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Abstract—The paper is concerned with learning in large-
scale multi-agent games. The empirical centroid fictitious play
(ECFP) algorithm is a variant of the well-known fictitious play
algorithm that is practical and computationally tractable in large-
scale games. ECFP has been shown to be an effective tool in
learning consensus equilibria (a subset of the Nash equilibria)
in certain games. However, the behavior of ECFP has only been
characterized in terms of convergence of the networked-average
empirical frequencies as opposed to the more traditional notion
of learning mixed equilibria, namely the notion of convergence
of individual empirical frequencies. The behavior of ECFP in
terms of convergence in empirical frequencies is herein studied
and the equilibrium concept of mean-centric equilibrium (MCE)
is introduced. The concept of MCE is similar in spirit to that of
Nash equilibrium (NE) but, in MCE each player is at equilibrium
with respect to a centroid representing the aggregate behavior,
as opposed to NE where players are at equilibrium with respect
to the strategies of individual opponents. The MCE concept is
well suited to large scale games where it is reflective of the fact
that in many large scale games of interest, utilities are greatly
affected by changes in the aggregate behavior but less susceptible
to changes in the strategy of a particular opposing player. MCE is
also well suited to large-scale games in that it can be learned using
practical, low-information-overhead behavior rules (e.g. ECFP).

I. INTRODUCTION

Learning in multi-agent environments is an inherently dif-
ficult task - multiple interacting agents, all striving simul-
taneously to learn and adapt to one another tends to result
in an environment which, from a single agent’s perspective,
may often be non-stationary. When the number of agents is
large the difficulties are further compounded by large amounts
of data, often spatially distributed amongst the agents, and
an exponential increase in the size of the state space which
may often result in commensurate increases in computational
complexity.

Fictitious play (FP) is a game theoretic learning algorithm
which has been proven, theoretically, to converge in certain
classes of large-scale games [1],[2]. However, it is highly im-
practical in large-scale settings because of high computational
complexity and the large amounts of data required. Empirical
centroid fictitious play (ECFP) is a recently proposed variant
of FP which is practical in large-scale environments [3],[4].
In ECFP, players are freed from the burden of tracking the
empirical distributions of individual agents and instead track
and respond to a single centroid distribution; in this way, the
major issues associated with large-scale implementation of FP,
namely those of large-scale data tracking and high computa-
tional complexity, are significantly mitigated. Moreover, the
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algorithm is demonstrated to be convergent in a distributed en-
vironment where inter-agent information exchange is restricted
to a local neighborhood of each agent.1

The asymptotic behavior of ECFP has been studied in terms
of convergence in average empirical frequency, where it was
demonstrated to converge to a subset of the Nash equilibria
(NE) called the consensus equilibria [4]. In this paper we wish
to characterize the asymptotic behavior of ECFP in terms
of the more traditional notion of convergence in empirical
frequency.2 By doing so, we are able to better characterize
the limiting behavior of the algorithm and expand the scope
of applicability by considering a larger class of games and a
richer set of algorithmic limit points.

We introduce the notion of a mean-centric equilibrium
(MCE) and show that ECFP converges to the set of MCE.
A MCE is not necessarily a NE. Intuitively speaking, in a
MCE players are not required to be in equilibrium with the
precise strategies of other players, instead each player is in
equilibrium with respect to a centroid distribution representing
the aggregate strategy. This is a useful notion for large-
scale games where it reflects the intuitive fact that, in such
games, utilities tend to be greatly influenced by the actions of
the aggregate and less dependent on strategies of individual
opposing players. More importantly, the subset of consensus
equilibria (introduced and studied in [3] and [4]) may be
shown to be a subset of the set of MCE.

Our main contributions are the following. (i) We introduce
the MCE concept as a simple and intuitive equilibrium notion
for large-scale games which can be learned using computation-
ally tractable, low-information-overhead behavior rules (e.g.,
ECFP). (ii) We supplement the work in [4] by demonstrating
convergence of ECFP to the set of MCE in terms of empirical
frequencies. The result is proved for a broader class of utility
functions, i.e. satisfying A.2.

The remainder of the paper is organized as follows. Section
II sets up the notation to be used in the subsequent develop-
ment. In section III the ECFP is presented along with the basic
ECFP convergence result. Section IV presents MCE as an
equilibrium concept for large-scale games and our main result,
convergence of ECFP to the set of MCE, is demonstrated in
the same section. Section V concludes the paper.

