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Abstract. This paper presents a unified approach to solve different
bilinear factorization problems in Computer Vision in the presence of
missing data in the measurements. The problem is formulated as a con-
strained optimization problem where one of the factors is constrained to
lie on a specific manifold. To achieve this, we introduce an equivalent
reformulation of the bilinear factorization problem. This reformulation
decouples the core bilinear aspect from the manifold specificity. We then
tackle the resulting constrained optimization problem with Bilinear fac-
torization via Augmented Lagrange Multipliers (BALM). The mechanics
of our algorithm are such that only a projector onto the manifold con-
straint is needed. That is the strength and the novelty of our approach: it
can handle seamlessly different Computer Vision problems. We present
experiments and results for two popular factorization problems: Non-
rigid Structure from Motion and Photometric Stereo.

1 Introduction

Many inference problems in Computer Vision fit the form of bilinear problems
since often observations are influenced by two independent factors where each
can be described by a linear model. For instance, in photometric stereo [2] the
shape of the object and the light source direction interact bilinearly to influence
the image intensity. In rigid structure from motion [16] the 3D shape of the object
is pre-multiplied by the camera matrix to determine its image coordinates. In
facial tracking the problem of separating head pose and facial expression can
also be defined as a bilinear problem [1]. In non-rigid structure from motion [4]
the 2D coordinates of features arise from a bilinear relation between the camera
matrix and the time varying shape. The interaction between two factors has
also been generalised to several problems [15] in a learning context. In all these
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problems the objective is to make inferences about both factors – the goal is
their simultaneous estimation.

In this paper, we present a unified approach to solve different bilinear factor-
ization problems in computer vision. The problem is formulated as a constrained
optimization problem where one of the factors is constrained to lie on a specific
manifold. Our key observation is that the main difference between different fac-
torization problems is the manifold on which the solution lies. Thus, intuitively,
it should be possible to construct an unified optimization framework in which
a change of the manifold constraint just implies replacing an inner module of
the algorithm (as opposed to an overall redesign of the optimization method
from scratch). In this paper, we propose such a modular approach. To achieve
this, we start by introducing an equivalent reformulation of the bilinear factor-
ization problem. In loose terms, the reformulation decouples the core bilinear
aspect from the manifold specificity. We then tackle the resulting constrained
optimization problem via an Augmented Lagrange Multipliers (ALM) iterative
algorithm. The mechanics of our algorithm are such that only a projector onto
the manifold constraint is needed. That is the strength and the novelty of our
approach: this framework can handle seamlessly different computer vision fac-
torization problems. What will differ in each case is the projector of the solution
onto the correct manifold.

In our experiments we show that we are able to deal with high percentages of
missing data which has the practical implication that our approach can be used
on data coming from real and not just controlled scenarios. We illustrate our
unified approach by applying it to solve two popular computer vision problems:
Non-rigid Structure-from-Motion (NRSfM) and Photometric Stereo (PS). To
the best of our knowledge, this paper constitutes the first attempt to propose
a unified optimisation framework for large scale bilinear factorization problems
with given manifold constraints on one of the factors and provide a practical
algorithm that can deal with missing data in the measurements.

2 Related Work

Bilinear models appear frequently in Computer Vision. However, it is in the
area of Structure from Motion (SfM) that most of the efforts dedicated to solve
this problem have come from. The wealth of research in this area is such that
we cannot give an exhaustive review of the literature. Instead we will focus on
describing what we believe are the two most important threads of research to
solve the problem of low-rank matrix factorization in the case of missing data.

One line of research that dominates the literature are approaches that per-
form alternation of closed-form solutions to solve for the two factors of the ma-
trix. The first of these approaches to solve the problem of missing data was
proposed by Wiberg [18]. Since then many different solutions have been put
forward. Buchanan and Fitzgibbon [5] provide a comprehensive review of these
methods while proposing their own alternative approach. Their Damped Newton
algorithm provides faster and more accurate solutions than standard alternation
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approaches. The common property of all these methods is that they only solve the
low-rank matrix factorization problem without imposing manifold constraints.
The constraints are applied afterwards, once the low-rank matrix has been esti-
mated. Crucially, the constraints are not imposed during the minimization.

