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Abstract

This paper describes a new algorithm for recovering the

3D shape and motion of deformable and articulated objects

purely from uncalibrated 2D image measurements using an

iterative factorization approach. Most solutions to non-

rigid and articulated structure from motion require metric

constraints to be enforced on the motion matrix to solve

for the transformation that upgrades the solution to met-

ric space. While in the case of rigid structure the metric

upgrade step is simple since the motion constraints are lin-

ear, deformability in the shape introduces non-linearities.

In this paper we propose an alternating least-squares ap-

proach associated with a globally optimal projection step

onto the manifold of metric constraints. An important ad-

vantage of this new algorithm is its ability to handle missing

data which becomes crucial when dealing with real video

sequences with self-occlusions. We show successful results

of our algorithms on synthetic and real sequences of both

deformable and articulated data.

1. Introduction and Previous Work
Structure from motion (SfM) can be defined as the prob-

lem of combined inference of the motion of a camera and

the 3D geometry of the scene it views solely from a se-

quence of images. The fundamental assumption which has

allowed robust solutions to be achieved is that of scene

rigidity. This assumption was recently relaxed to extend

structure from motion algorithms to the case of deformable

objects. Bregler et al.’s key insight [4] was to use a low-

rank shape model to represent the deforming shape as a lin-

ear combination of k basis shapes which encode the main

modes of deformation. Based on this model, they proposed

a non-rigid factorization method for an affine camera model

that exploited the rank constraint on the measurement ma-

trix and enforced orthonormality constraints on camera ro-

tations to recover the motion and the non-rigid 3D shape.

Although the low-rank shape model has proved a suc-

cessful representation, the non-rigid structure from mo-

tion problem is inherently under-constrained. Recent ap-

proaches have focused on overcoming the problems caused

by inherent ambiguities and degeneracies by proposing the

use of generic priors or different optimization schemes.

Aanaes et al. [1] impose the prior knowledge that the re-

constructed shape does not vary much from frame to frame

while Del Bue et al. [5] impose the constraint that some

of the points on the object are rigid. Both approaches use

bundle adjustment to refine all the parameters of the model

together. Bartoli et al. [2] on the other hand, use a coarse to

fine shape model where new deformation modes are added

iteratively to capture as much of the variance left unex-

plained by previous modes as possible. Torresani et al. [12]

also argue that simple linear subspace shape models are ex-

tremely sensitive to noise and missing data so priors should

be used to constrain the shape. They propose to place a

Gaussian prior distribution on the deformation weights and

then generalise the model to represent linear dynamics in

the deformations.

One advantage of the linear subspace model is that it

has allowed closed form solutions to be proposed, for the

cases of both affine [14] and perspective [15, 8] viewing

conditions. However, they are known to be very sensitive

to noise [3, 12] and to the selection of the basis constraints.

Moreover, none of the closed form solutions proposed so

far can deal with missing data.

Articulated motion has also been recently formulated us-

ing a structure frommotion approach [13, 16] modelling the

articulated motion space as a set of intersecting motion sub-

spaces — the intersection of two motion subspaces implies

the existence of a link between the parts. Articulation con-

straints can then be imposed during factorization to recover

the location of joints and axes. Tresadern and Reid [13] go

further and compute the metric upgrade, but only recover a

linear approximation of the correcting transformation. Both



approaches [13, 16] require full data and therefore cannot

deal with missing tracks.

1.1. Contributions
In this paper we present a new unified approach to per-

form the metric upgrade in the cases of articulated and

deformable structure viewed by an orthographic camera.

In the non-rigid case our approach is most closely related

to Torresani et al.’s alternating least-squares solution [12].

While they do enforce the exact metric constraints through

an exponential map parameterization of the rotation matri-

ces, the update of the camera matrix is only an approxima-

tion — the camera matrix cannot be updated in closed form

and instead they perform a single Gauss-Newton step.

