have to define p smooth fields of en-
domorphisms a1, a2, . . . , ap. The ith field ai smoothly assigns an
endomorphism TzS1 → TzS1 to each tangent space. Since each
TzS1 is one-dimensional, each endomorphism TzS1 → TzS1 acts
as multiplication by a real number, say, ai(z) ∈ R. The field of
endomorphisms thus created is smooth if the function z �→ ai(z) is
smooth on S1. All said, the AR model of order p on the unit-circle
takes the form

zk = zk−1 exp

((
p∑

i=1

ai(zk−1) log(z−1
k−i−1zk−i)

)
+ wk

)

where wk ∈ Tzk−1S1 denotes a random tangent vector.

6. AR MODEL FOR COMPACT CONNECTED LIE
GROUPS

In this section, we discuss the application of the AR model (6)-(7)
to the special case of compact connected Lie groups G equipped
with a bi-invariant metric (the previous case S1 can be captured
in this framework, although we are not requiring here that G is
Abelian). Note that because G is compact, such a bi-invariant metric
exists [6]. For the sake of clarity, we consider only AR processes of
order p = 1. We will see that when both the field of endomorphisms
A ≡ A1 and the random vector fields Wk are left-invariant (thus
adapted to the underlying group structure), then the process {xk}

proceeds by computing its increments in the Lie algebra of G, de-
noted hereafter by g. The Lie group structure of G is thus exploited
within this construction and as a result the AR process definition
can be described, to a large extent, only in linear-algebraic terms.
Note the distinction between this result and the wrapped process
construction: here, it is the increments which are generated in the
Lie algebra g and not some AR process which is then projected onto
G by exponentiation (as in constructing wrapped processes). Since
elements in the Lie algebra (in any tangent space, for that matter)
correspond naturally to small “displacements” within the manifold,
it seems that this approach is more intuitive.

By saying that the field of endomorphisms A = {A|g : TgG →
TgG} is left-invariant we mean that the diagram in figure 1 com-
mutes for any g, h ∈ G. Here, Lg : G → G, Lg(x) = g ·x denotes

Lg∗ Lg∗

ThG ThG
A|h

A|gh

TghGTghG

Fig. 1. The field of endomorphisms A is left-invariant

left-translation in G by the group element g (the notation g·x denotes
group multiplication of g by x) and Lg∗ stands for its differential
map. This means that the field A is completely determined by sam-
pling it at the Lie algebra g � TeG (e denotes the identity element
of G): A|g(Xg) =

(
Lg∗ ◦ A|e ◦ Lg−1∗

)
(Xg) for any Xg ∈ TgG.

To simplify notation, we write hereafter AXe for A|e(Xe) for any
Xe ∈ g. Also, if Wk denotes a random left-invariant vector field
then we can write Wk |g = Lg∗ (Ωk) for all k and g, where {Ωk} is
a random sequence of vectors in g.

Lemma: Under the above assumptions, the model (6)-(7) boils
down to

Θk = A Log
(
x−1

k−2 · xk−1

)
+ Ωk (8)

xk = xk−1 · Exp (Θk) (9)

The proof is omitted due to paper length constraints. Here, the
symbols Exp and Log denote the Riemannian exponential and log
maps computed at the identity e (because the metric is bi-invariant
Exp coincides with the Lie group exp map which generates the one-
parameter subgroups of G). All the action in (8) takes place in the
(fixed) vector space g. The “old” increment Log

(
x−1

k−2xk−1

)
is pro-

cessed through A to establish the next direction of movement, which
is then disturbed additively by the random tangent vector Ωk. In (9),
group multiplication is invoked to move xk−1 according to the incre-
ment Θk. Note that (8)-(9) are formulated in terms of TeG � g for
mere convenience. The identity element e ∈ G is not being granted
a privileged role in the AR process construction: indeed, due to the
left-invariance of both A and the random vector field Wk, any other
point could equivalently be chosen as a “fiducial” point to express
the process construction.

Re-interpretation as a process on the tangent bundle. Any Lie
group G is parallelizable and therefore its tangent bundle TG is triv-
ial: in particular, we have the identification TG � g × G (this is
obtained by fixing a basis for g and left-translating it through G).
The latter Cartesian product acts as a system of coordinates for TG
which means that any tangent vector Xg ∈ TgG ⊂ TG can be
represented uniquely as (Θ, g) for some Θ ∈ g. In this sense, we



can interpret (8) and (9) as describing a Markov process {(Θk, xk)}
evolving on the tangent bundle TG. We only observe the second
component {xk} though.

