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Abstract— Image reconstruction from noisy and incomplete
observations is usually an ill-posed problem. A Bayesian frame-
work may be adopted do deal with this such inverse task by
well posing the reconstruction problem. In this approach, the ill
poseness nature of the reconstruction is removed by minimizing
a two-term energy function. The first term pushes the solution
toward the data and the second regularizes the solution.

A Bayesian algorithm for ultrasound image reconstruction
and de-noising is proposed where an edge preserving prior is
used to reduce the smoothing effect at the transitions. The
prior distribution is based on log-Euclidean potential functions
that are particular suitable in reconstruction problems under
the constraint of positivity, that is, when the unknowns to be
estimated should be positive, which is the case, where the noisy
observations are modeled by a Rayleigh distribution.

In this paper, the reconstruction procedure is formulated as
the optimization of a convex function and a Newton method
is adopted to obtain the minimizer. This strategy guarantees
a convergence to the global minimum in a small number of
iterations. Experimental results, using synthetic and real med-
ical images are shown. The proposed method produces images
where speckle noise is effectively suppressed and important
clinical details (organ and tissue transitions) are preserved.

I. INTRODUCTION

Ultrasound imaging is widely used in clinical practice for

diagnostic purposes because it is non-invasive, non-ionizing,

not expensive and real time based. Therefore, ultrasound

image processing is an active field of research in areas such

as 2D and 3D reconstruction, despeckling and textural and

morphological characterization of tissues and organs.

The ultrasound images usually present a low signal to

noise ratio (SNR) and are corrupted by a type of multi-

plicative noise called speckle that accompanies all coherent

imaging modalities. It appears when images are obtained by

using coherent radiation and is the result of the constructive

and destructive interference of the echoes scattered from

heterogeneous tissues and organs [1].

The characteristic granular speckle pattern present in the

ultrasound images is evident in Fig. 5 (1st row, 1st col. of

each image set). Its reduction or even its removal, while

keeping the transitions that represent the anatomical details

throughout the image would be beneficial for automatic

contour segmentation or tissue characterization.

Several statistical models are proposed in the literature to

describe this type of multiplicative noise [2]. One of the most

used in Ultrasound (US), LASER and Synthetic Aperture

Radar (SAR) is the Rayleigh distribution [3].
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The speckle noise appearing in the US images is particular

severe and the traditional methods based on the classical

Additive White Gaussian Noise (AWGN) paradigm are not

appropriate. To deal with this type of noise several methods

have been proposed for de-noising and reconstruction based

on wavelets [4], anisotropic diffusion [5] and level sets. Two

methods, recently proposed, have shown to be particularly ef-

fective to deal with speckle noise: Non-Local Means (NLM)

[6] and Squeeze Box Filter (SBF) [7].

Bayesian framework has also been successfully used in

several medical imaging modalities, namely, in ultrasound

imaging [8]. In this approach the ill-poseness nature of

the reconstruction/de-noising problem is circumvented by

using a priori information about the unknown image to be

estimated. The estimation is formulated as an optimization

task where a two-term energy function is minimized. The

first term pushes the solution toward the observations and

the second regularizes the solution. This second term, called

prior term, introduces a priori knowledge about the solution

by removing ambiguities that arise when only the observa-

tions are taken into account. The prior usually smooths the

solution by removing the noise corrupting the observations

and filling the gaps of non observed regions. However a

difficulty must be addressed. The smoothing effect, which

is crucial to noise removal, should not distort too much the

edges of the solution associated with the anatomical details

that are important from a clinical point of view.

In this paper a Bayesian reconstruction/de-noising al-

gorithm for ultrasound data is proposed where an edge

preserving prior based on log-Euclidean potential functions

[9] is used. The reconstruction procedure is formulated

as the optimization of a convex function and a Newton

method is adopted to obtain the minimizer [10]. This strategy

guarantees a convergence to the global minimum in a small

number of iterations. Tests using synthetic and real data are

presented to illustrate the application of the algorithm.

The paper is organized as follows. Section II formulates

the problem and section III describes the optimization step.

Section IV presents several results using synthetic and real

medical data and Section V concludes the paper.

II. PROBLEM FORMULATION

Let X = {xi, j} and Y = {yi, j} be a N×M original noiseless

image and a noisy version respectively. The speckle noise

corrupting Y = {yi, j} is described by a Rayleigh distribution,

p(yi, j|xi, j) =
yi, j

xi, j

e
−

y2
i, j

2xi, j . (1)
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Fig. 1. 4-pixel causal neighborhood representation.

The estimation of X from Y is formulated as the following

optimization task

X̂ = argmin
X

E(X,Y), (2)

where E(X,Y) is an energy function.

