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Abstract— The Fluorescence Confocal Microscopy (FCM) is
nowadays one of the most important tools in biomedical and
pharmaceutic research. The main advantage of this technique
over the traditional bright field optical microscopy is the fact
that it allows the selection of a thin cross-section of the sample
by rejecting the visual information coming from the out-of-focus
planes. However, the small amount of energy radiated by the
fluorophore and the huge light amplification performed by the
photon detector to capture this visual information introduces
a type of multiplicative noise described by a Poisson distri-
bution. Additionally, the radiation efficiency of the fluorophore
decreases with the time, an effect called photobleaching, leading
to a decrease in the image intensity along the time.

In this paper a reconstruction algorithm is proposed where
the multiplicative noise and the photobleaching effect are
modeled. The goal is to obtain the morphology and the
intensity decay rate across the cell nucleus from a sequence
of FCM images. The reconstruction algorithm is formulated
as an optimization problem where a convex energy function is
minimized. Tests using synthetic and real data are presented to
illustrate the application of the algorithm and the effectiveness
of the results.

Index Terms— Denoising, Poisson, Bayesian, confocal mi-
croscopy, convex optimization.

I. INTRODUCTION

The Fluorescence Confocal Microscopy (FCM) is nowa-

days one of the most important tools in biomedical and

pharmaceutic research [1]. The main advantage of this tech-

nique over the traditional bright field optical microscopy is

the fact that it allows the selection of a thin cross-section

of the sample by rejecting the visual information coming

from the out-of-focus planes (see Fig. 1). Additionally, it

allows the use of fluorescence synthetic molecules, e.g. green

fluorescent protein (GFP), that radiate in a wave length

different from the one of the incident LASER. Using the

right optical filters it is easy to track these molecules inside

the cell, by observing only its emitted radiation. Tagging the

protein of interest with GFP it is possible to follow these

molecules aiming to understand the dynamic mechanisms

behind the molecular machinery.

The most significant advances in this technique, occurred

during the last decade, due to the improvement on the

Laser Scanning Confocal Microscope (LSCM) [1], to the

development of synthetic fluorescent probes and proteins and

to the development of a wider spectrum of LASER light

sources coupled to highly accurate acoustic/optic controlled

filters.
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Fig. 1. Fluorescence Confocal Microscope (from Nikon-MicroscopyU).

The FCM images are in general very noisy, with small sig-

nal to noise ratio (SNR), corrupted by a type of multiplica-

tive noise described by a Poisson distribution. Additionally,

an intensity decreasing effect along the time, depending on

the intensity of the incident LASER called photobleaching,

is observed. The more intense is the incident LASER beam

the larger is the intensity decay rate [2].

The Poisson noise arises in systems involving counting

procedures such as PET/SPECT [3], functional MRI [4] and

fluorescence confocal microscopy [2].

The photobleaching effect results from the GFP decreas-

ing radiation emission efficiency. This occurs because the

fluorophore permanently loses the ability to fluoresce, due

to chemical reactions induced by the incident LASER or by

other surrounding molecules. The decreasing on the image

intensity is associated to a decreasing on the signal to

noise ratio of the images, making the biological information

recovery more and more difficult [5].

This photobleaching effect, however, enables the obser-

vation of the spatio-temporal dynamics of the fluorescently

tagged proteins, namely with the use of GFP fusions ex-

pressed in living cells [6]. In fact, by strongly radiating a

small region in nucleus, an abrupt photbleaching effect is

induced in that region. The intensity in the rest of the nucleus

will also decrease due to the random walk effect of the

molecules that enter into the hole. Therefore, by observing

the intensity decay rate in the cell nucleus it is possible to

infer the diffusion velocity of these molecules. Some of them,

however, are binded to large and almost static structures

presenting very small diffusion rates.
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In this paper a denoising algorithm is formulated as an

optimization problem where a convex energy function is

minimized. Since the purpose is to achieve knowledge on

the dynamics of the molecular process occurring along the

time, the denoising methodology is performed in a time

course basis instead of the traditional image basis. The

convex formulation and the optimization procedure with

the Newton algorithm guarantees a continuous convergence

toward the global minimum in a small number of iterations.

The algorithm assumes a constant cell morphology, fi, j, with

a pixel intensity decreasing along the time with a space

varying decay rate, λi, j. The ultimate goal is to estimate these

two fields from the sequence of images that were previously

aligned using a simple correlation based method.