II. PRELIMINARIES

A normal form game is given by the triple Γ =
(N, {ui(·)}i∈N , Y n), where N = {1, . . . , n} represents the

1For brevity and simplicity of presentation we omit the technical details
related to the distributed implementation of ECFP. We note, however, that
the results here presented also hold in a distributed setting (i.e. interagent
information exchange is restricted to a local neighborhood of each agent) as
given in [4]. More generally, the reader may refer to [5], [6], [7], [8], [4] and
references therein for studies on various aspects of distributed interaction and
learning in multi-agent networked games.

2Convergence of the the empirical frequency distribution to the set of
Nash equilibria is one of the tradition ai convergence modes in which mixed
equilibria are said to be learned (cf. [9],[10]). The concept is further described
in section III.
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set of players, Y n indicates the set of actions, and ui(y) :
Y n → R indicates the payoff function for player i. We
represent the individual action space of player i by Yi and
the joint action space of all players by Y n =

∏n
i=1 Yi.

The set of mixed strategies for player i is given by ∆i =
{p ∈ Rmi :

∑mi

k=1 p(k) = 1, p(k) ≥ 0}, the mi-simplex. A
mixed strategy pi ∈ ∆i may be thought of as a probability
distribution from which player i samples to choose an action.
In this context, a pure strategy may be thought of as a vertex
of the probability simplex. With a slight abuse of notation, we
denote the set of actions, or pure strategies, in this context,
for player i using the notation Ai = {e1, e2, . . . emi}, where
mi is the number of strategies available to player i, and ej
is the jth canonical vector in Rmi . The set of joint mixed
strategies is given by ∆n =

∏n
i=1 ∆i, and the set of joint

actions is given by An =
∏n

i=1 Ai. A joint mixed strategy is
given by the n-tuple (p1, p2, . . . , pn), pi ∈ ∆i. In this paper
we often make the assumption that players use identical action
spaces, in which case we drop the subscript on individual
action spaces and write ∆ = ∆i ∀i, A = Ai ∀i, and
Y = Yi = {1, 2, . . . ,m} ∀i.

The mixed utility function for player i is given by the
multilinear function Ui(·) : ∆n → R.

Ui(p1, . . . , pn) :=
∑
y∈Y

ui(y)p1(y1) . . . pn(yn).

Note that the mixed utility Ui(p) may be interpreted as the
expected value of ui(y) given that the players’ mixed strategies
are independent. For convenience the notation Ui(p) will often
be written as Ui(pi, p−i) where pi ∈ ∆i is the mixed strategy
for player i, and p−i indicates the joint mixed strategy for all
players other than i.

Let {ai(t)}∞t=1 be a sequence of actions for player i, where
ai(t) ∈ Ai ∀t. Let {a(t)}∞t=1 be the associated sequence of
actions a(t) ∈ An. Note that ai(t) ∈ Rm; when necessary,
we denote the kth element of the vector a(t) by a(t, k). Let
qi(t) be the normalized histogram (empirical distribution) of
the actions of player i up to time t, i.e., qi(t) = 1

t

∑t
s=1 ai(s).

Similarly, q(t) = 1
t

∑t
s=1 a(s) is the joint empirical distribu-

tion corresponding to the joint actions of the players up to
time t. The sequence of distributions {q(t)}∞t=1 is often called
a belief sequence.

A mixed strategy p is a Nash equilibrium of Γ if, for
each player i, Ui(p) ≥ Ui(gi, p−i) ∀gi ∈ ∆i. We define
the set of Nash equilibria as K = {p ∈ ∆n : Ui(p) ≥
Ui(gi, p−i), ∀gi ∈ ∆i, ∀i}. We define the set of consensus
equilibria as C = {p ∈ K : p1 = . . . = pn}

The distance of a distribution p ∈ ∆n from a set S ⊂ ∆n

is given by

d(p, S) = inf{∥p− g⋆∥ : g⋆ ∈ S}.
Throughout the paper ∥ · ∥ denotes the standard L2 Euclidean
norm. Given δ > 0 and a set S ⊂ ∆n, we define the set

Bδ(S) = {p ∈ ∆m : d(p, S) < δ}.
We make the following assumptions unless otherwise stated,

A. 1. All players use the same strategy space.

A. 2. The players’ utility functions can be decomposed as
ui(y) = fi(yi) + ϕ(y) where fi(yi) depends only on the
action of player i and ϕ(y) is a permutation-invariant function,
identical for all players.

