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Optimization problem

• This course is about solving optimization problems:

minimize f(x)

subject to x ∈ Ω

• x ∈ R
n is the optimization variable

• f : R
n → R is the cost function

• Ω ⊂ R
n is the constraint set
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Key-point

“The great watershed in optimization isn’t between linearity and nonlinearity, but

between convexity and non-convexity” RT Rockefellar

PSfrag replacements

Convex programs Nonconvex programs

example: LP’s
example: combinatorial

(“easy”)

. . .

(“difficult”)
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Course overview

• The focus of this course is on convex programs

– How to recognize them ?

– How to solve them ?

• The course is organized in 4 parts:

– formulation of convex optimization problems

– conditions for optimality and duality theory

– numerical algorithms

– nonsmooth optimization
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Course overview

• Main bibliography:

– [CO] Convex optimization by S. Boyd and L. Vandenberghe

Available for download at:

http://www.stanford.edu/∼boyd/cvxbook/

– [NO] Numerical optimization, 2nd ed., by J. Nocedal and S. Wright

• Secondary bibliography:

– Lectures on modern convex optimization, Aharon Ben-Tal and Arkadi

Nemirovski, 2001, MPS-SIAM Series on Optimization

– Nonlinear programming, 2nd ed., Dimitri Bertsekas, 1999, Athena Scientific
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Part I: formulation of convex optimization problems

• Convex and nonconvex programs can look similar !

• How to detect and formulate convex programs ?
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• Hierarchy of the most popular convex optimization programming classes

PSfrag replacements

Convex programs

LP

QP

QCQP

SOCP

SDP

LP = linear programming

QP = quadratic programming

QCQP = quadratically constrained quadratic programming

SOCP = second-order cone programming

SDP = semidefinite programming

7



• There are efficient algorithms for each class (e.g. in MATLAB)

• Many applications: control, communications, pattern recognition, image

processing, graphs, networks, statistics, etc
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Part I: formulation of convex optimization problems

• Will cover:

– [CO] chapter 2: convex sets

– [CO] chapter 3: convex functions

– [CO] chapter 4: convex optimization problems

– [CO] selected parts from chapters 6, 7, 8 (applications)
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Part II: conditions for optimality and duality theory

• Pinpointing the solutions: the Karush-Kuhn-Tucker (KKT) conditions
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“Am I a solution ?”
Constraint set
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• Applications of KKT conditions:

– sometimes, can provide closed-form solution

– or suggest a simple (usually finite-step) algorithm

– form the basis for more complex iterative algorithms (e.g. primal-dual

interior-point methods)
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• Duality theory:

– each optimization problem has a convex “twin” brother (in fact, many)

– geometrical interpretation

PSfrag replacements

Duality gap

Primal space Dual space

– Under mild conditions for convex programs: duality gap = zero
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• Applications of duality theory:

– the dual might be easier to solve

– the dual provides certified lower bounds on the primal problem

– duality provides non-heuristic stopping criteria for numerical algorithms

– duality provides “unexpected” results (e.g. max-flow = min-cut in directed

graphs)

– duality can simplify problem formulation (e.g. remove exponential number of

constraints)

– duality enables problem decomposition (separation into smaller subproblems)

– duality offers convex relaxations for nonconvex problems (e.g. max-cut)

– duality is important for algorithm development
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Part II: conditions for optimality and duality theory

• Will cover:

– [CO] chapter 5: duality
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Part III: numerical algorithms

• Line-search algorithms for unconstrained optimization

PSfrag replacements

xk

dk

xk+1

dk+1

xk+2

– Armijo’s rule and Newton direction

– how fast do they converge ?
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• Algorithms for constrained convex optimization: interior-point algorithms
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Part III: numerical algorithms

• Will cover:

– [CO] chapter 9: unconstrained optimization

– [CO] chapter 10: equality constrained minimization

– [CO] chapter 11: interior-point methods

– [NO] selected parts from chapters 6, 17 and 19
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Part IV: nonsmooth optimization
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• Nonsmooth convex optimization appears a lot:

– many problems are naturally nonsmooth. Example:

minimize ‖Ax − b‖2 + β (|x1| + |x2| + · · · + |xn|)

– a smooth reformulation is usually possible, but new variables/constraints

enter the problem

– solving the dual problem is often a nonsmooth optimization problem

– lots of applications in sensor networks
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Grading

• Grade = Homework (50%) + 24h take home exam (40%) + 1h oral exam (10%)

• Homework (tentative schedule):

# Due (11pm Lisbon = 6pm Pittsburgh)

1 February, 2

2 February, 16

3 March, 2

4 March, 16

5 March, 30

6 April, 13

7 April, 27

• 24h take exam is on May, 3

• 1h oral examination between May, 4 and May, 6

• Office hours: TBD
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