Similarly to Torresani et al. we also propose an iterative

alternating scheme to solve the non-rigid structure frommo-

tion problem. However, in contrast to their approach, our

metric upgrade step solves an unconstrained least-squares

problem and optimally projects the solution onto the non-

linear motion manifold. The notion ofmotion manifolds has

been recently introduced in the case of rigid shapes by Mar-

ques and Costeira [9]. Our work extends and generalises

it to the case of deformable and articulated shapes. In par-

ticular, we impose that the rotation matrices lie on the V2,3

Stiefel manifold1. This constraint results in a non-convex

problem which can then be solved by semidefinite tight re-

laxation in the case of deformable shape. In the articulated

case, we efficiently compute the joints given the non-linear

constraints on the motion of the two bodies. The result is

an algorithm where the recovered motion matrices have the

exact orthogonality constraints imposed. One of the main

advantages of our approach is that it can be extended natu-

rally to deal with missing data in a similar way to [9].

2. Factorization for Structure from Motion
Consider the set of 2D image trajectories obtained when

the points lying on the surface of a 3D object are viewed by

a moving camera. Defining the non-homogeneous coordi-

nates of a point j in frame i as the vector wij = (uij vij)
T

we may write the measurement matrix W that gathers the

coordinates of all the points in all the views as:

W =







w11 . . . w1p

...
. . .

...

wf1 . . . wfp






=







W1

...

Wf






(1)

where f is the number of frames and p the number of points.

The measurement matrix can be factorized into the prod-

uct of two low-rank matrices as W = M2f×r Sr×p, where

M and S correspond to the motion and shape subspaces re-

spectively. As a result, the rank of W is constrained to be

1The Stiefel manifold Vk,m may be viewed as the collection of all

m× k matrices whose columns form an orthonormal set. More precisely,

the (real) Stiefel manifold Vk,m is the collection of all ordered sets of k

orthonormal vectors in Euclidean space R
m.

rank{W} ≤ r where r ≪ min{2f, p}. The rank of these

subspaces is dictated by the properties of the camera pro-

jection and the nature of the shape of the object being ob-

served (rigid, deformable, articulated, etc.). This rank con-

straint forms the basis of the factorization method for the

estimation of 3D structure and motion.

Matrices M and S can be expressed as M =
[

MT
1 · · ·MT

f

]T

and S = [S1 · · ·Sp] where Mi is the 2 × r camera matrix

that projects the 3D shape onto the image frame i and Sj

encodes the 3D coordinates of point j.

2.1. Rigid Shape
In the case of a rigid object viewed by an orthographic

camera, if we assume the measurements in W are reg-

istered to the image centroid, the camera motion matri-

ces Mi and the 3D points Sj can be expressed as: Mi =
[

ri1 ri2 ri3

ri4 ri5 ri6

]

= Ri and Sj =
[

Xj Yj Zj

]T
where

Ri is a 2 × 3 matrix that lies on the Stiefel manifold since it

contains the first two rows of a rotation matrix (i.e. RiR
T
i =

I2×2) and Sj is a 3-vector containing the metric coordinates

of the 3D point. Therefore the rank of the measurement ma-

trix is r ≤ 3. The rigid motion manifold corresponds to the

manifold of matrices with pairwise orthogonal rows (i.e. the

Stiefel manifold V2,3 ).

2.2. Deformable Shape Model
In the case of deformable objects the observed 3D points

change as a function of time. In this paper we use the low-

rank shape model defined by Bregler et al. [4] in which

the 3D points deform as a linear combination of a fixed

set of k rigid shape bases according to time varying coef-

ficients. In this way, Si =
∑k

d=1 lidBd where the matrix

Si = [Si1, · · ·Sip] is the 3D shape of the object at frame i,
the 3× p matrices Bd are the shape bases and lid are the co-

efficient weights. If we assume an orthographic projection

model the coordinates of the 2D image points observed at

each frame i are then given by:

Wi = Ri

(

k
∑

d=1

lidBd

)

+ Ti (2)

where Ri is a 2 × 3 Stiefel matrix and the 2 × p matrix Ti

aligns the image coordinates to the image centroid. When

the image coordinates are registered to the centroid of the

object and we consider all the frames in the sequence, we

may write the measurement matrix as:

W =







l11R1 . . . l1kR1

...
. . .

