Nonlinear Optimization (18799 B, PP)
 IST-CMU PhD course
 Spring 2017

Instructor: João Xavier (jxavier@isr.ist.utl.pt)
TA: Shanghang Zhang (shzhang.pku@gmail.com)
The homework is due May 24.

Homework 4

Problem A. (Optimal choice of measurements) We start by recalling some basic properties of maximum likelihood (ML) estimators in linear Gaussian models. Let $\theta \in \mathbf{R}^{p}$ be a vector of parameters of interest. We have access to a measurement

$$
y=H \theta+w
$$

where $H \in \mathbf{R}^{n \times p}$ is a known matrix and $w \sim \mathcal{N}(0, I)$, i.e., w denotes zero-mean, Gaussian noise with unit covariance. Assume H has full column-rank. To estimate θ from y it is common to use the ML estimator

$$
\widehat{\theta}_{\mathrm{ML}}(y)=\left(H^{T} H\right)^{-1} H^{T} y .
$$

It is easy to show that the ML estimation error $\varepsilon_{\mathrm{ML}}(y)=\widehat{\theta}_{\mathrm{ML}}(y)-\theta$ has zero-mean (ML estimator is unbiased) and covariance

$$
R=\mathbf{E}\left(\varepsilon_{\mathrm{ML}}(y) \varepsilon_{\mathrm{ML}}(y)^{T}\right)=\left(H^{T} H\right)^{-1}
$$

The matrix R quantifies the estimator error in each "direction". For example, if we wish to estimate some linear combination of the parameters, say, $u^{T} \theta$ for a given $u \in \mathbf{R}^{p}$, the unbiased estimator $u^{T} \widehat{\theta}_{\mathrm{ML}}(y)$ has variance $u^{T} R u$.
We now turn to our problem. Suppose that we have access to S independent measurement systems. Each system can be used several times. The m th usage of the s th system gives us the measurement

$$
y_{s}(m)=H_{s} \theta+w_{s}(m)
$$

where $H_{s} \in \mathbf{R}^{n_{s} \times p}$ is the measurement matrix (known, with full column-rank) of the s th system and $w_{s}(m) \sim \mathcal{N}(0, I)$. Assume that noise realizations are independent across systems and time. Performing one measurement with the sth system takes T_{s} seconds and costs C_{s} euros.
We have a total budget of C dollars and want to find how many times we should use each system to strike a good balance between the time needed to obtain the ML estimate and its accuracy. More specifically, assume that we use x_{1} times system 1 , we use x_{2} times system 2 , and so on. This corresponds to collecting the measurement

$$
y=H\left(x_{1}, \ldots, x_{S}\right) \theta+w
$$

where

$$
H\left(x_{1}, \ldots, x_{S}\right)=\left[\begin{array}{c}
H_{1} \\
\vdots \\
H_{1} \\
H_{2} \\
\vdots \\
H_{S}
\end{array}\right] \in \mathbf{R}^{\left(x_{1} n_{1}+\cdots+x_{S} n_{S}\right) \times p}
$$

the matrix H_{s} appearing x_{s} times. Also, regardless of x_{s}, there holds $w \sim \mathcal{N}(0, I)$. It follows that the error covariance of the associated ML estimator is

$$
\begin{equation*}
R\left(x_{1}, \ldots, x_{S}\right)=\left(x_{1} H_{1}^{T} H_{1}+\cdots+x_{S} H_{S}^{T} H_{S}\right)^{-1} \tag{1}
\end{equation*}
$$

Note that it takes $x_{1} T_{1}+\cdots+x_{S} T_{S}$ seconds and it costs $x_{1} C_{1}+\cdots+x_{S} C_{S}$ euros to obtain this estimate.
We want to solve the optimization problem

$$
\begin{array}{ll}
\underset{x_{1}, \ldots, x_{S}}{\operatorname{minimize}} & \lambda_{\max }\left(R\left(x_{1}, \ldots, x_{S}\right)\right)+\rho\left(x_{1} T_{1}+\cdots+x_{S} T_{S}\right) \tag{2}\\
\text { subject to } & x_{1} C_{1}+\cdots+x_{S} C_{S} \leq C \\
& x_{s} \geq 0, s=1, \ldots, S \\
& x_{s} \text { is integer, } s=1, \ldots, S
\end{array}
$$

The first term in the objective function gives the worst estimation accuracy (in estimating $u^{T} \theta$ with unit-norm u) and the second term penalizes large delays (the constant $\rho>0$ is given).