The mixed extensions of fi(·) and ϕ(·) are given by Fi(pi) :
∆i → R and Φ(p) : ∆n → R respectively.

Let

q̄(t) =
1

n

n∑
i=1

qi(t) (1)

be the average empirical distribution. Let q̄n(t) =
(q̄(t), q̄(t), . . . , q̄(t)) ∈ ∆n denote the mixed strategy where
all players use the empirical average as their individual
strategy. For convenience in notation we sometimes write
Ui(q̄i(t), q̄−i), where the subscripts indicate the strategy q̄(t)
is being used by player i or by all players except i respectively.

We say a mixed strategy p is a mean-centric equilibrium of
Γ if, for each player i, Ui(pi, p̄−i) ≥ Ui(gi, p̄−i) ∀gi ∈ ∆i.
The set of mean-centric equilibria (MCE) is given by

M = {p ∈ ∆n : Ui(pi, p̄−i) ≥ Ui(gi, p̄−i), ∀gi ∈ ∆i, ∀i},
(2)

and the set of ε-MCE is given by Mε = {p ∈
∆n : Ui(pi, p̄−i) + ε ≥ Ui(gi, p̄−i), ∀gi ∈ ∆i, ∀i}.

III. EMPIRICAL CENTROID FICTITIOUS PLAY

A. Empirical Centroid Fictitious Play

In traditional FP [11],[12] players operate under the naive
assumption that others players’ empirical distributions accu-
rately represent their respective mixed strategies. This is a
simplistic and inaccurate assumption, but allows players to
pick strategies within the context of bounded rationality and
frees them from the overwhelming computational tasks that
would be required of a fully rational player. What is interesting
is that despite this inaccurate assumption, players can learn a
NE in certain classes of games. In ECFP we extend on this
idea in such a way as to maintain computational difficulties at
a tractable level when considering large-scale games; loosely
speaking, we assume that player i makes the naive assumption
that the centroid of the empirical distribution, q̄(t), accurately
represents the mixed strategy played independently by each of
the other players. Under this assumption, player i need only
track a single vector, q̄(t) (see (1)), the centroid of the marginal
empirical distributions, a vector whose size is invariant to the
number of players in the game. In ECFP, the best response3

for player i is given by

vmi (q̄(t)) := max
αi∈Ai

U(αi, q̄−i(t)), (3)

where q̄−i(t) ∈ ∆−i is the (n − 1)-tuple q̄−i(t) =
(q̄i(t), . . . , q̄i(t)). Note that q̄−i(t) essentially represents the
assumption that each of the −i (i.e., other) players is play-
ing the strategy q̄(t) independently. A sequence of actions
{a(t)}∞t=1 is an empirical centroid fictitious play process if

vmi (q̄(t)) = U (ai(t+ 1), q̄−i(t)) , (4)

where the initial action ai(1) is chosen arbitrarily for all i. In
[4] it was shown that under the following assumption,

A. 3. All players use identical permutation invariant utility
functions.

3At first glance, the best response calculation appears to have the same
computational complexity as FP. However, the symmetry inherent in tuple
q̄−i(t) tends to allow for substantial simplifications in solving the problem
(3).
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players asymptotically learn a consensus equilibrium4. The
result is summarized in the following theorem.

Theorem 1. Let {a(t)}t≥1 be an ECFP process such that
A.1 and A.3 hold. Then d(q̄n(t), C) → 0 where C = {p ∈
K : p1 = . . . = pn} is a non-empty subset of the Nash
equilibria denoted as the consensus equilibria.

Note that the mode of convergence in Theorem 1 con-
siders the asymptotic behavior of the n-tuple q̄n(t) =
(q̄(t), . . . , q̄(t)); we call this mode of convergence, conver-
gence in average empirical frequency. While Theorem 1
does provide a useful result, the mode of convergence is
somewhat esoteric and only provides a limited characterization
of the asymptotic behavior of the player empirical frequency
distributions, qi(t). In this paper, we wish to consider the more
traditional notion of convergence, convergence in empirical
frequencies which considers the asymptotic behavior of the
tuple of empirical distributions q(t) = (q1(t), . . . , qn(t)).