...

lf1Rf . . . lfkRf













B1

...

Bk






=







M1

...

Mf













B1

...

Bk






=MS

(3)

Since M is a 2f × 3k matrix and S is a 3k × p matrix in

the case of deformable structure the rank of W is constrained



to be at most 3k. The motion matrices now have the form

Mi = [Mi1 . . .Mik] = [li1Ri . . . likRi]. Therefore, in the de-

formable motion manifold the motion matrices have a dis-

tinct repetitive structure and every 2 × 3 Mik sub-block is a

Stiefel matrix multiplied by a scalar.

2.3. Articulated Shape Model
In the case of articulated structure, the relative motions

of the segments that form an articulated body are dependent

and this results in a drop in the dimensionality of the mea-

surement matrix W =
[

W(1) W(2)
]

that contains the 2D

image points of the two segments. In the case of a universal

joint the two shapes share a common translation (i.e. the

distance between the centers of mass of the shapes is con-

stant) while in the case of a hinge joint the shapes also share

a common rotation axis [13, 16]. Naturally, this approach

requires that an initial segmentation stage has taken place

to assign the trajectories in W to the respective shapes for

which Yan and Pollefeys [16] have recently provided a so-

lution. In the case of the hinge joint the motion matrices Mi

that lie on the articulatedmotion manifold can be written as:

Mi =
[

ui Ai Bi

]

(4)

whereu is the common rotation axis for both objects, Ai and

Bi are 2 × 2 matrices such that
[

ui Ai

]

and
[

ui Bi

]

are

the 2×3 Stiefel matrices associated with the first and second

shape respectively. The metric constraints in the case of a

hinge can therefore be expressed as:

[ui Ai]

[

u
T
i

AT
i

]

= I2×2

[ui Bi]

[

u
T
i

BT
i

]

= I2×2

(5)

where, without loss of generality, we have implicitly as-

sumed that the axis of rotation is aligned with the x-axis

of the first object. Thus we can write S as:

S =















x
(1)
1 · · · x

(1)
p1

x
(2)
1 · · · x

(2)
p2

y
(1)
1 · · · y

(1)
p1

0 · · · 0

z
(1)
1 · · · z

(1)
p1

0 · · · 0

0 · · · 0 y
(2)
1 · · · y

(2)
p2

0 · · · 0 z
(2)
1 · · · z

(2)
p2















(6)

where now S is a 5× p matrix and p = p1 + p2 (we assume

the shapes have been registered to the respective object cen-

troids). Therefore, in the case of a hinge joint the rank of

the measurement matrix is at most 5.

3. Metric Upgrade
The classic approach in factorization is to exploit the

rank constraint to factorize the measurement matrix into a

motionmatrix ~M and a shapematrix ~S by truncating the SVD

of W to the rank r specific to the problem. However, this

factorization is not unique since any invertible r × r matrix

Q can be inserted, leading to the alternative factorization:

W = (~MQ)(Q−1~S). The problem is to find the transformation

matrix Q that removes the affine ambiguity, upgrading the

reconstruction to metric and constraining the motion matri-

ces to lie on the appropriate motion manifold.

While in the rigid case the matrix Q can be explicitly

computed linearly by imposing orthogonality constraints on

the rows of the motion matrix [11], in the non-rigid and ar-

ticulated cases the metric constraints on the motion matrices

are non-linear. Although some closed-form solutions have

been recently proposed [15, 14, 8] these algorithms perform

badly in the presence of noise and cannot cope with missing

data. Iterative solutions provide a viable alternative in the

presence of noise and missing data. In this paper we solve

the factorization of W as an alternating least-squares problem

where at each step t the motion M(t) and shape S(t) matri-

ces are optimized separately keeping the other one fixed as

shown in Algorithm 1.

