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Abstract—The paper deals with distributed learning of Nash
equilibria in games with a large number of players. The classical
fictitious play (FP) algorithm is impractical in large games due to
demanding communication requirements and high computational
complexity. A variant of FP is presented that aims to mitigate
both issues. Complexity is mitigated by use of a computationally
efficient Monte-Carlo based best response rule. Demanding
communication problems are mitigated by implementing the
algorithm in a network-based distributed setting, in which player-
to-player communication is restricted to local subsets of neighbor-
ing players as determined by a (possibly sparse, but connected)
preassigned communication graph. Results are demonstrated via
a simulation example.

Index Terms—Games, Distributed Learning, Fictitious Play,
Nash Equilibrium

I. INTRODUCTION

The field of learning in games studies how groups of

interacting agents can adaptively learn to coordinate their

behavior through repeated interaction. One of the best studied

game-theoretic learning algorithms is Fictitious Play (FP)

[1]. FP serves as an archetype for many learning algorithms

(e.g. [2]–[7]), and has itself been applied in a variety of

settings including large-scale optimization [7], [8], dynamic

programming [9], traffic routing [10], and cognitive radio

[11]–[13].

The importance and usefulness of FP stems from its in-

tuitively simple nature and provable learning properties in

certain multiagent games. However, the practical value of FP

is limited by the fact that it can become extremely difficult to

implement in games with a large number of players.1

In this paper we address two issues with FP that make

it difficult to implement in large-scale games: demanding

communication requirements, and high computational com-

plexity. In particular, classical FP assumes a form of all-to-

all communication among players, and has a computational

complexity that grows exponentially in the number of players.

In order to implement classical FP in a communication-

efficient manner, [6], [14] proposed a network-based imple-

mentation of FP, which we refer to as distributed FP. In

distributed FP, it is assumed that players are provided with

The work was partially supported by the FCT projects FCT
[UID/EEA/5009/2013] and FCT [UID/EEA/50009/2013] through the
Carnegie Mellon/Portugal Program managed by ICTI from FCT and by FCT
Grant CMU-PT/SIA/0026/2009 and was partially supported by NSF grant
ECCS-1306128.
†Department of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, PA 15213, USA (brianswe@andrew.cmu.edu and
soummyak@andrew.cmu.edu).
�Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior
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1Throughout the paper, we use the terms agent and player interchangeably.

a preassigned communication graph (possibly sparse, but con-

nected) through which they must efficiently communicate all

information relevant to the FP process. The work [6] showed

that the fundamental learning properties of FP can be retained

in this setting.

Several methods have been proposed to mitigate the prob-

lem of computational complexity in FP. Of particular interest

to the present work is sampled FP [7]— a variant of FP in

which players use a Monte Carlo method to approximate the

mixed utility each round, thereby obviating any need for direct

evaluation of the (computationally expensive) best response

optimization problem. The drawback of this approach is that

the number of samples that must be drawn each round grows

without bound as the algorithm progresses; in particular, in

round t the number of samples that must be drawn is of the

order
√
t. In [15], the authors present computationally efficient

sampled FP (CESFP)—a variant of sampled FP in which the

number of samples drawn each round is uniformly bounded;

in fact, in CESFP only one sample need be drawn each round

of the learning process.

The main contribution of this paper is the presentation of

a variant of FP that simultaneously addresses both of the

aforementioned problems—i.e., is efficient in terms of both

communication and computation requirements. In particular,

we present an implementation of the (low complexity) CESFP

algorithm in a communication-efficient distributed setting, as

studied in [6].

The remainder of the paper is organized as follows. Sec-

tion II sets up the notation to be used in the subsequent

development. Section III reviews classical FP and some of its

fundamental shortcomings in large games. Section IV reviews

the CESFP algorithm. Section V presents the distributed-

information framework that will be used in the distributed

implementation of CESFP. Section VI presents our distributed

implementation of the CESFP algorithm, states the formal

convergence result, and presents the proof of the result. Section

VIII demonstrates results via a simulated cognitive radio

example. Section IX concludes the paper.

II. PRELIMINARIES

A game in normal form is represented by the triple Γ :=
(N, (Yi, ui)i∈N ), where N = {1, . . . , n} denotes the set of

players, Yi denotes the finite set of actions available to player

i, and ui :
∏

i∈N Yi → R denotes the utility function of player

i. Denote by Y :=
∏

i∈N Yi the joint action space.

