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Homework 5

Problem A. (Setting arc prices in a network) For c ∈ Rm
+ , let

p?k(c) := inf{cTx : Ax = bk, x ≥ 0} (1)

for k = 1, . . . ,K. The matrix A ∈ Rn×m and the vectors bk, k = 1, . . . ,K, are given. Assume
p?k(c) is finite for all k and c, i.e., p?k(c) ∈ [0,∞[.

Let q = (q(1), . . . , q(K)) be a probability mass function, i.e.,

q ∈ ∆ =
{
x ∈ RK : x ≥ 0, 1Tx = 1

}
.

Formulate
minimize

c
‖c− c‖1

subject to
∑K
k=1 q(k) p?k(c) ≥ P

c ≥ 0,

(2)

as a LP, QP, QCQP, SOCP or SDP. In (6), c ∈ Rm
+ and P > 0 are given constants.

We now give an interpretation for problem (6). You don’t need the interpretation to solve the
problem; it is just for your own curiosity (you can ignore the following motivation). We start
by interpreting p?k(c) in (1): if A is the node-arc incidence matrix of a directed graph and bk
a vector with a 1 entry, a −1 entry and 0 elsewhere, we can interpret p?k(c) as the minimum
cost of traveling from a given source to a given sink in the graph, in which c represents the
arc prices. From this standpoint, we can interpret (6) as seeking the arc prices, closest to a
nominal setting c, that guarantee us an average profit greater or equal to P—here, p?k(c) is
the money we get from a user k going from a certain source to a certain sink in the graph,
and q(k) is the probability of such an user showing up.

Formulate (6) as a LP, QP, SOCP or SDP.

Problem B. (Dualizing a problem without constraints) Consider the optimization problem

minimize
x

1
2 ‖y −Ax‖

2
+
∑K
k=1 ρk ‖Gkx‖ (3)

where y, A, Gk and ρk > 0 are given. (This problem structure arises in group sparse
regularization applications.)

The goal of this problem is to dualize (3). There are no constraints in (3) to dualize, but we
can consider the reformulation

minimize
x,z,w1,...,wK

1
2 ‖y − z‖

2
+
∑K
k=1 ρk ‖wk‖

subject to z = Ax
wk = Gkx, k = 1, . . . ,K.

(4)

Show that the dual of (4) can be written as

maximize
λ,η1,...,ηK

− 1
2 ‖λ− y‖

2
+ 1

2 ‖y‖
2

subject to ATλ =
∑K
k=1G

T
k ηk, k = 1, . . . ,K

‖ηk‖ ≤ ρk, k = 1, . . . ,K.



Hint: the fact

sup
{
sTx− ‖x‖ : x

}
=

{
0 , if ‖s‖ ≤ 1
+∞ , otherwise,

may be helpful (if you use this fact, you must also prove it).

Problem C. (Selecting penalization coefficients) This problem applies the results of problem B.
Consider again (3) reproduced here:

minimize
x

1
2 ‖y −Ax‖

2
+
∑K
k=1 ρK ‖Gkx‖ . (5)

In problem B, we assumed that the vector y ∈ Rm, the matrices A ∈ Rm×n and Gk ∈
Rmk×n, and the penalization coefficients ρk ≥ 0 were given when solving (5). In practice,
the penalization coefficients ρk are often chosen through heuristics (sometimes, by trial-and-
error until we “like” the solutions x that emerge from (5)). In this problem, we discuss a
method to find reasonable values for the penalization coefficients (A and Gk are assumed
known).

Suppose that for a given list of vectors y?l ∈ Rm, l = 1, 2, . . . , L, we would like the corre-
sponding solutions to be given vectors x?l ∈ Rn, l = 1, 2, . . . , L. That is, when we take y = y?l
in (5), the vector x?l should be a solution of (5).

Since there may be no choice of ρ1, . . . , ρK that guarantees this property, we try instead
to make each x?l as close to be a solution as possible. More precisely, for a fixed choice
of penalization coefficients, we can assess how suboptimal is x?l for a given y?l : we simply
evaluate the optimality gap

δk(ρ1, . . . , ρK) :=
1

2
‖y?l −Ax?l ‖

2
+

k∑
k=1

ρk ‖Gkx?l ‖ − p?l (ρ1, . . . , ρK)

where p?l (ρ1, . . . , ρK) denotes the optimal value of (5) when y = y?l . Our method consists in
finding the penalization coefficients that minimize the sum of all optimality gaps:

minimize
ρ1,...,ρK

∑L
l=1 δl(ρ1, . . . , ρK)

subject to ρk ≥ 0, k = 1, . . . ,K.

(6)

Formulate (6) as a LP, QP, SOCP or SDP.