By considering this mode of convergence, we are able
to prove convergence results using weaker assumptions and
consider a broader class of games. For our main result,
Theorem 2, we relax A.3 in lieu of the more general A.2.

IV. MEAN-CENTRIC EQUILIBRIUM

We say that a strategy p is a MCE if

Ui(pi, p̄−i) ≥ Ui(gi, p̄−i), ∀gi ∈ ∆i, ∀i. (5)

The set of MCE is defined in (2). We demonstrate the set of
MCE to be non-empty in the following proposition.

Proposition 1. Let Γ be a finite normal form game. Then the
set of MCE associated with Γ is non-empty.

Proof: The proof follows similar fixed point type argu-
ments as used in [13] for the existence of mixed Nash equi-
libria. We sketch the key details here. Define the set-valued
mapping ri(p) = argmaxgi∈∆i Ui(gi, p̄−i) : ∆n ⇒ ∆i and
r(p) = (r1(p), . . . , rn(p)) : ∆n ⇒ ∆n. Note that ∆n is
compact, convex, and nonempty. Also it may be shown that
the set-valued mapping r(p) is convex-valued, non-empty for
all p ∈ ∆n, and upper hemicontinous. It then follows by
Kakutani’s fixed point theorem that r(·) has a fixed point
in ∆n. Since a strategy p that is a fixed point of r(p)
is necessarily in M , we may conclude that the set M is
nonempty.

The intuition behind (5) is that, in MCE players are at
equilibrium with respect to the aggregate and not necessarily
with respect to other individuals. Specifically, each player is
at equilibrium with q̄(t), the centroid of all players’ marginal
mixed strategies.

In many large-scale games of interest, a player’s utility
tends to depend heavily on the behavior of the aggregate,
and less so on the behavior of other individuals. MCE may
be considered a simplification of the traditional NE concept
such that dependency on any specific opposing players is
extenuated.

In general, MCE are not necessarily NE, and NE are not
necessarily MCE. However, it is interesting to note that any
consensus equilibrium is a MCE. A very interesting future
research direction would be to characterize the degree to which

4A consensus equilibrium is a NE such that p1 = p2 = . . . = pn, i.e., all
players use the same strategy.

these two concepts approximate one another as well as the
class of games for which the two concepts may be considered
‘close’.

A. Main Result
The following theorem summarizes our main result, demon-

strating that in an ECFP process, players asymptotically learn
a MCE.

Theorem 2. Let {a(t)}t≥1 be an ECFP process such that
assumptions A.1-A.2 hold. Then d(q(t),M) → 0 as t → ∞.

Proof: Let ā(t) = 1
n

∑n
i=1 ai(t), where ā(t) ∈ ∆, ai(t) ∈

A. Let ān(t) ∈ ∆n be the n-tuple (ā(t), . . . , ā(t)).
Note that for t ≥ 1

q̄n(t+ 1) = q̄n(t) +
1

t+ 1
(ān(t+ 1)− q̄n(t)) . (6)

Using (6) we write

Φ(q̄n(t+ 1)) = Φ

(
q̄n(t) +

1

t+ 1
(ān(t+ 1)− q̄n(t))

)
.

Applying the multilinearity of Φ(·), we obtain

Φ(q̄n(t+ 1)) = Φ(q̄n(t)) +
1

t+ 1

n∑
i=1

Φ(āi(t+ 1), q̄−i(t))

− 1

t+ 1

n∑
i=1

Φ(q̄i(t), q̄−i(t)) + ζ(t+ 1).

where we have explicitly written the first order terms of the
expansion and collected the remaining terms in ζ(t + 1).
Note that the number of second order terms in the above
expansion is finite and the terms are uniformly bounded since
maxp∈∆n |Φ(p)| < ∞. Hence, there exists a positive constant
B (independent of t) large enough such that |ζ(t + 1| ≤
B(t+ 1)−2 for all t. Thus,

Φ(q̄n(t+ 1)) ≥ Φ(q̄n(t)) +
1

t+ 1

n∑
i=1

Φ(āi(t+ 1), q̄−i(t))

− 1

t+ 1

n∑
i=1

Φ(q̄i(t), q̄−i(t))−
B

(t+ 1)2
. (7)

The permutation invariance and multilinearity of Φ(·) permits
a rearranging of terms. We use the notation [aj(t)]i to indicate
the action of player j at time t being played by player i.

n∑
i=1

Φ(āi(t+ 1), q̄−i(t))

=
n∑

i=1

Φ

 1

n

n∑
j=1

aj(t+ 1)


i

, q̄−i(t)


=

n∑
i=1

1

n

n∑
j=1

Φ
(
[aj(t+ 1)]i , q̄−i(t)

)
=

n∑
i=1

1

n

n∑
j=1

Φ
(
[aj(t+ 1)]j , q̄−j(t)

)
=

n∑
j=1

Φ(aj(t+ 1), q̄−j(t)) .

