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Homework 4

Problem A. (Optimal choice of measurements) We start by recalling some basic properties of
maximum likelihood (ML) estimators in linear Gaussian models. Let θ ∈ Rp be a vector of
parameters of interest. We have access to a measurement

y = Hθ + w

where H ∈ Rn×p is a known matrix and w ∼ N (0, I), i.e., w denotes zero-mean, Gaussian
noise with unit covariance. Assume H has full column-rank. To estimate θ from y it is
common to use the ML estimator

θ̂ML(y) =
(
HTH

)−1
HT y.

It is easy to show that the ML estimation error εML(y) = θ̂ML(y) − θ has zero-mean (ML
estimator is unbiased) and covariance

R = E
(
εML(y)εML(y)T

)
=
(
HTH

)−1
.

The matrix R quantifies the estimator error in each “direction”. For example, if we wish
to estimate some linear combination of the parameters, say, uT θ for a given u ∈ Rp, the
unbiased estimator uT θ̂ML(y) has variance uTRu.

We now turn to our problem. Suppose that we have access to S independent measurement
systems. Each system can be used several times. The mth usage of the sth system gives us
the measurement

ys(m) = Hsθ + ws(m)

where Hs ∈ Rns×p is the measurement matrix (known, with full column-rank) of the sth
system and ws(m) ∼ N (0, I). Assume that noise realizations are independent across systems
and time. Performing one measurement with the sth system takes Ts seconds and costs Cs

euros.

We have a total budget of C dollars and want to find how many times we should use each
system to strike a good balance between the time needed to obtain the ML estimate and its
accuracy. More specifically, assume that we use x1 times system 1 , we use x2 times system
2, and so on. This corresponds to collecting the measurement

y = H(x1, . . . , xS)θ + w

where

H(x1, . . . , xS) =



H1

...
H1

H2

...
HS


∈ R(x1n1+···+xSnS)×p,

the matrix Hs appearing xs times. Also, regardless of xs, there holds w ∼ N (0, I). It follows
that the error covariance of the associated ML estimator is

R(x1, . . . , xS) =
(
x1H

T
1 H1 + · · ·+ xSH

T
SHS

)−1
. (1)



Note that it takes x1T1 + · · ·+ xSTS seconds and it costs x1C1 + · · ·+ xSCS euros to obtain
this estimate.

We want to solve the optimization problem

minimize
x1,...,xS

λmax(R(x1, . . . , xS)) + ρ(x1T1 + · · ·+ xSTS)

subject to x1C1 + · · ·+ xSCS ≤ C
xs ≥ 0, s = 1, . . . , S
xs is integer, s = 1, . . . , S.

(2)

The first term in the objective function gives the worst estimation accuracy (in estimating
uT θ with unit-norm u) and the second term penalizes large delays (the constant ρ > 0 is
given).

Problem (2) involves integer variables. We relax it to continuous variables by dropping the
last constraint. That is, as an approximation, we look instead at the problem

minimize
x1,...,xS

λmax(R(x1, . . . , xS)) + ρ(x1T1 + · · ·+ xSTS)

subject to x1C1 + · · ·+ xSCS ≤ C
xs ≥ 0, s = 1, . . . , S.

(3)

Note that R(x1, . . . , xS) is given by (1). Formulate (3) as a semidefinite program (SDP).
Hint: you need to learn about Schur complements.

Problem B. (Core ellipses) We want to find the center c of the ellipse

E(c, A) =
{
x ∈ R2 : (x− c)TA−1(x− c) ≤ 1

}
that maximizes the probability of containing the realizations of a random vector X. The
matrix A � 0 is given and the random vector X takes values in a given finite set X =
{x1, . . . , xK} ⊂ R2 with pk = Prob(X = xk) known for k = 1, . . . ,K. We formulate the
problem

maximize
c

Prob(X ∈ E(c, A)). (4)

The objective can be expressed as Prob(X ∈ A) =
∑K

k=1 pk1E(c,A)(xk) where

1E(c,A)(xk) =

{
1 , if xk ∈ E(c, A)
0 , otherwise.

It is clear that the objective is not a convex function of the optimization variable c; in fact, it
is not even a continuous function. In this problem, we will explore two convex approximations
for the difficult problem (4).

(a) In the first approach we minimize the expected distance from X to E(c, A):

minimize
c

E (d(X, E(c, A))) . (5)

Note that

E (d(X, E(c, A))) =

K∑
k=1

pkd (xk, E(c, A))

where, for a point x and a set S, d(x, S) = min {‖y − x‖ : y ∈ S} denotes the distance
from x to S. Express (5) as a convex problem (LP, QP, SOCP or SDP).

(b) In the second approach we formulate the optimization problem

minimize
c

E
((

(X − c)TA−1(X − c)− 1
)
+

)
. (6)

Note that if a realization of X belongs to E(c, A) then
(
(X − c)TA−1(X − c)− 1

)
+

= 0,
and no penalization is incurred; otherwise, the objective penalizes how much the realiza-
tion violates the inequality (x−c)TA−1(x−c) ≤ 1 characterizing points x ∈ E(c, A). We



can also interpret
(
(X − c)TA−1(X − c)− 1

)
+

as a surrogate for d(X, E(c, A)). Note
that

E
((

(X − c)TA−1(X − c)− 1
)
+

)
=

K∑
k=1

pk
(
(xk − c)TA−1(xk − c)− 1

)
+
.

Express (6) as a convex problem (LP, QP, SOCP or SDP).

(c) Use CVX to test your formulations: insert your code into the MATLAB file hw4pB.m

and print the corresponding figure. A sample is given in figure 1.

Figure 1: Set of possible realizations X (blue) on which we assume the uniform distribution
(pk = 1/K). We want to translate the ellipsoid at the origin (cyan). The optimal ellipsoids for
parts (a) and (b) are in red and green, respectively.