Algorithm 1 Iterative metric upgrade via alternation for de-

formable and articulated shape

Require: An initial estimate M(0).

Ensure: A factorization of W that satisfies the given metric

constraints.

1: Project each frame of M(t) onto the motion manifold of

the motion matrices (See Section 3.1 for the deformable

case and Section 3.2 for the articulated case).

2: Estimate S(t) from the projected M(t) as: S(t) = M(t)†W.

3: Estimate M(t+1) such that: M(t+1) = WS(t)†.

4: Repeat until convergence.

Crucially, Step 1 of the algorithm computes the projection

of the affine motion components onto the motion manifold

in which the exact metric constraints are satisfied. Steps 2
and 3 alternate the estimation of M(t)and S(t) assuming the

other one known.

Previous approaches have also used iterative methods to

perform themetric upgrade in the case of non-rigid structure

including the alternating least-squares method described

in [12]. However, even though Torresani et al.’s method

imposes exact metric constraints on the camera matrices,

the update of the camera matrix is only an approximation

and is not optimal. While other papers have chosen to use

priors on the shape to constrain the solution and obtain the

metric upgrade [2, 12], in this paper we provide a metric up-

grade step that solves an unconstrained least-squares prob-

lem and optimally projects the solution onto the nonlinear

motion manifold. In the case of articulated structure, we

solve globally for both the motion components related to

the bodies and the joint axis. We now describe how these

projections are computed.



3.1. Metric Projection: Deformable Case

The projection is carried out on each 2 × 3k sub-matrix

Mi as defined in Section 2 and it corresponds to solving the

following minimization problem:

min
Ri,li1...lik

‖Mi − [li1Ri|...|likRi]‖
2
F (7)

with the added constraint that Ri be a 2 × 3 Stiefel matrix.

This is equivalent to minimizing separately all the 2 × 3
blocks of Mi giving:

min
Ri

k
∑

d=1

min
li1...lik

‖Mid − lidRi‖
2
F (8)

which is equivalent to:

min
Ri,li1...lik

k
∑

d=1

‖Mid‖
2

+ l2id ‖Ri‖
2
− 2lid Tr[MT

idRi]. (9)

We can then decouple the problem by minimizing first for

lid given Ri, that is, solving for the zeros of the derivative of

eq. (8). The configuration weight lid is minimized at:

lid =
Tr[MT

idRi]

‖Ri‖
2 =

1

2
Tr[MT

idRi] (10)

putting this value back in eq. (8) and following with the

simplification, the minimization can be written as:

min
Ri

r
T
i

[

−

k
∑

d=1

midm
T
id

]

ri (11)

where ri = vec(RT
i ) with RiR

T
i = I2×2 and mid =

vec(MT
id). This quadratic minimization problem presents

non-convex constraints given by Ri. Appendix A shows that

it is possible to obtain a tight convex relaxation which can

be efficiently solved using SeDuMi [10]. Further details can

also be found in [7]. The computed Stiefel matrix Ri is then

used to recover the weights lid, obtaining a full non-rigid

motion matrix that satisfies the metric constraints. This al-

lows us to solve iteratively for the motion and shape as de-

scribed in Algorithm 1.

Initialization. Algorithm 1 requires an initial estimate of

the motion matrix Mi at each frame. This in turn requires

initial estimates for the rotation matrices R̄i and the config-

uration weights l̄id. The rigid motion R̄i and the first ba-

sis shape S̄1 are initialized from a rank 3 rigid factorization

of the measurement matrix. The second component of the

shape bases is estimated from the residual Wr = W − M̄S̄1.

A new rank 3 factorization is performed on Wr and the

new configuration weights li2 can be estimated solving for

li2R̄i = Mi2 keeping the rotations fixed. This process is re-

peated to obtain all k deformation modes.

3.2. Metric Projection: Articulated Case
Projection onto themotion manifold of the universal joint

can be simply solved by performing two separate rigid fac-

torizations for each of the parts of the articulated object

followed by estimation of the joint location as presented

in [13]. The hinge joint is far more interesting given the

non-linear relations between the motion subspaces. Here

the problem is to find the closest matrix that satisfies the

metric constraints given a rotation axis between two objects.