The optimization problem, described by equation (2), is

usually ill-posed in the Hadamard sense if E(X,Y) is the

log-likelihood function, E(X,Y) = log p(Y|X).
This difficulty may be overcome by using the maximum a

posteriori (MAP) criterion,

E(X,Y) = EY (X,Y)
︸ ︷︷ ︸

data fidelity term

+ EX (X)
︸ ︷︷ ︸

prior term

, (3)

where EY (X,Y), called data fidelity term, is the symmetric

of the log-likelihood function

EY (X,Y) = − log

[
N,M

∏
i, j=1

p(yi, j|xi, j)

]

, (4)

where it is assumed statistical independence of the observa-

tions [11].

The prior term is used to regularize the solution by

introducing a priori information about the image X to be

estimated. Typically, the prior term is obtained by assuming

that X is a Markov random field (MRF) where a neighboring

system, S , is considered to define spatial interactions among

neighboring pixels (Fig. 1). By using the Emmerson-Clifford

theorem the assumption that X is a MRF means that p(X)
is a Gibbs distribution

p(X) =
1

Z
e−αU(X), (5)

where Z is the partition function [12], α controls the prior

strength and U(X) is the Gibbs energy.

This Gibbs energy is usually defined as follows

U(X) = ∑
i, j

ρ(Xi, j), (6)

where ρ() is called potential function and Xi, j is a set of

pixels containing the pixel xi, j and its neighbors.

A typical potential function is the quadratic one, ρ(Xi, j) =
(xi, j −xi−1, j)

2 +(xi, j −xi, j−1)
2, where neighboring pixel dif-

ferences are quadratically penalized. This potential function

leads to simple equations and is able to efficiently remove

the noise. However, it also oversmooths the transitions,

attenuating or removing important anatomical details.

Fig. 2. Log-Euclidean gradient magnitude (blue) and the quadratic (red)
and linear (black) potential functions.

To overcome this undesirable behavior, in this paper, an

edge preserving [13] potential function is used,

ρ(Xi, j) = gi, j (7)

where g is the log-Euclidean gradient magnitude at (i, j)th

pixel,

g(i, j) =
√

log2(xi, j/xi−1, j)+ log2(xi, j/xi, j−1) (8)

This potential function is appropriated when positivity

constraint is imposed at the solution, xi, j > 0, which is the

case. Fig.2 shows this potential function, ρ(x,y) = log2(x/y),
for 0 ≤ x ≤ 10 and y = 1. The log-Euclidean [9] potential

function penalizes much more small differences between

neighboring pixels, when they are small than the quadric

potential function. On the contrary, if the difference is large,

which usually happens at the transitions, the log-Euclidean

potential function penalizes less than the quadratic prior,

smoothing less the transitions.

The log-Euclidean prior is based on the distance function

ρ(x,y) = | log(x/y)| that is in fact a metric because the

following conditions hold:

1) ρ(x,y) ≥ 0

2) ρ(x,y) = 0 if and only if x = y

3) ρ(x,y) = ρ(y,x)
4) ρ(x,z)+ρ(z,y) ≥ ρ(x,y).

III. CONVEX OPTIMIZATION

The energy function to be minimized is given by

E(X,Y) = ∑
i, j

[

y2
i, j

2xi, j

+ log(xi, j)

]

+α ∑
i, j

gi, j, (9)

where gi, j is defined in (8).

This energy function is not convex because log(x) is

concave and 1/x and ρ(x) are convex. Therefore, let us con-

sider the following variable change f = log(x) (notice that

log(x) is a monotonic function). The new energy function to

minimize is

E(F,Y) = ∑
i, j

[

y2
i, j

2
e− fi, j + fi, j

]

(10)

+ α ∑
i, j

√

( fi, j − fi−1, j)2 +( fi, j − fi, j−1)2 + ε,
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which is now convex, because, e− f and ρ( f ) are both

convex.

The minimization of the energy function (10) is iteratively

performed by using a line search [10] algorithm in which the

basic step is xk+1 = xk + αk dk, with αk > 0. A continuous

variation strategy (here termed cooling) is used where a small

decreasing constant ε , updated at each iteration, is added in

order to deal with the non-smooth term of (10). Different

strategies to compute the descent direction dk were tested:

1) Barzilai-Borwein steepest (gradient) method, dk =

−∇E(xk)/αk, with αk =
dT

k−1yk−1

dT
k−1

dk−1
and

yT
k−1yk−1

yT
k−1

dk−1
. ε =

10−6;

2) Barzilai-Borwein steepest (gradient) method, with con-

tinuous variation of: ε = 1 → 0 ;

3) Newton algorithm, with continuous variation of ε =

1 → 0, where dk = −




∇2E(xk)

︸ ︷︷ ︸

Hessian1






−1

∇E(xk).