Tests with synthetic and real data are presented to illustrate

the application and performance of the algorithm.

The paper is organized as follows. Section II formulates

the problem, section III presents the experimental results

using synthetic and real data and section IV concludes the

paper.

II. PROBLEM FORMULATION

The data used to reconstruct the cell nucleus is composed

of a set of images acquired along the time. During the

acquisition process the cell moves and rotates. Therefore,

previous to reconstruction, an alignment procedure is needed

to compensate for these displacements. In this work a simple

correlation technique is used to align the images,

Tk,r = argmax
T

corr(Xk,Tk,r(Xr)) (1)

where corr(X,Y) is the correlation function between two

images and Tk,r is the rigid body transform that maximizes

the correlation between the images Xk and Xr. These trans-

formations are computed for all pairs of consecutive images

in the sequence, Ti,i+1, and the respective compensation

performed. By stacking these aligned images, a volume data

is obtained.

Fig. 2. Data tensor

Let Y = {yi, j(t) : 1 ≤ i ≤ N,1 ≤ j ≤ M,1 ≤ t ≤ T} be

the 3D data tensor containing the collection of acquired 2D

images. Here, t represents time and the ordered pairs (i, j)
denote pixel indexes within each image. Thus, the images

are stacked along the temporal axis, as shown in Fig. 2.

To each pixel (i, j) corresponds a T -dimensional data vector

yi, j := [yi, j(1)yi, j(2) · · · yi, j(T ) ], obtained by collecting all

the observations associated with the pixel (i, j) along the

t-axis. In this paper, the T -dimensional vectors yi, j are pro-

cessed independently of one another. Thus, a total of N×M

1D signals must be processed but, since they are decoupled,

our technique is amenable to a fast implementation in a

parallel computing environment.

The noise corrupting the Fluorescent Confocal Microscopy

(FCM) images is multiplicative and described by a Poisson

distribution [7]. Furthermore, the time-decreasing intensity,

called photobleaching [8], is modelled by a decaying ex-

ponential whose rate may vary from pixel to pixel (see

Fig.4). To simplify notation, let y = [y(1)y(2) · · · y(T ) ] be

the T -dimensional data vector associated with the pixel (i, j)
(previously denoted by yi, j). In view of our assumptions, we

have

g(t) = f e−λ t (2)

p(y(t)| f ,λ ) =
(g(t))y(t)

y(t)!
e−g(t) (3)

The goal is to estimate the deterministic parameters f > 0

and λ > 0 from the data vector y, by solving the associated

Maximum Likelihoohd (ML) [9] optimization problem

( f̂ , λ̂ ) = arg min
f>0,λ>0

E(y, f ,λ ) (4)

where E(y, f ,λ ) = − log(p(y| f ,λ )).

Assuming statistical independence over time,

p(y|λ , f ) =
T

∏
t=1

p(y(t) | f ,λ ) (5)

the ML problem boils down to

( f̂ , λ̂ ) = arg min
f>0,λ>0

φ( f ,λ ) (6)

where

φ( f ,λ ) = c(λ ) f −αy log( f )+βyλ , (7)

c(λ ) :=
1

T

T

∑
t=1

e−λ t =
e−λ

T

1− e−λT

1− e−λ
, (8)

with αy := (1/T )∑T
t=1 y(t) and βy := (1/T )∑T

t=1(ty(t)).

Problem (6) is solved by first optimizing over f since, for

fixed λ , the function φ in (7) is convex with respect to f and

therefore the global minimizer corresponds to the stationary

point f̂ (λ ) = αy/c(λ ).

Plugging this back in (7) leaves the one-dimensional

problem

λ̂ = argmin
λ>0

ψ(λ ) := αy log(c(λ ))+βyλ (9)

to be solved. It can be shown that the cost function ψ in (9)

is convex (proof omitted due to paper length constraints).

Thus, Newton’s algorithm

λk+1 = λk − skψ̇(λk)/ψ̈(λk) (10)

where sk denotes an Armijo step, will converge quadratically
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to the global minimizer from any initial point [10]. In fact,

the following heuristic provides us with a good initial point:

for λ > 0 and large T , we have e−λT ≈ 0, leading to the

approximation c(λ ) ≈ e−λ /(T (1− e−λ ), see (8). Inserting

this in (9) yields

λ ∗ = argmin
λ>0

(βy −αy)λ −αy log
(

1− e−λ
)

which can be solved in closed-form:

λ ∗ = log(βy/(βy −αy)) (11)

This point λ ∗ can be used as an initialization for the

Newton’s algorithm.