In order to guarantee the existence of Nash equilibria it

is necessary to consider the mixed-extension of Γ in which

players are permitted to play probabilistic strategies. Let mi :=
|Yi| be the cardinality of the action space of player i, and let
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Δi := {p ∈ R
mi :

∑mi

k=1 p(k) = 1, p(k) ≥ 0 ∀k} denote the

set of mixed strategies available to player i—note that a mixed

strategy is a probability distribution over the action space of

player i. Denote by Δn :=
∏

i∈N Δi, the set of joint mixed

strategies. When convenient, we represent a mixed strategy p ∈
Δn by p = (pi, p−i) where pi denotes the marginal strategy

of player i and p−i is a (n− 1) tuple containing the marginal

strategies of the other players.

In the context of mixed strategies, we often wish to retain

the notion of playing a deterministic action. For this purpose,

let Ai := {e1, . . . , emi} denote the set of “pure strategies”

of player i, where ej is the j-th cannonical vector in R
mi

containing a 1 at position j and zeros otherwise.

The mixed utility function of player i is given by

Ui(p) :=
∑

y∈Y

ui(y)p1(y1) . . . pn(yn), (1)

where Ui : Δ
n → R. The set of Nash equilibria is given by

NE := {p ∈ Δn : Ui(pi, p−i) ≥ Ui(p
′
i, p−i), ∀p′i ∈ Δi, ∀i ∈

N}. The distance of a distribution p ∈ Δn from a set S ⊂ Δn

is given by d(p, S) = inf{‖p− p′‖ : p′ ∈ S}. Throughout the

paper ‖ · ‖ denotes the standard L2 Euclidean norm unless

otherwise specified.

For i ∈ N and a vector ξ ∈ R
mi , denote by PΔi

(ξ) :=
arg infpi∈Δi ‖pi − ξ‖, the projection of ξ onto the set Δi.

Note that since Δi is closed and convex, the projection of ξ
onto Δi is unique.

There exists a probability space (Ω,F ,P) rich enough to

carry out the construction of the various random variables

required in this paper. As a matter of convention, all equalities

and inequalities involving random objects are to be interpreted

almost surely (a.s.) with respect to the underlying probability

measure unless otherwise stated.

This paper considers discrete-time repeated-play learning

algorithms. Fix a normal form game Γ. Let players repeatedly

face off in the game Γ, and for t ∈ {1, 2, . . .}, denote by

ai(t) ∈ Ai, the action played by player i in round t. Let the

n-tuple a(t) = (a1(t), . . . , an(t)) denote the joint action at

time t. Let the empirical distribution of the actions of player i
be given by qi(t) :=

1
t

∑t
s=1 ai(s) and let the joint empirical

distribution be given by the n-tuple q(t) = (q1(t), . . . , qn(t)).

III. FICTITIOUS PLAY

A sequence of actions {a(t)}t≥1 such that for all2 t ≥ 1,

ai(t+ 1) ∈ arg max
αi∈Ai

Ui(αi, q−i(t)), ∀i ∈ N, (2)

is referred to as a fictitious play process. Intuitively speaking,

this describes a process where player i assumes (perhaps

incorrectly) that opponents are using statistically-independent

time-invariant mixed strategies, and hence player i picks her

next-stage action as a myopic best response to the empirical

distribution q−i(t) of opponent action history.

FP has been studied extensively to determine the classes

of games in which it leads players to learn Nash equilibrium

strategies [2], [3]. Of particular relevance to the multi-agent

2In all variants of FP discussed in this paper, the initial action ai(1) may
be chosen arbitrarily for all i.

setting is a class of games known as potential games [16]. A

game Γ = (N, (Yi, ui(·))i∈N ) is said to be a potential game

if there exists a potential function φ : Y → R such that for

all i ∈ N , and all y−i ∈ Y−i

ui(yi, y−i)−ui(xi, y−i) = φ(yi, y−i)−φ(xi, y−i), ∀yi, xi ∈ Yi.

The existence of a potential function means, intuitively speak-

ing, that all player’s utility functions are aligned in such way

that players share a common underlying objective. It has been

shown [16], [17] that FP leads players to learn NE strategies in

potential games in the sense that d(q(t), NE)→ 0 as t → ∞.

