Spring 2018

Instructor: João Xavier (jxavier@isr.ist.utl.pt)
TA: Hung Tuan (hung.seadc@gmail.com)
The homework is due June 25.

Homework 4

Problem A. (Robust fusion of estimates) Let $\widehat{\theta}_{i} \in \mathbf{R}^{n}, i=1, \ldots, k$ be estimates of some unknown parameter $\theta \in \mathbf{R}^{n}$. Assume that each estimate is unbiased $\left(\mathbf{E}\left(\widehat{\theta}_{i}\right)=\theta\right.$ for all $\left.i\right)$ and has known error covariance matrix

$$
P_{i}:=\mathbf{E}\left(\left(\widehat{\theta}_{i}-\theta\right)\left(\widehat{\theta}_{i}-\theta\right)^{T}\right)
$$

Assume that each P_{i} is constant (i.e., each P_{i} is independent of θ); furthermore, consider that all estimates are uncorrelated. For example, this might represent a setup where k independent localization systems give us estimates $\widehat{\theta}_{i}$ of an unknown target position θ. In such a setup, each P_{i} being constant means that the statistical accuracy of each one of the localization systems is the same regardless of the target position.
We want to fuse linearly the estimates $\widehat{\theta}_{i}$ to produce the final estimate

$$
\widehat{\theta}=W_{1} \widehat{\theta}_{1}+W_{2} \widehat{\theta}_{2}+\cdots+W_{k} \widehat{\theta}_{k},
$$

where $W_{i} \in \mathbf{R}^{n \times n}$ denote weighting matrices to be found.
It can be shown that, if we want to make $\widehat{\theta}$ an unbiased estimate with the lowest mean square error (MSE),

$$
\mathbf{E}\left(\|\widehat{\theta}-\theta\|^{2}\right)
$$

then we must choose the weighting matrices as

$$
\begin{array}{ll}
\underset{W_{1}, \ldots, W_{k}}{\operatorname{minimize}} & \sum_{i=1}^{k} \operatorname{tr}\left(W_{i} P_{i} W_{i}^{T}\right) \tag{1}\\
\text { subject to } & \sum_{i=1}^{k} W_{i}=I_{n}
\end{array}
$$

where $I_{n \times n}$ is the $n \times n$ identity matrix.
Now, assume that the error covariance matrices P_{i} giving the accuracy of the estimates are uncertain. We know only lower and upper bounds of P_{i}, i.e., in compact notation, $L_{i} \leq P_{i} \leq U_{i}$, where $L_{i}, U_{i} \in \mathbf{R}^{n \times n}$ are known. Here, the notation $L_{i} \leq P_{i}$ means that each entry of P_{i} is greater than or equal to the corresponding entry in L_{i}; the meaning of $P_{i} \leq U_{i}$ is similar.
To protect the final estimate $\widehat{\theta}$ against this uncertainty, we change problem (1) to

$$
\begin{array}{ll}
\underset{W_{1}, \ldots, W_{k}}{\operatorname{minimize}} & \sup \left\{\sum_{i=1}^{k} \operatorname{tr}\left(W_{i} P_{i} W_{i}^{T}\right): L_{i} \leq P_{i} \leq U_{i}, P_{i} \succeq 0 \text { for all } i\right\} \tag{2}\\
\text { subject to } & \sum_{i=1}^{k} W_{i}=I_{n} .
\end{array}
$$

The objective function in (2) computes - for given W_{1}, \ldots, W_{k} - the worst MSE in the uncertainty region (the constraint $P_{i} \succeq 0$ is included because covariance matrices are semidefinite positive). Note that the objective function is the optimal value of an optimization problem formulated over the variables P_{1}, \ldots, P_{k}. You can assume that, for each i, there exists a $P_{i} \succ 0$ such that $L_{i} \leq P_{i} \leq U_{i}$.
Formulate (2) as a SDP. You can add more variables.
Hint: you need to dualize the objective function of (2).