The main steps of the overall convex reconstruc-

tion/denoising algoorithm for ultrasound images are listed

in the following table,

Prototype algorithm

1. � chose initial estimation x0, tolerance η = 10−6 and ε
2. � set k = 0
3. � compute gk = ∇Ek

4. � if ‖gk)‖ < η , stop (or decrement ε)
5. � compute descent direction dk

6. � Armijo rule to define an acceptable αk

7. � update xk +1 = xk + αk ∗dk

8. � increment iteration k and return to step 3

The final solution is X̂ = eZ . As it is shown in Fig. 3

the Newton method performs better than the other descent

approaches used in the optimization algorithm, which is an

expected behavior because the search direction takes into

account not only the gradient of the energy function but also

its second-order information. The Newton algorithm seems

to be very computationally demanding because the Newton

direction is obtained by solving a rather large linear system

at each iteration. However, we are dealing with highly sparse

Hessian matrices (a variable is coupled only with its spatial

neighbors) which makes the method feasible.

IV. RESULTS

In this section we present three examples of reconstruction

using synthetic and real data. In the synthetic case we

use both 1D and 2D data corrupted with multiplicative

Rayleigh noise. In the real case, several ultrasound images

are presented.

A. Synthetic data - 1D and 2D

In this experiment we have first generated a vector X

with dimension N = 1024 corresponding to a rectangular

shaped function with Xmax = 5000 and Xmin = 500. A

Fig. 3. Profiles of the reconstructed data. Performances of the different
descent methods used.

Rayleigh distributed vector Y with parameter X was then

generated. Results of de-noising and performance using the

three different descent strategies are depicted in Fig. 3. Fig.

3 (bottom) illustrates the outstanding performance of the

Newton algorithm when compared with the other methods.

Therefore, the Newton method is used from now on.

Moreover, it is shown that lower values for the parameter

α (prior strength) lead to sharper solutions were the transi-

tions are better preserved. This parameter is manually tuned

and was selected in a trial and error basis.

In the second example, synthetic images (a square and

a set of different-sized ellipses) corrupted with Rayleigh

noise were generated (see Fig. 4(a-b) (1st row, 1st col.)). The

distribution parameters were Xmax = 5000 and Xmin = 1000.

Reconstruction results obtained with the proposed method

(Fig. 4(a-b) (1st row, 2nd col.)) were visually compared

with SBF (Fig. 4(a-b) (2nd row, 1st col.)) and NLM (Fig.

4(a-b) (2nd row, 2nd col.)) algorithms. It is observed that

the proposed algorithm provides images where the speckle

noise is successfully attenuated while the edges are better

preserved. This observation is supported by inspecting the

de-noised image profiles (Fig. 4 (bottom)). To allow a more

objective comparison the signal to noise ratio (SNR) was

also computed. For both images, the best SNR is achieved

with the method proposed in this paper.

B. Medical data

In the last example, application of the proposed recon-

struction algorithm and comparison with SBF and NLM

was done in real medical data. 4 different ultrasound images

are presented (1st row, 1st col. of each set of images) and

reconstruction results using the proposed method (RaylCx -

1st row, 2nd col.), SBF (2nd row, 1st col.) and NLM (2nd

row, 2nd col.) are depicted in Fig. 5. At the bottom of each

set of images, profiles from the de-noised images using the

different reconstruction algorithms are shown. Regularization

parameters used by the three algorithms were kept constant

along the different images to study the robustness of the de-

noising methods.

By qualitative inspection of the images and corresponding
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a) b)

Fig. 4. De-noising results of two artificially generated noisy images: a
noisy blank square (left) and a set of noisy different-sized blank ellipses
(right), using the proposed method and two other de-noising algorithms.
(bottom) De-noised image profiles.

profiles, the proposed de-noising algorithm, which is time

competitive with the others used, attains cleaner images with

the relevant organ edges being well preserved. For instance,

Fig.5(a) shows that the SBF overestimates the original edges

and Fig.5(d) shows that the heart chambers walls are more

clearly defined using the RaylCx algorithm while the other

two produce smoother images.

V. CONCLUSIONS

This paper proposes a Bayesian ultrasound image

reconstruction/de-noising (despeckle) algorithm using the

maximum a posteriori (MAP) criterion. The algorithm is

formulated as the optimization of a convex energy function.

The convexity of the function and the minimization by using

the Newton method guarantee a continuous convergence to

the global minimum in a small number of iterations.

The prior distribution, used to regularize the solution and

well pose the intrinsic ill-posed maximum likelihood solution,

is a Gibbs distribution with potential functions based on the

Log-Euclidean gradient magnitude of the de-noised image.

The Log-Euclidean gradient magnitude is based on the Log-

Euclidean distance metrics that are particular suitable when

the optimization is performed in RN
+, which is the case. In

fact, the speckle noise, corrupting the ultrasound images is

modeled by a Rayleigh distribution where the parameters to

be estimated are positive.

Tests using synthetic and real data illustrate the application

of the algorithm have show the effectiveness of the proposed

method. Furthermore, comparison with two state of the art

speckle algorithms described in the literature shows that the

proposed method outperforms the other methods.
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