On the other hand, a relatively recent set of algorithms have attempted to
solve the problem by including explicitly the non-linear constraints given by the
specific problem structure in the low-rank minimization. Marques and Costeira
[12] introduced the concept of motion manifold in rigid SfM to obtain motion
matrices that exactly satisfy the camera constraints. Similarly, Paladini et al. [13]
propose an alternation algorithm associated with an optimal projector onto the
motion manifold of non-rigid shapes. The practical implication of their algorithm
is that it can deal with very high percentages of missing data. Shaji et al. [14]
also propose to solve a non-linear optimisation problem directly on the product
manifold of the Special Euclidean Group claiming better results than [5] in a
rigid real sequence.

However, all these approaches are tailored to specific problems. Therefore,
for different manifold constraints an overall redesign of the optimization method
would be needed. The purpose of our work is to present a generic approach
that is not problem dependent. In similar spirit, Chandraker and Kriegman [6]
have proposed a globally optimal bilinear fitting approach for general Computer
Vision problems. The key contribution of their approach is that they can prove
convergence to a global minimiser using a branch and bound approach. However,
the main drawback is that they are restricted to simple bilinear problems where
the number of variables in one of the sets must be very small (for instance just
9 variables in one of their examples).

Our Bilinear factorization via Augmented Lagrange Multipliers (BALM) is
designed to deal with large-scale optimisation problems with the inclusion of
non-linear constraints. Our approach is not the first one to adopt the Aug-
mented Lagrangian Multipliers (ALM) framework in the Computer Vision or
related contexts. In perspective 3D reconstruction [11] ALM was used to enforce
constraints on the perspective depths. In [10] ALM is successfully employed as
a single matrix imputation algorithm which can deal with large scale problems.

3 Problem statement

We denote by Y ∈ R
n×m the measurement matrix. In this paper, we consider the

general case of missing data. We let the finite set O := {(i, j) : Yij is observed}
enumerate the indices of the entries of Y which are available. The bilinear factor-
ization problem we address is the following constrained optimization problem:

minimize
∑

(i,j)∈O

(
Yij − s⊤i mj

)2

subject to Mi ∈ M, i = 1, . . . , f,

(1)

where s⊤i denotes the ith row of the matrix S ∈ R
n×r and mj denotes the jth

column of the matrix M =
[
M1 · · · Mi · · · Mf

]
∈ R

r×m, Mi ∈ R
r×p.
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The variable to optimize in (1) is (S,M). Here, f is the number of frames and
we consider throughout the paper that n ≥ r ≥ p. For instance in the structure
from motion problem S would be the 3D structure and M the camera matrices,
in photometric stereo S would be the lighting parameters and M the surface
normals and albedo.

In words, problem (1) consists in finding the best rank r factorization SM
of Y , given the available entries enumerated by O and subject to the constraints
on M . More precisely, each submatrix Mi ∈ R

r×p of M must belong to the
manifold M ⊂ R

r×p. Our aim in this paper is to construct an algorithm to solve
problem (1) which takes advantage of the fact that the projector onto M is
available (easily implementable). That is, we assume that, for a given A ∈ R

r×p,
it is known how to solve the projection problem onto M

minimize ‖A−X‖
2

subject to X ∈ M
, (2)

where ‖X‖ denotes the Frobenius norm of X . In the sequel, we let pM(A) denote
a solution of (2).

Problem reformulation. Let us define a new set of variables z := {Zij :
(i, j) 6∈ O}. Think of them as representing the non-observed entries of Y . We can
introduce these variables in (1) and obtain the following equivalent optimization
problem

minimize ‖Y (z)− SM‖
2

subject to Mi ∈ M, i = 1, . . . , f,
(3)

where the (i, j) entry of the matrix Y (z) is defined as

(Y (z))ij :=

{
Yij , if (i, j) ∈ O
Zij , if (i, j) 6∈ O

.

In words, Y (z) is just Y where we fill-in the missing entries with z. Note that the
variable to optimize in (3) is (z, S,M). Problem (3) is equivalent to (1) because
once we fix (S,M) in (3) and minimize over z we fall back into (1). Finally, we
clone M into a new variable N =

[
N1 · · · Ni · · · Nf

]
∈ R

r×m, Ni ∈ R
r×p, and

transfer the manifold constraint to the latter. By doing so, we roughly separate
the bilinear issue from the manifold restriction. This is our final reformulation:

minimize ‖Y (z)− SM‖2

subject to Mi = Ni, i = 1, . . . , f
Ni ∈ M, i = 1, . . . , f.