Following eq. (4) the projection problem for the hinge mo-

tion manifold can be written as the following minimization:

min
u,A,B

J(u, A, B) = ‖u− x‖
2
+‖A− Y‖

2
+‖B − Z‖

2
, (12)

subject to the constraints defined in eq. (5). Here x, Y

and Z are obtained directly from the affine motion matrix

M̃i = [x|Y|Z], recovered through SVD. Our aim is now to

reformulate the minimization of J(u, A, B) only as a func-

tion of the common axis u such that:

min
u,A,B

J(u, A, B) = min
u

J(u) (13)

This is possible as we will show that, once the optimal u is

estimated, it is straightforward to obtain A and B in closed

form. The equivalent cost function J(u) can be written as:

min
u

J(u) = min
u

{

‖u− x‖
2

+ φY (u) + φZ(u)
}

. (14)

Thus now we will show how to transform the minimization
of ‖A− Y‖

2
into the minimization of φY (u) (the same rea-

soning can be replicated for φZ(u)). First, we use the polar
decomposition to change variables as A = PQ where P � 0
(i.e. P is a semidefinite matrix) and Q is orthogonal (both
P and Q are 2 × 2). Moreover, given the metric constraints
in eq. (5), it follows that P2 = I − uu

T . Thus, the matrix
I − uu

T must be positive definite, restricting the vector u

to be inside the unitary circle. Then, for a chosen u we can
write φY (u) as:

φY (u) = min
QQT =I

‚

‚

‚(I−uu
T )1/2

Q−Y

‚

‚

‚

2

= min
QQT =I



‚

‚

‚(I− uu
T )1/2

‚

‚

‚

2

+ ‖Y‖2

− 2Tr

„

Y
T

“

I− uu
T

”1/2

Q

« ff

.

Minimizing this cost function over the orthogonal matrix Q

equals to maximizing the trace in the previous expression.

Using the property:

max
QQT =I

{Tr (XQ)} = σ1(X) + σ2(X) + · · · + σn(X) = ‖X‖N

(15)

where ‖X‖N denotes the nuclear norm of X (i.e. the sum of

its singular values), we can write that:

φY (u) = 2− ‖u‖2 + ‖Y‖2 − 2
∥

∥

∥

(

I− uu
T
)1/2

Y

∥

∥

∥

N
(16)



The same reasoning can be replicated for φZ(u) giving the
final optimization problem to be solved as:

min −‖u‖
2
− 2uT

x − 2
∥

∥

∥

(

I− uu
T
)1/2

Y

∥

∥

∥

N

‖u‖ ≤ 1 −2
∥

∥

∥

(

I− uu
T
)1/2

Z

∥

∥

∥

N
(17)

Once the optimal u∗ is found we substitute back in order

to recover the solution for A (and similarly for B). First we

obtain Q from the SVD of YT (I − u
∗
u
∗T )1/2 7→ UDVT

leading to Q = VUT . The matrix P is simply given knowing

that P2 = I − u
∗
u
∗T . This will result in the matrix that

exactly satisfies the metric structure of a hinge joint. The

optimization of the cost function in eq. (17) is not trivial

since the cost function is nonconvex and nonsmooth. How-

ever the domain in which the function resides is very con-

strained (i.e. the unitary circle) and the value of eq. (17)

for an arbitrary u can be computed efficiently without the

need of calculating the nuclear norm at each sample (see

Appendix B for details). With such constraints, it is real-

istic to search for the minimum using a simple brute force

procedure which can efficiently compute the function sam-

ples in a small amount of time.

Initialization. We first consider the two bodies separately

and perform a rigid factorization for each shape. Given this

factorization, we can then obtain an initial closed form so-

lution for the metric upgrade in the case of a hinge using

Tresadern and Reid’s [13] linear approximation.