Problem (2) involves integer variables. We relax it to continuous variables by dropping the last constraint. That is, as an approximation, we look instead at the problem

$$
\begin{array}{ll}
\underset{x_{1}, \ldots, x_{S}}{\operatorname{minimize}} & \lambda_{\max }\left(R\left(x_{1}, \ldots, x_{S}\right)\right)+\rho\left(x_{1} T_{1}+\cdots+x_{S} T_{S}\right) \tag{3}\\
\text { subject to } & x_{1} C_{1}+\cdots+x_{S} C_{S} \leq C \\
& x_{s} \geq 0, s=1, \ldots, S .
\end{array}
$$

Note that $R\left(x_{1}, \ldots, x_{S}\right)$ is given by (1). Formulate (3) as a semidefinite program (SDP). Hint: you need to learn about Schur complements.

Problem B. (Core ellipses) We want to find the center c of the ellipse

$$
\mathcal{E}(c, A)=\left\{x \in \mathbf{R}^{2}:(x-c)^{T} A^{-1}(x-c) \leq 1\right\}
$$

that maximizes the probability of containing the realizations of a random vector X. The matrix $A \succ 0$ is given and the random vector X takes values in a given finite set $\mathcal{X}=$ $\left\{x_{1}, \ldots, x_{K}\right\} \subset \mathbf{R}^{2}$ with $p_{k}=\operatorname{Prob}\left(X=x_{k}\right)$ known for $k=1, \ldots, K$. We formulate the problem

$$
\begin{equation*}
\underset{c}{\operatorname{maximize}} \quad \operatorname{Prob}(X \in \mathcal{E}(c, A)) . \tag{4}
\end{equation*}
$$

The objective can be expressed as $\operatorname{Prob}(X \in A)=\sum_{k=1}^{K} p_{k} 1_{\mathcal{E}(c, A)}\left(x_{k}\right)$ where

$$
1_{\mathcal{E}(c, A)}\left(x_{k}\right)= \begin{cases}1 & , \text { if } x_{k} \in \mathcal{E}(c, A) \\ 0 & , \text { otherwise }\end{cases}
$$

It is clear that the objective is not a convex function of the optimization variable c; in fact, it is not even a continuous function. In this problem, we will explore two convex approximations for the difficult problem (4).
(a) In the first approach we minimize the expected distance from X to $\mathcal{E}(c, A)$:

$$
\begin{equation*}
\underset{c}{\operatorname{minimize}} \quad \mathbf{E}(d(X, \mathcal{E}(c, A))) . \tag{5}
\end{equation*}
$$

Note that

$$
\mathbf{E}(d(X, \mathcal{E}(c, A)))=\sum_{k=1}^{K} p_{k} d\left(x_{k}, \mathcal{E}(c, A)\right)
$$

where, for a point x and a set $S, d(x, S)=\min \{\|y-x\|: y \in S\}$ denotes the distance from x to S. Express (5) as a convex problem (LP, QP, SOCP or SDP).
(b) In the second approach we formulate the optimization problem

$$
\begin{equation*}
\underset{c}{\operatorname{minimize}} \quad \mathbf{E}\left(\left((X-c)^{T} A^{-1}(X-c)-1\right)_{+}\right) . \tag{6}
\end{equation*}
$$

Note that if a realization of X belongs to $\mathcal{E}(c, A)$ then $\left((X-c)^{T} A^{-1}(X-c)-1\right)_{+}=0$, and no penalization is incurred; otherwise, the objective penalizes how much the realization violates the inequality $(x-c)^{T} A^{-1}(x-c) \leq 1$ characterizing points $x \in \mathcal{E}(c, A)$. We
can also interpret $\left((X-c)^{T} A^{-1}(X-c)-1\right)_{+}$as a surrogate for $d(X, \mathcal{E}(c, A))$. Note that

$$
\mathbf{E}\left(\left((X-c)^{T} A^{-1}(X-c)-1\right)_{+}\right)=\sum_{k=1}^{K} p_{k}\left(\left(x_{k}-c\right)^{T} A^{-1}\left(x_{k}-c\right)-1\right)_{+}
$$

Express (6) as a convex problem (LP, QP, SOCP or SDP).
(c) Use CVX to test your formulations: insert your code into the MATLAB file hw4pB.m and print the corresponding figure. A sample is given in figure 1.

Figure 1: Set of possible realizations \mathcal{X} (blue) on which we assume the uniform distribution $\left(p_{k}=1 / K\right)$. We want to translate the ellipsoid at the origin (cyan). The optimal ellipsoids for parts (a) and (b) are in red and green, respectively.