(4)

The variable to optimize in (4) is (z, S,M,N).

4 The BALM algorithm

The main difficulty in the constrained optimization problem (4) are the equality
constrains Mi = Ni. We propose to handle them through an augmented La-
grangian approach, see [9, 3] for details on this optimization technique. In our
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context, the augmented Lagrangian corresponding to (4) is given by

Lσ(z, S,M,N ;R) = ‖Y (z)− SM‖
2
−

f∑

i=1

tr

(
R⊤

i (Mi −Ni)
)
+
σ

2

f∑

i=1

‖Mi −Ni‖
2
.

where σ > 0 is the weight of the penalty term and Ri, i = 1, . . . , f , denote
Lagrange multipliers. We let R =

[
R1 · · · Rf

]
. The optimization problem (4)

can then be tackled by our Bilinear factorization via Augmented Lagrange Mul-
tipliers (BALM) algorithm detailed in Algorithm 1.

Algorithm 1 Bilinear factorization via Augmented Lagrange Multipliers
(BALM)

1: set k = 0 and ǫbest = +∞
2: initialize σ(0), R(0), γ > 1 and 0 < η < 1
3: initialize z(0), S(0) and M (0)

4: repeat

5: solve
(

z
(k+1)

, S
(k+1)

,M
(k+1)

, N
(k+1)

)

= argmin L
σ(k)(z, S,M,N ;R(k))

subject to Ni ∈ M, i = 1, . . . , f,
(5)

using the iterative Gauss-Seidel scheme described in Algorithm 2

6: compute ǫ =
∥

∥

∥
M (k+1)

−N (k+1)
∥

∥

∥

2

7: if ǫ < η ǫbest

8: R(k+1) = R(k)
− σ(k)

(

M (k+1)
−N (k+1)

)

9: σ(k+1) = σ(k)

10: ǫbest = ǫ

10: else

10: R(k+1) = R(k)

11: σ(k+1) = γσ(k)

12: endif

13: update k ← k + 1
14: until some stopping criterion

Regarding the initialization of the BALM algorithm, we used σ(0) = 50, R(0) = 0,
γ = 5 and η = 1/2 in all our computer experiments. With respect to z(0), S(0)

and M (0), we feel that there is no universally good method, that is, the structure
of M must taken into account. We discuss the initialization

(
z(0), S(0),M (0)

)
for

several examples in the experimental section of this paper.
Clearly, solving the inner problem (5) at each iteration of the BALM method

is the main computational step. Note that in (5) the optimization variable is
(z, S,M,N) (σ(k) and R(k) are constants). To tackle (5) we propose an iterative
Gauss-Seidel scheme which is described in Algorithm 2. We now show that each



6 Alessio Del Bue, João Xavier, Lourdes Agapito, and Marco Paladini

of the subproblems (6), (7) and (8) inside the Gauss-Seidel scheme are easily
solvable.

Algorithm 2 Iterative Gauss Seidel scheme to solve for (5)

1: set l = 0 and choose Lmax

2: set z[0] = z(k), S[0] = S(k) and M [0] = M (k)

3: repeat

4: solve
N

[l+1] = argmin L
σ(k)

(

z[l], S[l],M [l], N ;R(k)
)

subject to Ni ∈ M, i = 1, . . . , f,

(6)

5: solve
(

S
[l+1]

,M
[l+1]

)

= argmin L
σ(k)

(

z[l], S,M,N [l+1];R(k)
)

(7)

6: solve

z
[l+1] = argmin L

σ(k)

(

z, S[l+1],M [l+1], N [l+1];R(k)
)

(8)

7: update l ← l + 1
8: until l = Lmax

9: set S(k+1) = S[Lmax], M (k+1) = M [Lmax] and N (k+1) = N [Lmax]

4.1 Solving for (6)

It is straightforward to see (details omitted) that (6) decouples into f projections
onto the manifold of constraints M. More precisely, if we partition

N [l+1] =
[
N

[l+1]
1 · · · N

[l+1]
i · · · N

[l+1]
f

]
∈ R

r×m, N
[l+1]
i ∈ R

r×p,

the solution of (6) is given by

N
[l+1]
i = pM

(
M

[l]
i −

1

σ(k)
R

(k)
i

)
, i = 1, . . . , f.