4. Reconstruction with Missing Data
In this section we show a modification of our algorithm

to deal with the case of incomplete measurement matri-

ces. The algorithm can be seen as an extension to the

case of deformable and articulated structure of Marques and

Costeira’s algorithm for rigid scenes [9]. The key idea is

that the metric projection can be used to estimate the miss-

ing entries in the matrix W since they are projected to the

correct motion manifold at each iteration. The steps of this

method are summarised in Algorithm 2.

Algorithm 2 3D reconstruction with missing data

Require: An initial estimate W(0) of the missing data in W.

Ensure: A factorization of W that satisfies the given metric

constraints.

1: Remove the 2D centroid T(t) from W(t), i.e. Ŵ
(t)

=
W(t) − T(t).

2: Factorize Ŵ
(t)

= M(t)S(t) using Steps 1, 2 and 3 of Al-

gorithm 1.

3: Estimate the missing data entries of W as W(t+1) =
M(t)S(t) + T(t)

4: Repeat until convergence.

The algorithm requires an initial estimate of the missing en-

tries in the measurement matrix W. For this purpose, we

have used the Marques and Costeira’s rigid factorization al-

gorithm [9]. In the case of articulated structure we apply the

algorithm independently to each of the bodies.

The iterations are stopped when the distance ||W(t+1) −
W(t)||F falls below a user-defined threshold, that is, when

the new estimate does not modify the previous values much.

5. Experiments

5.1. Synthetic Experiments

Deformable Structure – Motion capture data

In our synthetic experiments we used two different 3D mo-

tion capture sequences, both showing faces. The first se-

quence, Face1, was captured in our own laboratory using a

VICON system tracking a subject wearing 37 markers on

the face. The 3D points were then projected synthetically

onto an image sequence 74 frames long using an ortho-

graphic camera model. The second sequence, Face2, used

the motion capture data made available by Torresani et al.

and described in [12]. The subject wore 40 markers and the

original sequence was sub-sampled down to 106 frames.

To test the performance of our algorithm we computed

the 3D error, measured in the camera coordinate system, as

the sum of the squared differences between the estimated

3D shapes and the ground truth divided by the norm of the

shape. We evaluated the performance of the algorithm with

respect to noise in the image measurements and varying lev-

els of missing data. Zero mean additive Gaussian noise was

applied with standard deviation σ = n × s/100 where n
is the noise percentage and s is defined as max(W) in pix-

els. We ran experiments for noise levels of up to 2% for

the Face1 sequence and up to 4% for the Face2 sequence.

Missing data ratios of 0%, 30%, 40% and 50% were gener-

ated randomly for each test. In all experiments the number

of basis shapes was fixed to k = 5. The trials for each level
of noise were averaged 10 times.

In Figure 1 we compare the results of our algorithm (MP)

with Torresani et al.’s algorithm [12] (EM-PPCA). While

in the case of full data the performance of both algorithms

is comparable for both sequences, our proposed algorithm

clearly outperforms EM-PPCA in all cases of missing data

(excluding 30% missing data in Face1 sequence for which

they had comparable performance). We also tested the

performance of the bundle adjustment approach described

in [6]. While the results with complete data were compara-

ble to EM-PPCA andMP, for missing data levels of 30% the

3D error was 120% (MP gave 6% error). Figure 2(A) shows

front and side views of the ground truth (squares) and recon-

structed 3D shapes (crosses) for three frames of the Face1

sequence in the absence of noise and missing data. Figure

2(B) shows the 3D reconstructions achieved in the case of

30% missing data. Missing data points are highlighted us-

ing red circles.
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Figure 1. Synthetic results for 5 different levels of noise and different ratios of missing data for Face1 (left) and Face2 (right) sequences.

The graphs compare the results obtained using Torresani et al.’s EM-PPCA algorithm and our Metric Projection algorithm (MP).

(A) Complete data (B) Missing data (30%)

Frame 10 Frame 45 Frame 70 Frame 10 Frame 45 Frame 70

Figure 2. (A) Front and side views of the ground truth (squares) and reconstructed 3D shapes (crosses) for three frames of the Face1

sequence in the absence of noise and missing data. (B) 3D reconstructions achieved in the case of 30% missing data (marked with a ◦).