A. Problems With Fictitious Play in Large Multi-Agent Games

Despite theoretical convergence results, FP is impractical to

implement in large multi-agent games. We discuss two major

problems with FP that we seek to address in this paper.

1) High Computational Complexity: In order to choose

a next-stage action in FP (see (2)), a player must compute

Ui(αi, q−i(t)) for each αi ∈ Ai. Recall from (1) that the

mixed utility Ui(αi, q−i(t)) is the expected value of ui(·)
when opponents use the probabilistic strategy q−i(t) (an

(n−1) dimensional probability distribution) and player i uses

the pure strategy αi. The complexity of computing this mixed

utility grows exponentially in terms of the number of players

[18].

2) Demanding Communication Requirements: In order to

compute the set of best responses in (2), a player must first

have perfect knowledge of q−i(t). In a large multi-agent

game this is equivalent to requiring that players be capable

of directly observing or instantaneously communicating with

all other agents at all times.

In this paper we seek to resolve both of these issues in a

unified manner. The Computationally Efficient Sampled FP

(CESFP) algorithm of [15] mitigates complexity, but does

not address communication requirements. The distributed-

information setting presented in [6] addresses communication

but does not mitigate complexity. In this paper we present an

implementation of the CESFP algorithm of [15] implemented

over a (possibly sparse, but connected) communication struc-

ture as proposed in [6].

IV. COMPUTATIONALLY EFFICIENT SAMPLED FP

In classical FP, the complexity of the best response compu-

tation quickly becomes impractical as the number of play-

ers grows large. In Computationally Efficient Sampled FP

(CESFP), this problem is mitigated by avoiding direct evalua-

tion of the best response computation (2). Instead, each player

i forms an estimate Ûi(αi, t) of the utility Ui(αi, q−i(t)) for

each αi ∈ Ai that is updated recursively using a Monte-

Carlo-type approach. CESFP follows the same fundamental

behavior rule as FP, but uses the estimate Ûi(t) as a surrogate

for Ui(αi, q−i(t)) in (2).

We refer to a sequence of actions {a(t)}t≥1 generated

according to the following algorithm as an CESFP process.
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A. Computationally Efficient Sampled FP Algorithm

Initialize
(i) For each i ∈ N , let ai(1) be arbitrary, let qi(1) = ai(1),
and let Û(αi, 0) = 0, ∀αi ∈ Ai.

Iterate (t ≥ 1)
(ii) Player i draws a “test action” a∗−i(t) from the distribution3

q−i(t), and updates the estimate Ûi(αi, t) for each action αi ∈
Ai according to the recursion,4

Ûi(αi, t) = (1− ρ(t))Ûi(αi, t− 1) + ρ(t)Ui(αi, a
∗
−i(t)).

The player chooses a next stage action using the rule (compare

with (2)):

ai(t+ 1) ∈ arg max
αi∈Ai

Ûi(αi, t).

(iii) The empirical distribution is updated to reflect the action

just taken qi(t + 1) = 1
t+1

∑t+1
s=1 ai(s), or equivalently, in

recursive form qi(t+1) = qi(t)+1/(t+1)(ai(t+1)− qi(t)).

B. Discussion

In [15], it is shown that that if Γ is a potential game and

A. 1. The sequence {ρ(t)}t≥1 is such that 0 < ρ(t) ≤
1,

∑
t≥1(ρ(t))

2 < ∞, and limt→∞ log t
tρ(t) = 0.

holds,5 where {ρi(t)}t≥1 is a weight sequence used to update

the estimate Ûi(αi, t), (see step (ii), above) then CESFP

achieves learning in the sense that limt→∞ d(q(t), NE) = 0.

V. DISTRIBUTED SETUP

In the centralized setting it is assumed that agents are able

to instantaneously observe the actions of all other agents.

In this paper we consider a relaxation of this assumption

in which agents are incapable of observing the actions of

others, but are endowed with a preassigned communication

graph through which they may exchange information with

neighboring agents. Formally we assume:

A. 2. Players are endowed with a preassigned communication
graph G = (V,E), where the vertices V represent the
players and the edge set E consists of communication links
(bidirectional) between pairs of players that can communicate
directly. The graph G is connected.