We recall that pM stands for the projector onto M, see (2), which we assume is
available. This is the only part of the algorithm where the constraint manifoldM
plays a role. Thus, replacing M amounts to replace the projector pM. This is
the modularity which we alluded to previously.

4.2 Solving for (7)

To simplify notation in this subsection, we let Y = Y
(
z[l]
)
, N = N [l+1], σ = σ(k)

and R = R(k). Solving (7) corresponds to solving

minimize ‖Y − SM‖2 + σ
2

∑f

i=1

∥∥Mi −
(
Ni +

1
σ
Ri

)∥∥2 .
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Equivalently, in terms of the new variable S̃ =
√

2
σ
S, we have

minimize
∥∥∥Ỹ − S̃M

∥∥∥
2

+ ‖C −M‖2 (9)

where Ỹ =
√

2
σ
Y and C = N + 1

σ
R.

Now, any full row rank matrix M ∈ R
r×m can be represented as M = AQ⊤

where A ∈ R
r×r is nonsingular and Q ∈ R

m×r is a Stielfel matrix (Q⊤Q = Ir).
Plugging this representation into (9) produces the optimization problem

minimize
∥∥∥Ỹ − S̃AQ⊤

∥∥∥
2

+
∥∥C −AQ⊤

∥∥2

subject to Q⊤Q = Ir

(10)

with optimization variable (S̃, A,Q) ∈ R
n×r × R

r×r × R
m×r.

Introducing the new variable Ŝ = S̃A, transforms (10) into

minimize

∥∥∥∥
[
Ỹ
C

]
−

[
Ŝ
A

]
Q⊤

∥∥∥∥
2

subject to Q⊤Q = Ir

. (11)

For a given Q in (11), the optimal (Ŝ, A) is

[
Ŝ
A

]
=

[
Ỹ
C

]
Q

which, when plugged back into (11), leaves the maximization problem

maximize tr

(
Q⊤

[
Ỹ
C

]⊤ [
Ỹ
C

]
Q

)

subject to Q⊤Q = Ir

(12)

which can be solved through an eigenvalue decomposition (tr(X) denotes the
trace of the square matrix X). Problem (7) optimizes jointly over (S,M). An
alternative approach is to replace (7) by two least-squares problems: one over M
(for fixed S) and the other over S (for fixed M).

4.3 Solving for (8)

After solving for N [l+1] and
(
S[l+1],M [l+1]

)
, problem (8) updates the missing

data. The solution of (8) is trivial: we just have to take Z
[l+1]
ij as the (i, j)th

entry of S[l+1]M [l+1] for all (i, j) 6∈ O.
Algorithm convergence. At best, the BALM algorithm can produce a local
minimizer for (1). That is, we do not claim that BALM (algorithm 1) converges
to a global minimizer. In fact, even the nonlinear Gauss-Seidel technique (algo-
rithm 2) is not guaranteed to globally solve (5). This is the common situation
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when dealing with nonconvex problems. See [7] for some convergence results on
augmented Lagrangian methods. We now apply our generic BALM algorithm to
solve two different bilinear computer vision problems: the Non-Rigid Structure-
from-Motion problem (NRSfM) and the Photometric Stereo (PS) problem.

5 Example 1: BALM for Non-Rigid SfM

The problem of recovering the non-rigid 3D shape of a deforming object from
a monocular video sequence given only 2D correspondences between frames was
formulated as a factorization problem by Bregler et al. [4] in the case of an
orthographic camera. The assumption is that the 3D shape can be represented
as a linear combination of a set of d basis shapes with time varying coefficients
tid. If the image coordinates are referred to the centroid, the projection of the
shape at frame i can be expressed as

Yi =

[
ui1 . . . uin

vi1 . . . vin

]⊤
=

(
d∑

l=1

tilBl

)
Qi =

[
B1 . . . Bd

]
(ti ⊗Qi) = SMi (13)

where Yi is the n× 2 measurement matrix that contains the 2D coordinates of n
image points in frame i, Bl are the basis shapes of size n× 3 and til are the time
varying shape coefficients and Qi is the projection matrix for frame i, which in
the case of an orthographic camera is a 3 × 2 matrix that encodes the first two
columns of a rotation matrix (therefore it is a Stiefel matrix). By stacking all
the measurements for all the frames into a single matrix we have