The parameters f and λ were computed for the 1D vector

associated to each pixel along the time, called time course,

and two images fi, j and λi, j, with 0 ≤ i, j ≤ N,M, were

estimated and displayed

III. EXPERIMENTAL RESULTS

In this section the results obtained from tests using syn-

thetic and real data are presented to illustrate the application

of the algorithm.

(a) n = 0 (b) n = 10

(c) n = 25 (d) n = 100

(e) fi, j (f) λi, j

Fig. 3. Synthetic Data (a)-(d) and the resulting reconstructed images, fi, j

(e) and λi, j (f).

A. Synthetic Data

The synthetic data consists on a set of 100 images with

256 × 256 pixels. In the template image three different

(a) n = 0 (b) n = 50

(c) n = 150 (d) n = 250

(e) fi, j (f) λi, j
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(g) λ histogram inside the nucleus

Fig. 4. Real Data (a)-(d) and the resulting reconstructed images, fi, j (e)
and λi, j (f) and the respective histogram (g).

regions were generated: two squares with intensity 200 and

a zero intensity background. The intensity images were the

result of applying exponential decays to the square regions

with rates of λ = 0.01 and λ = 0.075 for the upper left square

and the lower right square respectively and the 100 images

were generated. The stack was then corrupted by Poisson

noise (Fig.3 (a) - (d)). The methodology presented above was

applied to these data and the results are displayed in Fig.3

(e) and (f). The mean values for λ were computed in both

squares: λ̄1 = 0.01 with a standard deviation of σ1 = 0.00045

for the upper left square and λ̄2 = 0.075 and a standard

deviation of σ2 = 0.0021 for the lower right.
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B. Real Data

The real data is composed of a set of 273 images with

320×420 pixels obtained with a confocal LASER-scanning

microscope (CLSM).

In confocal LASER-scanning microscopy a LASER beam

is raster-scanned across a focal plane within the specimen as

shown in Fig.5. The emitted light is processed, the out-of-

focus information rejected by a pinhole and the remaining

light directed to a detector to produce a digital image in a

computer. In this technique it is possible to define a small

region in the specimen where the incident LASER is more

intense and so is the photobleaching; in the image it appears

as a darker region. In fact, this region is the main source of

the photobleaching effect observed in the whole image. The

green fluorescent protein (GFP) molecules that are observed

in this type of images diffuse across the image entering

and leaving the hot spot region according to a random walk

process. However, inside the hole, these proteins loose their

fluorescence properties and when they get out to the rest

of the cell they contribute less to the mean intensity of the

image, leading to a substantial decrease on the intensity of

the observed image along the time.

In Fig.4 (a)-(d), four of the 273 data images that constitute

the sequence are shown. Fig.4 (e) and (f) present images of

the estimated parameters fi, j (e) and λi, j (f). In these images

it is possible to observe the hot spot (the black hole) where

a high intensity LASER beam is focused. The decay rate is

approximately constant across the image, inside the nucleus.

Fig.4 (g) shows the histogram of λi, j inside the nucleus which

assumes values mainly in the interval [0.002,0.005].

Fig. 5. Confocal Laser-Scanning Microscope (CLSM).

IV. CONCLUSIONS

In this paper a reconstruction algorithm is proposed to

fluorescent confocal LASER scanning microscopy imaging.

In this modality the images are corrupted by a type of

multiplicative noise described by a Poisson distribution, due

to the huge light amplification performed by the photon

detectors, in order to make the light emitted by the GFP

visible. Additionally, the emission efficiency of these proteins

decreases along the time leading to a decreasing effect on

the image intensity called photobleaching. In this paper a

statistical algorithm is proposed to estimate the morphology

of the cell nucleus as well as the decay rate for each

location. The estimation of this decay rate is important to

compensate for the photobleaching effect but also because it

may contain relevant biological information, namely, protein

flow information across the nucleus.

The reconstruction algorithm processes the data in a time

course basis, that is, the data associated with each pixel along

the time is processed independently of the other pixels.

The estimation algorithm is based on the minimization of

an energy function with respect to the fi, j and λi, j parameters.

In the context of the presented methodology, the optimization

problem is convex which guarantees the convergence to the

global minimum and therefore to the optimum solution.

Synthetic and real data are used to illustrate the application

of the algorithm. The synthetic example shows the ability of

the algorithm to find the true solution.
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