A. 3. Players directly observe only their own actions.

A. 4. A player may exchange information with immediate
neighbors, as defined by G, at most once for each iteration or
round of the repeated play.

For any learning algorithm, we refer to an implementation

that meets A.2–A.4 as a distributed implementation of the

3Note that it is implicitly assumed that each player has precise knowledge
of the joint empirical distribution q(t). In order for player i to know q(t) at
each time step, she must be aware of the actions aj(t) of all other agents. In
a network setting, this is equivalent to assuming all-to-all communication.

4Since the joint strategy a∗−i(t) consists of only pure strategies, the
evaluation of the utility is relatively simple.

5In [15] the condition limt→∞ log t/(tρ(t)) = 0 as stated above is
exchanged for the slightly weaker condition: limt→∞ 1/(tρ(t)) = 0.
However, in this paper, order to ensure convergence in the distributed setting,
we require the stronger assumption.

algorithm. The distributed implementation of an algorithm is

not unique; in particular, there may be many information shar-

ing protocols (e.g., dynamic consensus [19], or asynchronous

gossip [20]) that allow agents to learn NE in the distributed

setting. In the following section we present a distributed imple-

mentation of CESFP in which players disseminate information

pertinent to the learning process using a dynamic consensus

algorithm.

VI. DISTRIBUTED IMPLEMENTATION OF

COMPUTATIONALLY EFFICIENT FICTITIOUS PLAY

A. Algorithm Setup

In our distributed implementation of CESFP—henceforth

referred to as D-CESFP—players do not have precise knowl-

edge of the empirical distribution q(t); instead, each player i
forms an estimate of the empirical distribution by communi-

cating with neighboring players. Denote by q̂ij(t), the estimate

that player i maintains of the empirical distribution of player

j, and denote by q̂i(t) := (q̂i1(t), . . . , q̂
i
n(t)) the estimate that

player i maintains of the joint empirical distribution.

Furthermore, in D-CESFP, each player i forms an estimate

of the utility Ui(·, q−i(t)). Let Ûi(αi, t) ∈ R denote the

estimate player i maintains of Ui(αi, q−i(t)) for each αi ∈ Ai,

t ∈ {0, 1, . . .}.

In D-CESFP, player i forms her estimate of the empirical

distribution q̂i(t) by exchanging information with neighboring

players. Let W be a weighting matrix satisfying the following

assumption:

A. 5. W is symmetric, doubly stochastic, aperiodic, irre-
ducible. Furthermore, W is conformant to the graph topology
G; i.e, wij > 0 only if G contains an edge from i to j.

The matrix W = (wij)
n
i,j=1 will be used to specify the

weighting constants in the distributed update of q̂i(t) (see steps

(i) and (iv) of the D-CESFP algorithm below).

B. Some Additional Definitions

The following notation is used to facilitate a compact

description of the algorithm. Let s =
∑

k∈N mk. Let q′i(t) be

an augmented (zero-stuffed) vector representing the empirical

distribution of player i such that

q′i(t) := (0, . . . 0, nqi(t), 0 . . . , 0) ∈ R
s.

The augmented vector q′i(t) matches the general structure of

q̂i(t), but in the place of qii(t) we substitute in n·qi(t) (a scaled

copy of the true empirical distribution) and set all other entries

to zero.

For i ∈ N , ξ = (ξ1, . . . , ξi−1, ξi+1, . . . , ξn), ξj ∈ R
mj let

PΔ−i
(ξ) := (PΔ1

(ξ1), . . . , PΔn
(ξn)),

where PΔi
(ξi) is the projection of ξi onto the set Δi as defined

in Section II.

C. D-CESFP Algorithm

Initialize
(i) Each player i takes an arbitrary initial action ai(1),
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and the empirical distribution for player i is initialized as

qi(1) = ai(1). Player i initializes her local estimate of the

joint empirical distribution as

q̂i(1) =
∑

j∈Ωi∪{i}
wijq

′
j(1), (3)

where Ωi is the set of neighbors of player i. The utility

estimate is initialized as Ûi(αi, 0) = 0 for all αi ∈ Ai.

