Nonlinear Optimization (18799 B,PP) IST-CMU PhD course Spring 2011 Instructor: jxavier@isr.ist.utl.pt TA: augustos@andrew.cmu.edu

Important: The homework is due the 2nd of February

Homework 1

Problem A. (Discrete-time signals) Let $\{x[t] : t = 1, 2, ..., N\}$ be a discrete-time signal with finite duration N. We can interpret it as a vector $x \in \mathbb{R}^N$ by stacking its samples as in

$$x = \begin{bmatrix} x[1]\\x[2]\\\vdots\\x[N] \end{bmatrix}.$$

Which of the following sets of signals are convex in \mathbb{R}^N ? Which ones are convex cones?

- (a) The set of signals x whose energy is upper-bounded by a given constant $K \ge 0$. Note: the energy of a signal x is defined as $\sum_{t=1}^{N} x[t]^2$. Sketch this set in \mathbb{R}^N for N = 2 and K = 4.
- (b) The set of signals x which "intersect" a given reference signal r, that is,

x[t] = r[t] for some $t = 1, \dots, N$.

Sketch this set in \mathbb{R}^N for N = 2 and r = (r[1], r[2]) = (3, 1).

(c) The set of signals x whose envelope is bounded by a given reference signal r, that is,

 $|x[t]| \le r[t]$ for all $t = 1, \dots, N$.

Sketch this set in \mathbb{R}^N for N = 2 and r = (r[1], r[2]) = (3, 1).

(d) The set of signals with "even" symmetry, that is,

x[t] = x[N - t + 1] for all $t = 1, 2, \dots, N/2$.

Assume that N is even. Sketch this set in \mathbb{R}^N for N = 2.

Problem B. (Joint probability mass functions) Let X and Y be discrete random variables taking values in the finite alphabets $\mathcal{X} = \{x_1, x_2, \ldots, x_n\} \subset \mathbb{R}$ and $\mathcal{Y} = \{y_1, y_2, \ldots, y_n\} \subset \mathbb{R}$, respectively. Let the matrix $P_{XY} \in \mathbb{R}^{n \times n}$ encode their joint probability mass function, that is, the (i, j)th entry of P_{XY} is $(P_{XY})_{ij} = \operatorname{Prob}(X = x_i, Y = y_j)$. Naturally, such a matrix belongs to the set of $n \times n$ matrices with nonnegative entries summing up to 1. That is, $P_{XY} \in \Delta$ where

$$\Delta := \{ P \in \mathbb{R}^{n \times n} : P_{ij} \ge 0 \text{ for all } i, j \text{ and } \sum_{i,j=1}^{n} P_{ij} = 1 \}$$

In the sequel, the symbol $E\{\cdot\}$ denotes the expectation operation with respect to P_{XY} . For example, $E\{X^2\cos(Y)\} = \sum_{i,j=1}^n x_i^2\cos(y_j)(P_{XY})_{ij}$. Note that the expectation is a function of P_{XY} .

- (a) Show that Δ is a convex set in $\mathbb{R}^{n \times n}$.
- (b) Consider the set of matrices $P_{XY} \in \Delta$ such that $a \leq E\{XY\} \leq b$ and $c \leq E\{X\} \leq d$, where $a, b, c, d \in \mathbb{R}$ are given constants. Is this set convex in $\mathbb{R}^{n \times n}$?
- (c) Recall that X and Y are independent random variables if and only if

$$\operatorname{Prob}(X = x_i, Y = y_j) = \operatorname{Prob}(X = x_i)\operatorname{Prob}(Y = y_j)$$
 for all i, j

Consider the set of matrices $P_{XY} \in \Delta$ that lead to independent random variables X and Y. Is this set convex in $\mathbb{R}^{n \times n}$?

Problem C. (*Irreducible matrices*) An $n \times n$ matrix P is called a permutation matrix if exactly one entry in each column and row is equal to 1 and all the other entries are 0. For example,

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

is a 3×3 permutation matrix. An $n \times n$ matrix A $(n \ge 2)$ is said to be reducible if there exists a permutation matrix P such that

$$PAP^T = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$$

where B and D are square matrices and 0 is a zero matrix. A matrix is said to be irreducible if it is not reducible.

Show that the set of $n \times n$ matrices $(n \ge 2)$ which are nonnegative (i.e., all entries are nonnegative) and irreducible is convex in $\mathbb{R}^{n \times n}$.

Note: the concept of irreducible matrices shows up in graph theory and Markov chains. For example, in graph theory, it is known that a directed graph is strongly connected (i.e., there is a directed path from any vertex to any other vertex) if and only if its adjacency matrix is irreducible (if the graph has n nodes, its adjacency matrix is an $n \times n$ matrix such that $A_{ij} = 1$ if there is an edge from vertex i to vertex j, and $A_{ij} = 0$ otherwise).