573



By similar reasoning it also holds that
n∑

i=1

Φ(q̄i(t), q̄−i(t)) =

n∑
j=1

Φ(qj(t), q̄−j(t)) . Thus (7) can be expressed as,

Φ(q̄n(t+ 1))− Φ(q̄n(t)) +
B

(t+ 1)2

≥ 1

t+ 1

n∑
i=1

Φ (ai(t+ 1), q̄−i(t))

− 1

t+ 1

n∑
i=1

Φ(qi(t), q̄−i(t)). (8)

Using (6) and the linearity of Fi(·) in ∆i, note that

Fi(qi(t+ 1))−Fi(qi(t)) =
1

t+ 1
(Fi(ai(t+ 1)− Fi(qi(t))) .

(9)
Combining (8) and (9) we get,

n∑
i=1

[Fi(qi(t+ 1))− Fi(qi(t))]

+ Φ (q̄n(t+ 1))− Φ(q̄n(t)) +
B

(t+ 1)2

≥ 1

t+ 1

n∑
i=1

Fi(ai(t+ 1)) + Φ (ai(t+ 1), q̄−i(t))

− 1

t+ 1

n∑
i=1

Fi(qi(t)) + Φ(qi(t), q̄−i(t))

=
1

t+ 1

n∑
i=1

[Ui(ai(t+ 1), q̄−i(t))− Ui(qi(t), q̄−i(t))]

=
αt+1

t+ 1
, (10)

where the first equality comes from the definition of ui(·) in
A.2, and the second equality is obtained by defining αt+1 as

αt+1 :=
n∑

i=1

[Ui(ai(t+ 1), q̄−i(t))− Ui (qi(t), q̄−i(t))] .

Summing over 1 ≤ t ≤ T in (10),
n∑

i=1

[Fi(qi(T ))− Fi(qi(1))]

+ Φ(q̄n(T + 1))− Φ(q̄n(1)) +
T∑

t=1

B

(t+ 1)2

≥
T∑

t=1

αt+1

t+ 1
.

Note that
∑T

t=1
B

(t+1)2 is summable; therefore all terms on the
left hand side are bounded above for all T ≥ 1. Also note that
by the (4), αt ≥ 0 and hence it follows that

∑T
t=2

αt

t < ∞
converges as T → ∞. Applying Kronnecker’s lemma yields

lim
T→∞

α2 + α3 + . . .+ αT

T
= 0.

Subsequently, following reasoning similar to [4] Lemma 6, we
obtain for every ε > 0,

lim
T→∞

#{1 ≤ t ≤ T : q(t) /∈ Mε}
T

= 0.

Following reasoning similar to [4] Lemma 8, this is equivalent
to

lim
T→∞

#{1 ≤ t ≤ T : q(t) /∈ Bδ(M)}
T

= 0

for every δ > 0. Finally, following reasoning similar to [4]
Lemma 9, we obtain

lim
t→∞

d(q(t),M) = 0.

V. CONCLUSIONS

We introduced the concept of mean-centric equilibrium
which we consider to be an intuitive and natural equilibrium
concept for large-scale games. We demonstrated that the set
of MCE is non-empty for the class of games considered,
and provided simple and practical player behavior rules for
learning MCE in large-scale games. Specifically, we demon-
strated that the empirical centroid fictitious play algorithm
converges in terms of empirical frequencies to the set of MCE.
By considering MCE as limit points of the ECFP algorithm
we were able to better characterize the asymptotic behavior
of ECFP and expand the scope of applicablility of ECFP to
include games with disparate action sets and non-permutation
invariant potential functions. It would be interesting to study
the relationship between MCE and NE, including a character-
ization of the games for which MCE approximate NE, either
in terms of player utilities or some other metric.
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