Y =
[
B1 . . . Bd

] [
t1 ⊗Q1 . . . tf ⊗Qf

]
= S

[
M1 . . . Mf

]
= SM. (14)

Now, we have expressed the measurement matrix as a bilinear interaction be-
tween the shape matrix S of size n × 3d and the motion matrix M of size
3d× 2f . This form fit exactly the optimisation problem as presented in Eq. (1).
Therefore, in the NRSFM case, the manifold constraint corresponds to M ={
t⊗Q : t ∈ R

d, Q ∈ R
3×2, Q⊤Q = I2

}
, or in other words, the two rows of the

rotation matrix QT must be orthonormal (i.e. it is a Stiefel matrix). To apply
our BALM algorithm, we need first to derive the projector onto M. We now
turn to this problem.

5.1 NRSfM manifold projector

In [13] Paladini et al. derived an exact globally optimal algorithm to project the
motion matrices onto the non-rigid motion manifold. However, here, we discuss
an alternative which provides an approximate projector onto M. The advantage
is that our proposed algorithm stills provides accurate estimates while being
considerably faster (approximately 100 times in experimental tests).

Let A ∈ R
3d×2 be given, and consider the partition A =

[
A⊤

1 A⊤
2 · · ·A⊤

d

]⊤
,

where Ai ∈ R
3×2. We want to compute pM(A), that is, we want to solve the
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optimization problem
minimize ‖A− t⊗Q‖

2

subject to t ∈ R
d

Q⊤Q = I2

. (15)

If A ∈ M, that is, if A = t ⊗ Q for some t = (t1, . . . , td)
⊤ ∈ R

d and Stiefel

matrix Q, then we would have the identity
∑d

i=1 AiA
⊤
i = ‖t‖

2
QQ⊤. That is,

the left-hand side of the equation would reveal the underlying Q (up to a right
multiplication by a 2 × 2 rotation). This motivates the following approach, for

a generic A: compute A =
∑d

i=1 AiA
⊤
i and estimate Q as its dominant Stiefel,

that is, corresponding to the 2 top eigenvectors of A. Let Q̂ denotes this Stiefel
matrix. Even when A ∈ M we do not have, in general, Q̂ = Q. Rather, Q̂ = QR
for a 2× 2 orthogonal matrix R. Thus, we return to problem (15) and we solve
for t ∈ R

d and R:

minimize
∥∥∥A− t⊗

(
Q̂R
)∥∥∥

2

subject to t ∈ R
d

R ∈ R
2×2, R⊤R = I2

. (16)

For a fixed R, the optimal t is ti =
1
2 tr
(
R⊤Q̂⊤Ai

)
with i = 1, . . . , d. Plugging

ti into (16) gives the reduced problem over R

maximize
∑d

i=1

(
tr

(
R⊤Ti

))2
subject to R⊤R = I2

(17)

where Ti := Q̂⊤Ai. Now, a 2 × 2 rotation matrix R must fall into one of the
two following cases det(R) = 1 or det(R) = −1. In both cases the solution is

similar. If we have det(R) = ±1 we have that R =

[
c ∓s
s ±c

]
for some (c, s) ∈ R

2,

‖(c, s)‖ = 1. Using this representation in (17) yields

maximize
[
c s
]
(
∑d

i=1

[
Ti(1, 1) + Ti(2, 2)
Ti(2, 1)− Ti(1, 2)

] [
Ti(1, 1)± Ti(2, 2)
Ti(2, 1)∓ Ti(1, 2)

]⊤)[
c
s

]

subject to ‖(c, s)‖ = 1

(18)

which can be solved by an eigenvalue decomposition. After examining separately
the two cases (i.e. ±), we pick the best.

