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IST-CMU PhD course
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TA: Shanghang Zhang (shzhang.pku@gmail.com)

The homework is due May 24.

Homework 4

Problem A. (Optimal choice of measurements) We start by recalling some basic properties of
maximum likelihood (ML) estimators in linear Gaussian models. Let § € R? be a vector of
parameters of interest. We have access to a measurement

y=HO0+w

where H € R"*? is a known matrix and w ~ N(0,1), i.e., w denotes zero-mean, Gaussian
noise with unit covariance. Assume H has full column-rank. To estimate 6 from y it is
common to use the ML estimator

bar(y) = (HTH) ' H”y.

It is easy to show that the ML estimation error ey (y) = O (y) — 6 has zero-mean (ML
estimator is unbiased) and covariance
-1
R=E (€ML(?J)€ML(:U)T) = (HTH) .
The matrix R quantifies the estimator error in each “direction”. For example, if we wish
to estimate some linear combination of the parameters, say, uT@ for a given u € RP, the
unbiased estimator uT @y, (y) has variance u” Ru.

We now turn to our problem. Suppose that we have access to S independent measurement
systems. Each system can be used several times. The mth usage of the sth system gives us
the measurement

ys(m) = Hs0 + ws(m)

where H, € R™ P is the measurement matrix (known, with full column-rank) of the sth
system and wg(m) ~ N (0, I). Assume that noise realizations are independent across systems
and time. Performing one measurement with the sth system takes T seconds and costs Cj
euros.

We have a total budget of C dollars and want to find how many times we should use each
system to strike a good balance between the time needed to obtain the ML estimate and its
accuracy. More specifically, assume that we use x; times system 1 , we use x5 times system
2, and so on. This corresponds to collecting the measurement

y=H(z1,...,25)0 +w

where

CH, T
H(J?l, - ,xs) = Z; c R($1n1+~~-+msns)><p7

Hg |
the matrix H, appearing xs times. Also, regardless of z, there holds w ~ N (0, I). It follows
that the error covariance of the associated ML estimator is

—1
R(z1,...,x5) = (x1H{ Hy + -+ zsH{Hg) . (1)



Note that it takes 117 + - - - + x5Ts seconds and it costs 1Cq + - - - + £5Cs euros to obtain
this estimate.

We want to solve the optimization problem

minimize  Apax(R(z1,...,23)) + ple1Ty + - - + 25Ts) (2)

T1,..,L8
subject to z1C; +---+x5Cs < C
zs>0,s=1,...,8
T is integer, s=1,...,8S.

The first term in the objective function gives the worst estimation accuracy (in estimating
uT0 with unit-norm ) and the second term penalizes large delays (the constant p > 0 is
given).
Problem (2) involves integer variables. We relax it to continuous variables by dropping the
last constraint. That is, as an approximation, we look instead at the problem

minimize  Apax(R(z1,...,25)) + ple1T1 + - - + 25Ts) (3)

L1y--,TS

subject to x1C1 +---+25Cs <C
zs>0,s=1,...,5.

Note that R(x1,...,xg) is given by (1). Formulate (3) as a semidefinite program (SDP).
Hint: you need to learn about Schur complements.

Problem B. (Core ellipses) We want to find the center ¢ of the ellipse
E(,A)={zeR?*: (z—c)TA (z—¢c) <1}

that maximizes the probability of containing the realizations of a random vector X. The
matrix A > 0 is given and the random vector X takes values in a given finite set X =
{x1,...,25} C R? with p;, = Prob(X = x},) known for k = 1,..., K. We formulate the
problem

maxicmize Prob(X € &(c, A)). (4)

The objective can be expressed as Prob(X € A) = Zszl Prle(e,a)(zr) where

1, ifz, €&(c,A)
Le(e,n) (@) :{ 0 , otherwise.

It is clear that the objective is not a convex function of the optimization variable c; in fact, it
is not even a continuous function. In this problem, we will explore two convex approximations
for the difficult problem (4).

(a) In the first approach we minimize the expected distance from X to E(c, A):

minicmize E (d(X,&(c, A))). (5)
Note that «
E (d(X,E(c, A)) = Y prd (z1,E(c, A))
k=1

where, for a point = and a set S, d(z,S) = min {|ly — x| : y € S} denotes the distance
from = to S. Express (5) as a convex problem (LP, QP, SOCP or SDP).

(b) In the second approach we formulate the optimization problem
minignize E (((X —c)TA (X —¢) — 1)+) . (6)
Note that if a realization of X belongs to €(c, A) then ((X —¢)"A™H(X —¢) —1), =0,

and no penalization is incurred; otherwise, the objective penalizes how much the realiza-
tion violates the inequality (z—c)T A1 (x—¢) < 1 characterizing points = € £(c, A). We



can also interpret ((X —¢)TA™1(X —¢) — 1)+ as a surrogate for d(X,&(c, A)). Note
that

K
E (((X —)TA X —¢) - 1)+) = i (e — )" A ek — )~ 1) , .
k=1
Express (6) as a convex problem (LP, QP, SOCP or SDP).

(¢) Use CVX to test your formulations: insert your code into the MATLAB file hw4pB.m
and print the corresponding figure. A sample is given in figure 1.

Figure 1: Set of possible realizations X (blue) on which we assume the uniform distribution
(pr = 1/K). We want to translate the ellipsoid at the origin (cyan). The optimal ellipsoids for
parts (a) and (b) are in red and green, respectively.



