Spring 2018

Instructor: João Xavier (jxavier@isr.ist.utl.pt)
TA: Hung Tuan (hung.seadc@gmail.com)
The homework is due May 14.

Homework 3

Instructions: read sections 4.1, 4.2, 4.3, and 4.4 of [1].

Problem A. (Optimal filter input) Consider a discrete-time system

$$
y(t)=H(0) x(t)+H(1) x(t-1)+\cdots+H(D) x(t-D),
$$

where $(x(t))_{t \geq 0}$ and $(y(t))_{t \geq 0}$ denote the input and output, respectively.
Assume $x(t) \in \mathbf{R}^{n}$ and $y(t) \in \mathbf{R}^{m}$, with $x(t)=0$ for $t \leq 0$, i.e., the system is at rest. Moreover, all the inputs must be upper bounded in magnitude by a given constant $U>0$: $\|x(t)\|_{\infty} \leq U$ for all t. Hereafter, we refer to $H=(H(0), H(1), \ldots, H(D))$ as the system.
We are given a desired output for a finite time horizon T, say,

$$
y_{\mathrm{des}}=\left(y_{\mathrm{des}}(1), y_{\mathrm{des}}(2), \ldots, y_{\mathrm{des}}(T)\right)
$$

with $y_{\text {des }}(t) \in \mathbf{R}^{m}$. Thus, $y_{\text {des }}$ - the stacking of all outputs - is a vector in $\mathbf{R}^{m T}$.
For an input segment $x=(x(1), x(2), \ldots, x(T))$, it is straightforward to see that the output $y=(y(1), y(2), \ldots, y(T))$ is given by $y=\mathcal{H} x$ where

$$
\mathcal{H}=\left[\begin{array}{cccccc}
H(0) & & & & & \\
H(1) & H(0) & & & & \\
\vdots & \ddots & \ddots & & & \\
H(D) & \cdots & H(1) & H(0) & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & H(D) & \cdots & H(1) & H(0)
\end{array}\right] \in \mathbf{R}^{m T \times n T}
$$

(missing blocks are zero).
If we assume the system is known and we adopt the ℓ_{∞} norm to measure distance in the output space, the design of the optimal input translates into solving

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \left\|\mathcal{H} x-y_{\operatorname{des}}\right\|_{\infty} \\
\text { subject to } & \|x\|_{\infty} \leq U
\end{array}
$$

Suppose now that the system H is randomly drawn from a finite set $\left\{H_{1}, H_{2}, \ldots, H_{K}\right\}$ with known a priori probabilities $\mathbb{P}\left(H=H_{k}\right)$, for $k=1,2, \ldots, K$. Assume all the possible systems have the same (known) order D. The system realization H_{k} is unknown to us at the start, but it is revealed at the end of time $S<T$ (the instant S is known from the beginning). Thus, we operate from $t=1$ up to $t=S$ in a blind mode (ignoring the underlying system) but with full system knowledge from $t=S+1$ to $t=T$.
We want to design the input that minimizes the average ℓ_{∞} distance between the corresponding output and the desired one. This means that we want to find both the optimal input "head" $(x(1), \ldots, x(S))$ (the input segment that we use in the blind mode) and the optimal input "tails" $\left(x_{k}(S+1), \ldots, x_{k}(T)\right)$ for $k=1, \ldots, K$ (the input segments that we use after being told the system realization is H_{k} for $\left.k=1, \ldots, K\right)$.
Formulate this optimization problem as a linear program.
Hint: read carefully problem 4.64, page 211, from [1].

Problem B. (Geometric approximation) We are given hyperplanes

$$
H_{s_{k}, r_{k}}=\left\{x \in \mathbf{R}^{n}: s_{k}^{T} x=r_{k}\right\}
$$

for $k=1, \ldots, K$. We want to place a ball $B(c, R)=\left\{x \in \mathbb{R}^{n}:\|x-c\| \leq R\right\}$ with known radius R near the hyperplanes; more precisely, we want to solve

$$
\begin{equation*}
\underset{c}{\operatorname{minimize}} \quad \sum_{k=1}^{K} d\left(B(c, R), H_{s_{k}, r_{k}}\right) \tag{1}
\end{equation*}
$$

where

$$
d(\mathcal{A}, \mathcal{B})=\inf \{\|a-b\|: a \in \mathcal{A}, b \in \mathcal{B}\}
$$

denotes the distance between sets \mathcal{A} and \mathcal{B}.
(a) Formulate problem (1) as a second-order cone program. You can add more variables (in fact, you will need to do so.)
(b) Generate an instance of this problem in MATLAB for $n=2$, i.e., generate some straight lines $H_{s_{k}, r_{k}}$ and fix a radius $R>0$. Then, solve numerically your instance through the software CVX (available from http://cvxr.com/cvx). Plot the optimal placement for the ball along with the straight lines. (You should turn in the MATLAB code used to solve the instance.)

References

[1] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

