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Optimization problem

This course is about solving optimization problems:

minimize  f(x)

subjectto x € ()

x € R™ is the optimization variable
f : R™ — R is the cost function

Q C R"™ is the constraint set



Key-point

“The great watershed in optimization isn't between linearity and nonlinearity, but
between convexity and non-convexity” RT Rockefellar
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Course overview

e The focus of this course is on convex programs
— How to recognize them 7

— How to solve them 7

e The course is organized in 4 parts:
— formulation of convex optimization problems
— conditions for optimality and duality theory
— numerical algorithms

— nonsmooth optimization



Course overview

e Main bibliography:
— [CO] Convex optimization by S. Boyd and L. Vandenberghe

Available for download at:
http://www.stanford.edu/~boyd/cvxbook/

— [NO] Numerical optimization, 2nd ed., by J. Nocedal and S. Wright

e Secondary bibliography:

— Lectures on modern convex optimization, Aharon Ben-Tal and Arkadi
Nemirovski, 2001, MPS-SIAM Series on Optimization

— Nonlinear programming, 2nd ed., Dimitri Bertsekas, 1999, Athena Scientific



Part |: formulation of convex optimization problems

e Convex and nonconvex programs can look similar !

e How to detect and formulate convex programs ?



e Hierarchy of the most popular convex optimization programming classes

Convex programs

LP = linear programming

QP — quadratic programming

QCQP = quadratically constrained quadratic programming
SOCP = second-order cone programming

SDP = semidefinite programming



e There are efficient algorithms for each class (e.g. in MATLAB)

e Many applications: control, communications, pattern recognition, image
processing, graphs, networks, statistics, etc



Part |: formulation of convex optimization problems

e Will cover:
— [CO] chapter 2: convex sets
— [CO] chapter 3: convex functions
— [CO] chapter 4: convex optimization problems

— [CO] selected parts from chapters 6, 7, 8 (applications)



Part |l: conditions for optimality and duality theory

e Pinpointing the solutions: the Karush-Kuhn-Tucker (KKT) conditions

Constraint set
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“Am | a solution 7"
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e Applications of KKT conditions:
— sometimes, can provide closed-form solution
— or suggest a simple (usually finite-step) algorithm

— form the basis for more complex iterative algorithms (e.g. primal-dual
interior-point methods)
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e Duality theory:
— each optimization problem has a convex “twin” brother (in fact, many)

— geometrical interpretation

Primal space Dual space

— Under mild conditions for convex programs: duality gap = zero

12



e Applications of duality theory:

the dual might be easier to solve
the dual provides certified lower bounds on the primal problem
duality provides non-heuristic stopping criteria for numerical algorithms

duality provides “unexpected” results (e.g. max-flow = min-cut in directed
graphs)

duality can simplify problem formulation (e.g. remove exponential number of
constraints)

duality enables problem decomposition (separation into smaller subproblems)
duality offers convex relaxations for nonconvex problems (e.g. max-cut)

duality is important for algorithm development
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Part |l: conditions for optimality and duality theory

o Will cover:

— [CO] chapter 5: duality
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Part lll: numerical algorithms

e Line-search algorithms for unconstrained optimization
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— Armijo’s rule and Newton direction

— how fast do they converge ?
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e Algorithms for constrained convex optimization: interior-point algorithms

S

16



Part lll: numerical algorithms

o Will cover:
— [CO] chapter 9: unconstrained optimization
— [CO] chapter 10: equality constrained minimization
— [CO] chapter 11: interior-point methods
— [NOQ] selected parts from chapters 6, 17 and 19

17



Part IV: nonsmooth optimization

A\
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e Nonsmooth convex optimization appears a lot:

— many problems are naturally nonsmooth. Example:
minimize [|Az — b||* + B (1| + |z2| + - - - + |zn])

— a smooth reformulation is usually possible, but new variables/constraints
enter the problem

— solving the dual problem is often a nonsmooth optimization problem

— lots of applications in sensor networks
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Grading

e Grade = Homework (50%) + 24h take home exam (40%) + 1h oral exam (10%)

e Homework (tentative schedule):
# | Due (11pm Lisbon = 6pm Pittsburgh)

February, 2
February, 16
March, 2
March, 16
March, 30
April, 13
April, 27

~N o 1 A WD =

e 24h take exam is on May, 3
e 1h oral examination between May, 4 and May, 6

e Office hours: TBD
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