Articulated Structure

In the articulated case our synthetic data simulated two 3D

boxes joined by a hinge and projecting this 3D shape into

synthesized images via orthographic projection. The se-

quences contained global rotation and translations as well

opening and closing of the hinge. Each box contains 231
points, and the sequence is 63 frames long. We tested the

algorithm in the case of full data for noise levels ranging

from 0% to 4%. Figure 3 shows the absolute error in the

recovered relative angle between the two boxes (averaged

over all frames) and the 3D error of recovered 3D structure.

The plots in Figure 3 show comparative results between the

performance of Tresadern and Reid’s [13] algorithm (TR)

and our new approach (MP). Slightly superior results are

achieved with our algorithm.

5.2. Real Sequences

Deformable Shapes

In these experiments we used the Talking Face video2 taken

from a video of a person engaged in conversation. We se-

2www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking face.html
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Figure 3. Left: Error on relative rotation angle between the two

boxes in the synthetic experiment compared with Tresadern and

Reid’s linear approach. Right: 3D error of recovered structure

lected 700 frames from the 5000 frame sequence. An Active

AppearanceModel (AAM) was used to track 68 features on

the face. Figure 4 shows three frames of the original images

and a view of the resulting 3D reconstruction in the cases

of complete 2D data and 30% missing data. The number of

basis shapes was chosen to be 6 in this case. Figure 4 shows

good 3D reconstructions are achieved in both cases.

Articulated Shape

We tested our algorithm on a sequence of 815 frames of two

boxes linked by a hinge joint. The number of tracked points



Frame 200 Frame 400 Frame 500

Figure 4. The Franck sequence (first row) used for our real exper-

iment. Second row shows the 3D reconstruction using full data,

third row is the resulting 3D shape with 30% missing data in the

input tracks. Missing points not visible in the corresponding frame

are highlighted with a red circle.

on the upper box was 21 and 47 on the lower box. Fig-

ure 5 shows two frames of the image sequence showing the

tracked points and the recovered joint axis projected onto

the images. The 3D reconstruction of the articulated struc-

ture together with the common hinge axis is also shown in

Figure 5. In this case there was no missing data.

Figure 5. Two images from the articulated sequence. The black

line represent the hinge location computed with the algorithm of

[13] while the blue line is the solution given by our method. The

last figure shows the final 3D reconstruction of our approach.

6. Conclusions

We have described a new alternating least-squares ap-

proach associated with a globally optimal projection step

onto the manifold of metric constraints. At each step of the

minimization we project the motion matrices onto the cor-

rect deformable or articulated metric motion manifolds re-

spectively. This constraint results in a non-convex problem

which can then be solved by semidefinite tight relaxation in

the case of deformable shape. In the articulated case, we ef-

ficiently compute the joints given the non-linear constraints

on the motion of the two bodies. We show results for both

synthetic and real video sequences and in the presence of

missing data.
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Appendix A: Optimization, deformable case
For E ∈ R

6×6, our aim is to compute

min
q=vec(Q)

q
T
Eq, (18)

where Q ∈ R
3×2 runs through Stiefel matrices, i.e. QT

Q = I2×2.

We rewrite (18) as

min
q=vec(Q)

Tr(Eqq
T ) = min

X∈S
Tr(EX), (19)

where S is the set of all real symmetric 6 × 6 matrices X =
»

A B

B
T

C

–

, with A ∈ R
3×3, satisfying

X < 0, (20)

Tr(A) = Tr(C) = 1, Tr(B) = 0, (21)

rank X = 1. (22)

This problem, has a nonconvex constraint (rank X = 1). Since the
cost function is linear we have

min
X∈S

Tr(EX) = min
X∈co(S)

Tr(EX), (23)

where co(S) is the convex hull of the set S. Here, we compute the

convex hull (tight convex relaxation) co(S) as all the real symmet-

ric 6 × 6 matrices X that satisfy

X < 0, (24)

Tr(A) = Tr(C) = 1, Tr(B) = 0, (25)
»

I3×3 − A− C w

w
T 1

–

< 0, (26)

with w given by

w =

2

4

b23 − b32

b31 − b13

b12 − b21

3

5 (27)

where B = [bij ]. Moreover, this set is defined only by linear ma-

trix inequalities (LMI). Hence, we have that our problem (18) is

equivalent to finding the minimum of a linear function (Tr(EX))
on a convex set (co(S)), which is given only by LMI (24)-(26).