Iterate (t ≥ 1)
(ii) Player i draws an action a∗−i(t) as a random sample

from the probability mass function6 PΔ−i

(
q̂i−i(t)

)
. For each

αi ∈ Ai player i updates her estimate of the predicted utility

according to the rule:

Ûi(αi, t) = (1− ρ(t))Ûi(αi, t− 1)+ ρ(t)Ui(αi, a
∗
−i(t)). (4)

(iii) Player i chooses her stage (t+1) action as a best response

to the predicted utility Û(·, t); i.e.,

ai(t+ 1) ∈ arg max
αi∈Ai

Û(αi, t). (5)

The local empirical distribution of player i is recursively

updated to include the action just taken, i.e.,

qi(t+ 1) = qi(t) +
1

t+ 1
(ai(t+ 1)− qi(t)) .

(iv) Player i updates her estimate of the joint empirical

distribution using the following rule:

q̂i(t+ 1) =
∑

j∈Ωi∪{i}
wij

(
q̂j(t) + q′j(t+ 1)− q′j(t)

)
. (6)

D. Main result
The following result shows that players engaged in a D-

CESFP process asymptotically learn a Nash equilibrium.

Theorem 1. Let Γ be a potential game. Let {a(t), q(t)}t≥1,
where q(t) := (q1(t), . . . , qn(t)) be computed according to
the D-CESFP algorithm of Section VI-C, and assume A.1–
A.5 hold. Then players learn a Nash equilibrium in the sense
that limt→∞ d(q(t), NE) = 0. Furthermore, each player
i achieves asymptotic strategy learning in the sense that
limt→∞ ‖q̂ij(t)− qj(t)‖ = 0 for all j ∈ N .

Proof. We will prove the result by showing that there exists a

sequence {εt}t≥1 such that εt → 0 and Ui(ai(t+1), q−i(t)) ≥
maxαi∈Ai

Ui(αi, q−i(t))−εt for all i. By [4], Corollary 5, this

is sufficient to ensure d(q(t), NE)→ 0 in potential games.
By Lemma 1, there holds limt→∞ ‖q̂i(t) − q(t)‖ = 0.

Since the map PΔ−i is Lipschitz continuous, this implies

limt→∞ ‖PΔ−i

(
q̂i−i(t)

) − q−i(t)‖ = 0. By Lipschitz conti-

nuity of Ui, this implies that

lim
t→∞ |Ui(αi, PΔ−i

(
q̂i−i(t)

)
)− Ui(αi, q−i(t))| = 0, ∀αi, ∀i.

(7)

Invoking assumption A.1, by Lemma 2 of [15] there holds,

lim
t→∞ |Ûi(αi, t)− Ui(αi, PΔ−i

(
q̂i−i(t)

)
)| = 0, ∀αi, ∀i.

6Given the distributed update rule used to compute q̂i(t) in step iv, it is
possible that q̂i(t) may sometimes leave the probability simplex. The pro-
jection operation guarantees that a player has a valid probability distribution
from which to draw the sample a∗−i(t).

Combining this with (7) gives,

lim
t→∞ |Ûi(αi, t)− Ui(αi, q−i(t))| = 0, ∀αi, ∀i.

Combining this with the D-CESFP action rule (5), we see that

there exists a sequence {εt}t≥1 such that εt → 0 and

Ui(ai(t+ 1), q−i(t)) ≥ max
αi∈Ai

Ui(αi, q−i(t))− εt, ∀i,

and the desired result holds.

E. Discussion

In the above result, the joint empirical distribution q(t)
converges to the set of Nash equilibria. Because of A.3, player

i may not have precise knowledge of the empirical distribution

q(t). However, the above result states that player i’s estimate

of the empirical distribution of opponent j, q̂ij(t) converges

to the true empirical distribution of opponent j, qj(t). Hence,

each player i achieves asymptotic strategy learning in the sense

that her estimate of the joint empirical distribution converges

to the set of Nash equilibria.

The distributed implementation of CESFP given above

addresses both the problems of computational complexity and

demanding communication associated with classical FP. The

mitigation in complexity can be seen in (4) and (5)—rather

than compute an expected value over (n − 1) dimensional

space as required in (2), players simply compute the utility

of a randomly sampled pure strategy a∗−i (a relatively easy

task) and use the recursive rule (4) to obtain an estimate of

the utility U(αi, q−i(t)).
The communication problem of classical FP is mitigated

by implementing the algorithm in a setting where players are

assumed to have limited ability to view the actions of other

players, as in A.3, and interagent communication is restricted

to local neighborhoods, as in A.2, A.4.