6 Example 2: BALM for Photometric Stereo

Basri et al. [2] derived a bilinear approximation of the image brightness given
by luminance variations. This derivation is based on a spherical harmonics rep-
resentation of lighting variations and it allows to frame PS as a factorization
problem with manifold constraints on one of the bilinear factors. Given a set of
images of a Lambertian object with varying illumination, it is possible to extract
the dense normal to the surface of the object z, the albedo ρ and the lighting
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directions l. For a 1st order spherical harmonics approximation, the brightness
at image pixel j at frame i can be modelled as Yij = l⊤i ρj [1 z⊤j ]

⊤ = SiMj ,

where li ∈ R
4, ρj ∈ R, zj ∈ R

3 with z⊤j zj = 1. A compact matrix form can be
obtained for each pixel Yij as:

Y =



Y11 . . . Y1n

...
. . .

...
Yf1 . . . Yfn


 =



l⊤1
...
l⊤f



[
ρ1

[
1
z1

]
. . . ρn

[
1
zn

]]
= SM (19)

where a single image i is represented by the vector Yi =
[
yi1 . . . yin

]
. Manifold

constraints are given by the surface normal constraints which implies M4×f

lying on the manifold defined by: M =
{
ρ [1 z⊤]⊤ : ρ ∈ R, z ∈ R

3, z⊤z = 1
}
.

The matrix Sn×4 now contains the collection of lighting directions which which
combines the first-order spherical harmonics at each frame i.

6.1 Photometric Stereo manifold projector

We now derive the projector onto the manifold. That is, for a given a ∈ R
4, we

show how to solve the associated optimization problem

minimize
∥∥a− ρ [1 z⊤]⊤

∥∥2
subject to z⊤z = 1

. (20)

The variable to optimize is (ρ, z) ∈ R×R
3. Consider the partition a =

[
αβ⊤

]⊤
with α ∈ R and β ∈ R

3. We can rewrite (20) as

minimize ρ2 − αρ− ρβ⊤z
subject to z⊤z = 1

. (21)

We denote by (ρ⋆, z⋆) the solution of (21). If β = 0 then ρ⋆ = α/2 and z⋆ can be
any unit-norm vector. If β 6= 0 then optimizing (21) over z (for a fixed ρ) gives

z⋆ =
ρ

|ρ|

β

‖β‖
. (22)

Now, if α ≥ 0 (respectively α < 0) then it is clear that ρ⋆ ≥ 0 (ρ⋆ < 0). Inserting
this constraint into (21) leaves a quadratic problem with an easy solution: ρ⋆ =
(α+ ‖β‖)/2 (respectively ρ⋆ = (α− ‖β‖)/2).

7 Experiments

7.1 Synthetic experiments: NRSfM

In our synthetic experiments1 we used a 3D motion capture sequence showing
a deforming face, captured using a VICON system tracking a subject wearing

1 For additional experiments, videos and the code please check:
http://www.isr.ist.utl.pt/~adb/the-balm/.
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Fig. 1. Synthetic experiment results showing comparison with NRSfM methods (left),
robustness of the BALM method with different ratios of missing data and noise (centre)
and a boxplot for the convergence of the algorithm for increasing noise levels (right).

37 markers. The 3D points were then projected synthetically onto an image se-
quence 74 frames long using an orthographic camera. To test the performance we
computed the relative 3D reconstruction error, which we defined as the Frobe-
nius norm of the difference between the recovered 3D shape S and the ground
truth 3D shape SGT , computed as: ||S− SGT ||/||SGT ||. We subtract the centroid
of each shape and align them with Procrustes analysis. In the experiments with
noise, zero mean additive Gaussian noise was applied with standard deviation
σ = n × s/100 where n is the noise percentage and s is defined as max(Y ) in
pixels. In all experiments the number of basis shapes was fixed to k = 5. The
trials for each level of noise were averaged over 10 runs.

Figure 1 (left) shows a comparison between our proposed BALM algorithm
and two state of the art methods: Torresani et al.’s [17] EM-PPCA and Metric
Projections (MP) [13] in the absence of noise and for increasing levels of missing
data. While in the case of full data the performance of the algorithms is compa-
rable, BALM and MP clearly outperform EM-PPCA in all cases of missing data
higher than 30%. Notice that BALM, has a similar performance to MP, which is
a specific NRSfM algorithm. Another interesting fact is the extreme resilience of
BALM to missing data. In Figure 1 (centre) we evaluate BALM’s performance
with respect to noise in the image measurements of up to 6% and missing data
ratios of up to 90% in a combined test. The plot shows robustness to noise even
for increasing levels of missing data. We also performed a set of convergence
tests, in the full data case, for varying levels of noise to evaluate convergence
empirically. In this case we used a synthetically generated 3D shape to ensure
a known global minimum. Figure 1 (right) shows a boxplot of the 3D error, on
the vertical axis, for 1000 trials of the BALM algorithm for each level of noise
and no missing data. The algorithm achieves an overall median error close to
zero for all the noise levels. Most of the experiments are between 0% and 20%
3D error with very few local minima reaching higher errors.