Thus, the optimization problem in the right-hand side of (23) is a

Semi-Definite Program (SDP). By using SeDuMi [10], we quickly

obtain the optimal matrix X for (23). In 100% of experiments that

we ran, the optimal matrix X was always of rank 1. By factorizing

X = qq
T , we obtain the optimal Stiefel matrix as Q = vec−1(q).

For more details the reader can refer to [7]

Appendix B: Optimization, articulated case
We show here that it is possible to compute the nuclear norm

of a 2×2 matrix X without explicitly using a SVD at each location

in the unit sphere:

‖X‖N = σ1(X) + σ2(X)

=
`

σ2
1(X) + σ2

2(X) + 2σ1(X)σ2(X)
´1/2

=
`

‖X‖2 + 2 |det(X)|
´1/2

. (28)

Now we can use this result to efficiently evaluate the cost function

at any given u with ‖u‖ ≤ 1. For u 6= 0, we can write u = Rv

where R = ‖u‖ and v = u/ ‖u‖. Then, we have the eigenvalue
decomposition

I− uu
T = V

»

1 − R
2 0

0 1

–

V
T

where V =
ˆ

v Jv
˜

J =

»

0 −1
1 0

–

. The matrix V is orthogo-

nal. Consequently we can write:

“

I− uu
T

”1/2

= V

»√
1 − R2 0
0 1

–

V
T

Let Y = VY ΣY W
T
Y be an SVD for Y. We have:

‚

‚

‚

‚

“

I− uu
T

”1/2

Y

‚

‚

‚

‚

N

=

‚

‚

‚

‚

V

»√
1 − R2 0

0 1

–

V
T
VY ΣY WY

‚

‚

‚

‚

N

=

‚

‚

‚

‚

»√
1 − R2 0

0 1

–

V
T
VY ΣY

‚

‚

‚

‚

N

.

(29)

Now, let v =

»

cos θ
sin θ

–

and let, without loss of generality,

VY =

»

cos α − sin α
sin α cos α

–

ΣY =

»

σ1 0
0 σ2

–

.

Then,

V
T
VY =

»

cos(θ − α) sin(θ − α)
− sin(θ − α) cos(θ − α)

–

.

Substituting into eq. (29), it follows that

‚

‚

‚

‚

»√
1 − R2 0

0 1

–

V
T
VY ΣY

‚

‚

‚

‚

2

=

= (1 − R
2)

`

σ2
2+(σ2

1−σ2
2)Cα(θ)2

´

+σ2
1−(σ2

1−σ2
2)Cα(θ)2

= σ2
1 + σ2

2 − R
2σ2

2 − R
2(σ2

1 − σ2
2)Cα(θ)2

where Cα(θ) = cos(θ − α). Additionally we can write:
˛

˛

˛

˛

det

»√
1 − R2 0

0 1

–

V
T
VY ΣY

˛

˛

˛

˛

= σ1σ2

p

1 − R2

Thus,
‚

‚

‚

‚

“

I− uu
T

”1/2

Y

‚

‚

‚

‚

N

=

=
h

σ2
1+σ2

2−R
2σ2

2−R
2(σ2

1−σ2
2)Cα(θ)2+2σ1σ2

p

1−R2
i1/2

The same reasoning can be then replicated for the nuclear norm

given Z thus avoiding the costly computations in eq. (28). If VY =
ˆ

e1 e2

˜

note that Cα(θ) = v
T
e1.