VII. INTERMEDIATE RESULTS

Lemma 1. Assume A.2–A.5. For i, j ∈ N , let q̂ij(t) be as
defined in Section VI-B. Let the estimates q̂i(t) be formed as
in Section VI-C. Then limt→∞ ‖q̂ij(t)−qj(t)‖ = 0, ∀i, j ∈ N .

Proof. Let q̄′(t) = 1
n

n∑
i=1

q′i(t) be the average of the augmented

empirical distributions as defined in Section VI-B. Note that

q̄′(t) ∈ R
s is, in fact, a vector which stacks the true empirical

distributions, q̄′(t) = (q1(t), · · · , qn(t)). Thus, by solving

for q̄′(t), players are in fact solving for the true empirical

distribution.

Let k ∈ {1, . . . , s}, and let q̃k(t) ∈ R
n with

q̃k(t) := (q̂1(t, k), . . . , q̂n(t, k)),

where q̂i(t, k) is the k-th entry of the vector q̂i(t). Note that

the incremental change in any element of q̃k(t) is bounded by

1/t, and that q̃k(t) is updated in a manner fitting the template

of Lemma 1 of [6]. Invoking Lemma 1 of [6] (where (3) is to

be seen as (6) for t = 0 and q̂i(0) = 0, qi(0) = 0) gives

lim
t→∞ ‖q̃k(t)− 1q̄′(t, k)‖ = 0,
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or equivalently, limt→∞ ‖q̂i(t, k) − q̄′(t, k)‖ = 0, ∀i. Since

this holds for all k ∈ {1, . . . , s} and q̄′(t) = q(t), (where q(t)
is considered as a vector), this gives the desired result.

VIII. SIMULATION EXAMPLE

We simulated D-CESFP in a simple cognitive radio exam-

ple. Let N = {1, . . . n} indicate a set of users (or players),

and let Ch indicate a finite collection of permissible frequency

channels shared by all users (i.e., Yi = Ch, ∀i ∈ N ). For

y ∈ Y , and k ∈ Ch, let σk(y) denote the number of users

on channel k under the strategy y. Further, for k ∈ Ch and

� ∈ {0, 1, 2, . . .}, let ck(�) denote the cost of using channel k
when there are � users occupying the channel. Let the utility

for player i be given by ui(y) = −cyi(σ(y)). This game is

classified as a congestion game—a known type of potential

game.

We simulated the D-CESFP and a distributed implementa-

tion of Sampled FP7 (D-Sampled FP) in the cognitive radio

example given above with 30 users and 15 channels. The

D-Sampled FP algorithm used a sample-rate parameter of

kt = �t.6� and D-CESFP used a parameter ρ(t) = t−.6, ∀t.
All simulations used the same randomly generated initial con-

ditions. In the distributed implementation of both algorithms

the communication graph was given by the random geometric

graph. The weights wij (see (6)) were derived using the

Metropolis-Hastings rule [21].

Figure 1(a) shows a logarithmic plot of the networked-

averaged expected utility of q(t) in the distributed algorithms.

The trend is consistent with convergence to NE and suggests

similar per-iteration performance characteristics for both algo-

rithms.

Figure 1(b) shows a plot of the number of samples drawn

at each node up to and including round t. D-CESFP is able

to achieve a similar quality solution to D-Sampled FP despite

drawing far fewer total samples.

(a) (b)

Fig. 1. (a) Utility of q(t) in Distributed CESFP and Distributed Sampled FP;
(b) Total samples drawn by iteration t.

IX. CONCLUSIONS

Classical fictitious play (FP) can be difficult to implement in

large-scale settings due to demanding communication require-

ments and high computational complexity. We have presented

7The distributed implementation of Sampled FP was formed in the same
manner as distributed implementation of CESFP in Section VI. Using reason-
ing similar to the proof of Theorem 1 it can be shown that the distributed
implementation of Sampled FP converges to NE in the same manner as in
Theorem 1.

an approach that mitigates both of these issues. Demanding

communication requirements are mitigated by restricting inter-

agent communication to a local subset of neighboring players.

Computational complexity is mitigated by using a best re-

sponse rule based on Computationally Efficient Sampled FP.
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