Parameter estimation. We briefly comment on the maximum likeli-
hood (ML) strategy for estimating the AR parameter A in (8), given
an observed time-series {x1, x2, . . . , xK}. We focus on the sim-
plest case G = S1: this gives the flavor of the difficulties encoun-
tered in the general setup. In this case, we have the identification
g � span{ı} � R. The latter identification works as ı t �→ t for a
real t (we recall that ı =

√
−1). Thus, A : g → g is represented by

a real number A � a ∈ R. The ML estimator is

âML = arg max
a

p(x1, x2, x3, . . . , xK ; a).

It is more convenient to change variables from (x1, x2, . . . , xK) ∈
S1 × · · · × S1 (K times) to (x1, x2, γ3, . . . , γK) ∈ S1 × S1 ×
(−π, π) × · · · × (−π, π) (K − 2 times) where

γk = Im
{
log
(
x−1

k−1xk

)}
(10)

and Im{z} retrieves the imaginary part of the complex number z.
Recall that log denotes the complex logarithm associated with the
branch (−π, π). Since log returns its values in g, (10) is nothing but
the aforementioned identification g � R at play. Note that, in terms
of these new variables, the model (8)-(9) corresponds to

θk = aγk−1 + ωk (11)

γk = log (exp (ıθk)) . (12)

Hereafter, we examine the independent and identically distributed
(iid) noise additive case, i.e., p(ω1, . . . , ωK) =

∏K
k=1 pω(ωk) where

pω denotes the common density. To implement the ML estimator

âML = arg max
a

p(x1, x2, γ3, . . . , γK ; a)

we need to write the likelihood function p(x1, x2, γ3, . . . , γK ; a).
We suppose that the first two points x1 and x2 are randomly gen-
erated according to some density p(x1, x2) which does not depend
on a: this creates the first increment γ2 = Im{log(x−1

1 x2)}. The
AR process then evolves according to (11)-(12) for k ≥ 3. Due
to the Markov structure of (11)-(12) we have p(x1, . . . , γK ; a) =

p(x1, x2)
∏K

k=3 p(γk|γk−1; a). Now

p(γk|γk−1; a) =

∫
p(γk|θk, γk−1; a)p(θk|γk−1; a)dθk

=

∫
p(γk|θk; a)pω(θk − aγk−1)dθk (13)

=

+∞∑
nk=−∞

pω (γk + 2πnk − aγk−1) . (14)

Passage from (13) to (14) relies on (12) which establishes γk as a
deterministic function of θk: we have γk = θk mod 2π. We then use
p(γk|θk; a) =

∑
nk

δ (γk + 2πnk − θk) where δ is the Dirac delta
function. This argument is admittedly informal but quite common
and can be justified more rigorously by measure-theoretic principles,
e.g., see equation (40) in [4]. The end result is

p(x1, . . . , γK ; a) ∝
K∏

k=3

⎛⎝ +∞∑
nk=−∞

pω (γk + 2πnk − aγk−1)

⎞⎠
(15)

where ∝ means equality up to a multiplicative constant (p(x1, x2)
was dropped). We see that for practical implementation of the ML
estimator, series truncation in (15) is almost unavoidable (the decay
rate of the tails of pω should provide an educated guess to perform
the truncation). Alternatively, one might consider an expectation-
maximization (EM) approach for computing âML: if the θk in (11)
were observed, estimation of a corresponds essentially to a linear
system identification problem. Detailed derivation of this approach
is beyond the scope of this paper. The main point here is that equa-
tion (15) illustrates the typical format of the likelihood function for
generic groups G. Indeed, the previous analysis extends to arbi-
trary G by defining Γk = Log

(
x−1

k−1xk

)
and rewriting (8)-(9) as

Θk = AΓk−1 + Ωk (16)

Γk = Log (Exp (Θk)) , (17)

which specialize to (11)-(12) when G = S1. The source of the
complications is (17): the Θk are not observed and the map Θk �→
Γk, written hereafter as F , is many-to-one, as we already mentioned
in section 3 (see remark 2). For G = S1, we have F−1(γ) =
{γ +2πn : n ∈ Z}. For other groups, the inverse set F−1(Γ) must
be derived and used in the equation corresponding to (13).

7. CONCLUSIONS AND EXTENSIONS

There is more than one way to define a process on a manifold such
that, if the manifold happened to be R

n, the process would corre-
spond to an AR process. That is, there is not a single correct way
to extend the concept of an AR process to a manifold. Rather, of
great interest are processes on manifolds which can be used to model
practical problems and which are amenable to analysis and param-
eter estimation. In this paper, three possible extensions of an AR
process to a manifold were proposed, one of which was studied in
detail. Applications of these processes to engineering problems will
be considered in the future, as will a natural extension of the idea
in section 6, namely, to the case when the manifold M is not itself
a group but when a Lie group G acts on M transitively (in which
case M is said to be a homogeneous space). One could envisage
transferring an AR process on G to M via the group action.
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