Regarding run times, in an experiment with 60% missing data, the conver-
gence time was 16s for BALM, 10s for EM-PPCA [17] and 10m for MP [13].
Although the runtimes for BALM and EM-PPCA are comparable, BALM sys-
tematically outperforms EM-PPCA in the case of missing data (see Figure 1
(left)). All implementations are in Matlab. However, EM-PPCA runs with par-
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Fig. 2. Cushion sequence with 40% missing data. First row shows four image samples
with missing points highlighted with a red circle. Second and third rows show a frontal
and side view of the 3D reconstruction using BALM.

tial MEX code while BALM is not optimised. For runtime evaluation we used a
Desktop PC AMD X2 2.6Ghz with 4GB of RAM.

Regarding the initialization of the BALM algorithm, the projection matri-
ces, the mean shape and the missing data tracks are first initialised using [12].
We then used Torresani et al.’s initialisation [17] to estimate the configuration
weights and the basis shapes given the residual of the first rigid solution.

7.2 Real data: NRSfM

We tested our method on a real sequence of a cushion being bent. We tracked 90
points and we simulated a missing data ratio of 40% by eliminating data points
manually. Figure 2 shows 4 selected frames and their respective 3D reconstruc-
tions (frontal and top view). The bending is clearly observable in the 3D shape
plots where BALM shows robustness given the high percentage of missing data.

7.3 Real data: Photometric Stereo

We present results for the BALM factorization using the photometric projector
as presented in Section 6.1. The aim is to extract the 3D surface, albedo and
luminance parameters with significant occlusions in the input image data. The
occlusions are defined as the darkest and brightest (saturated) pixels in the
image sequence since in these areas the Lambertian model will not be satisfied.
An initialisation for the missing entries in Y is given by the inpainitng technique
[8] which fills the image holes given the known parts of the image. In such a
way we exploit image pixels which may resemble the current illumination in the
image. The initialisation for

(
S(0),M (0)

)
is then given by a simple rank-4 SVD on

the “inpainted” Y . These affine low-rank components are then normalized as in
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a) b) c) d) e)

Fig. 3. Real photometric stereo results for the 46-frames long Sculpture sequence with
48% missing data (1st row) and 49-frames long YaleB10 sequence with 31% missing
data (2nd row). Each image shows in a) a selected original frame from the sequence; in
b) an image mask where green pixels represents missing entries; in c) the image used as
initialisation for BALM; in d) the resulting optimised image with a Lambertian model
and in e) the reconstructed 3D surface.

[2] to comply with the equal norm constraints of the spherical harmonics model.
Figure 3 shows the results for two image frames selected from the sequence. The
first row of Figure 3 (Sculpture sequence) shows that even with large occlusions
the initialisation with inpainting copes well if the overall texture of the object
is quite homogenous (although errors can still be noticed on the top of the head
and the darkest areas). Note that the final optimised image (Figure 3(d)) reveals
some further details in the neck area which were hidden in the original frame.
The sequence on the second row, taken from the YaleB database sequence, shows
an extreme occlusion in which half of face of the the subject is not visible. In
this case inpainting clearly fails to provide a usable initialisation but still the
reconstructed shape resembles the subject.

8 Conclusions

We have provided a novel and general optimisation framework for a broad range
of bilinear problems in Computer Vision with manifold constraints on the space
where the data lies. Our results match state of the art methods in NRSfM
and show a considerable improvement in performance for the PS problem. Our
approach can deal with a number of entries in the data matrix Y in the order
of 106 and more. This feature, together with the robustness to missing data,
render the BALM algorithm a preferable choice for bilinear modelling in large-
scale inference scenarios.
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