Nonlinear Optimization (18799 B, PP)
 IST-CMU PhD course
 Spring 2017

Instructor: João Xavier (jxavier@isr.ist.utl.pt)
TA: Shanghang Zhang (shzhang.pku@gmail.com)
The homework is due April 29.

Homework 3

Problem A. (Open loop fault-tolerant control) Consider a controlled dynamical system

$$
\begin{equation*}
x(t)=A x(t-1)+B u(t-1), \quad t=1,2, \ldots, T, \tag{1}
\end{equation*}
$$

where $x(t) \in \mathbf{R}^{n}$ and $u(t) \in \mathbf{R}^{p}$ denote the system state and the control input at time t, respectively. The initial state is zero $(x(0)=0)$ and the system matrices $A \in \mathbf{R}^{n \times n}$ and $B \in \mathbf{R}^{n \times p}$ are given.
Suppose that we want to design a control sequence $u(0), u(1), \ldots, u(T-1)$ in order to minimize a linear function of the terminal state: $c^{T} x(T)$ where $c \in \mathbf{R}^{n}$ is given. (For example, the dynamical system may represent a controlled robot moving in \mathbf{R}^{2}. The state is $x(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t), x_{4}(t)\right)$ with $\left(x_{1}(t), x_{2}(t)\right)$ and $\left(x_{3}(t), x_{4}(t)\right)$ denoting its position and speed at time t, respectively. If we want to move the robot as far as possible to the right in T time steps, we would minimize $c^{T} x(T)$ with $c=(-1,0,0,0)$: this corresponds to maximize $x_{1}(T)$.)
The control sequence must comply with the magnitude bound $\|u(t)\|_{\infty} \leq 1$ for all t.
Since (1) implies that the terminal state is given by

$$
\begin{equation*}
x(T)=\sum_{t=0}^{T-1} A^{T-t-1} B u(t) \tag{2}
\end{equation*}
$$

we would formulate the optimization problem

$$
\begin{array}{ll}
\underset{u(0), u(1), \ldots, u(T-1)}{\operatorname{minimize}} & c^{T}\left(\sum_{t=0}^{T-1} A^{T-t-1} B u(t)\right) \tag{3}\\
\text { subject to } & \|u(t)\|_{\infty} \leq 1, \quad t=0,1, \ldots, T-1
\end{array}
$$

Now, assume that one of the p actuators in the control vector

$$
u(t)=\left(u_{1}(t), u_{2}(t), \ldots, u_{p}(t)\right) \in \mathbf{R}^{p}
$$

fails; if the i th actuator fails $(i \in\{1,2, \ldots, p\})$, the corresponding entry in $u(t)$ becomes zero: $u_{i}(t)=0$ for $t=0,1, \ldots, T-1$. In that case, the terminal state is no longer given by (2). Instead,

$$
x(T)=\sum_{t=0}^{T-1} A^{T-t-1} B Z_{i} u(t)
$$

where Z_{i} is a $p \times p$ diagonal matrix with all diagonal entries equal to 1 except for the (i, i) entry which is equal to 0 . For example, for $p=4$:

$$
Z_{3}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 0 & \\
& & & 1
\end{array}\right]
$$

The product $Z_{i} u(t)$ simply sets the i th component of $u(t)$ to zero thus modeling the malfunction of actuator i in the control vector $u(t)$. For convenience, we also define Z_{0} as the $p \times p$ identity matrix (which corresponds to no actuator failures).

The goal of this problem is to design a control sequence $u(0), u(1), \ldots, u(T-1)$ that minimizes the worst damage caused by failure of, at most, one actuator:

$$
\begin{array}{ll}
\underset{u(0), u(1), \ldots, u(T-1)}{\operatorname{minimize}} & \underbrace{\max \left\{c^{T}\left(\sum_{t=0}^{T-1} A^{T-t-1} B Z u(t)\right): Z \in\left\{Z_{0}, Z_{1}, \ldots, Z_{p}\right\}\right\}}_{\substack{f(u(0), u(1), \ldots, u(T-1))}} \tag{4}\\
\text { subject to } \quad & \|u(t)\|_{\infty} \leq 1, \quad t=0,1, \ldots, T-1 .
\end{array}
$$

The objective function f in (4) receives a control sequence $u(0), u(1), \ldots, u(T-1)$ and returns its worst performance under failure of, at most, one actuator.
Formulate (4) as a linear program (LP).
Problem B. (Geometric approximation) We are given hyperplanes

$$
H_{s_{k}, r_{k}}=\left\{x \in \mathbf{R}^{n}: s_{k}^{T} x=r_{k}\right\}
$$

for $k=1, \ldots, K$. We want to place a ball $B(c, R)=\left\{x \in \mathbb{R}^{n}:\|x-c\| \leq R\right\}$ with given radius $R \geq 0$ near the hyperplanes. More precisely, we want to solve

$$
\begin{equation*}
\underset{c}{\operatorname{minimize}} \sum_{k=1}^{K} d\left(B(c, R), H_{s_{k}, r_{k}}\right) \tag{5}
\end{equation*}
$$

where

$$
d(\mathcal{A}, \mathcal{B})=\inf \{\|a-b\|: a \in \mathcal{A}, b \in \mathcal{B}\}
$$

denotes the distance between sets \mathcal{A} and \mathcal{B}.
For example, in the special case $R=0$, the ball $B(c, R)$ is just the point c. In this case, (5) looks for the point c that minimizes the sum of the distances from c to all given hyperplanes.
(a) Formulate problem (5) as a second-order cone program (SOCP).
(b) Generate an instance of this problem in MATLAB for $n=2$, i.e., generate some straight lines $H_{s_{k}, r_{k}}$ and fix a radius $R>0$. Then, solve numerically your instance through the software CVX (available from http://cvxr.com/cvx). Plot the optimal placement for the ball along with the straight lines. (You should also submit to us the MATLAB code you wrote.)

