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On Robustness Properties in Empirical Centroid Fictitious Play
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Abstract— Empirical Centroid Fictitious Play (ECFP) is a
generalization of the well-known Fictitious Play (FP) algorithm
designed for implementation in large-scale games. In ECFP, the
set of players is subdivided into equivalence classes with players
in the same class possessing similar properties. Players choose
a next-stage action by tracking and responding to aggregate
statistics related to each equivalence class. This setup alleviates
the difficult task of tracking and responding to the statistical
behavior of every individual player, as is the case in traditional
FP.

Aside from ECFP, many useful modifications have been
proposed to classical FP, e.g., rules allowing for network-
based implementation, increased computational efficiency, and
stronger forms of learning. Such modifications tend to be of
great practical value; however, their effectiveness relies heavily
on two fundamental properties of FP: robustness to alterations
in the empirical distribution step size process, and robustness
to best-response perturbations. The main contribution of the
paper is to show that similar robustness properties also hold
for the ECFP algorithm. This result serves as a first step
in enabling practical modifications to ECFP, similar to those
already developed for FP.

I. INTRODUCTION

The field of learning in games is concerned with the
study of systems of interacting agents, and in particular, the
question of how simple behavior rules applied at the level
of individual agents can lead to desirable global behavior.
Fictitious Play (FP) [1] is one of the best studied game-
theoretic learning algorithms. While attractive for its intuitive
simplicity and proven convergence results, certain practical
issues make FP prohibitively difficult to implement in games
with a large number of players [2]-[5].

Empirical Centroid FP (ECFP) [4], [5] is a recently
proposed generalization of FP designed for implementation
in large games. In ECFP, the set of players is subdivided into
sets of “equivalence classes” of players sharing similar prop-
erties. In this formulation, players only track and respond to
an aggregate statistic (the empirical centroid) for each class
of players, rather than tracking and responding to statistical
properties of every individual player, as in classical FP. ECFP
has been shown to learn elements of the set of symmetric
Nash equilibria for the class of multi-player games known
as potential games.

The work was partially supported by the FCT project FCT
[UID/EEA/50009/2013] through the Carnegie Mellon/Portugal Program
managed by ICTI from FCT and by FCT Grant CMU-PT/SIA/0026/2009,
and was partially supported by NSF grant ECCS-1306128.

TDepartment of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, PA 15213, USA (brianswe@andrew.cmu.edu and
soummyak @andrew.cmu.edu).

*Institute for Systems and Robotics (ISR), Instituto Superior Tecnico (IST),
Technical University of Lisbon, Portugal (jxavier@isr.ist.utl.pt).

978-1-4799-7886-1/15/$31.00 ©2015 IEEE

The main focus of this paper will be to study ECFP and
show that certain desirable properties possessed by classical
FP also hold for the more general ECFP. In particular, the
work [6] studied classical FP and proved that the fundamen-
tal learning properties of FP can be retained in the following
scenarios:

(1) The step size sequence of the empirical distribution
process takes on a form other than {1/n},>;, where n
denotes the stage index of game play.

(ii) Players are permitted to make suboptimal choices when
choosing a next-stage action so long as the degree of subop-
timality decays asymptotically to zero with time (stage).

We say a FP-type algorithm is step-size robust if it retains
its fundamental learning properties in the first scenario, and
we say an algorithm is best-response robust if it retains its
fundamental learning properties in the second scenario.

The notion of step-size robustness generalizes the concept
of the empirical distribution of classical FP. A player’s
empirical distribution in classical FP is taken to be the time-
averaged histogram of the player’s action history; implicitly,
this has an incremental step size of 1/n. Scenario (i) allows
players to choose alternate step-size sequences. Of particular
interest is that it allows for construction of an empirical
distribution that places more emphasis on recent observations
while discounting observations from the distant past.

The notion of best-response robustness generalizes FP by
relaxing the traditional assumption that players are always
perfect optimizers. In particular, in classical FP, it is assumed
that players are capable of choosing their next-stage action
as a (precise) best response to the empirical action history of
opposing players. In practice, this is a stringent assumption,
requiring that players have perfect knowledge of the em-
pirical distribution of all opposing players at all times, and
are capable of precisely solving a (non-trivial) optimization
problem each iteration of the algorithm. By relaxing this
implicit assumption slightly (as in scenario (ii)), one is able
to consider many useful extensions of FP of both practical
and theoretical value.

In [6], the best-response robustness of FP was used to
show convergence to the set of Nash equilibria of stochastic
FP with vanishing smoothing, and to prove convergence of
an FP-inspired actor-critic learning algorithm. In [3], best-
response robustness of FP was used to show convergence
of sampled FP—a variant of FP in which computational
complexity is mitigated by approximating the expected utility
using a Monte-Carlo method—and used again in [7] to en-
sure convergence of an even more computationally efficient
version of sampled FP. In [8], the best-response robustness
of FP is used to construct a variant of FP achieving a strong
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form of learning in which the players’ period-by-period
strategies are guaranteed to converge to equilibrium (rather
than only convergence in terms of the empirical frequencies,
as is typical in FP). The best-response robustness of FP
is also useful in that it allows for practical network-based
implementations of FP; e.g., [5], [9].

The main contribution of this paper is to demonstrate
that ECFP is both step-size robust and best-response robust;
i.e., ECFP retains its fundamental learning properties under
scenarios (i) and (ii) above. This result is a necessary first
step in order to develop practical modifications for ECFP
similar in spirit to those already developed for FP; e.g., im-
proved computational efficiency, network-based implementa-
tion rules, and strongly convergent variants of the algorithm,
as mentioned above.! We prove the result following a similar
line of reasoning to [6], [10]; we first study a continuous-
time version of ECFP, and then use results from the theory of
stochastic approximations to prove our main result regarding
convergence of discrete-time ECFP based on properties of
the continuous-time counterpart.

The remainder of the paper is organized as follows.
Section II sets up the notation to be used in the subsequent
development and reviews the classical FP algorithm. Section
IIT presents discrete-time ECFP and states the main result.
Section IV reviews relevant results in differential inclusions
and stochastic approximations to be used in the proof of
the main result. Section V presents continuous-time ECFP.
Section VI proves convergence of discrete-time ECFP using
properties of continuous-time ECFP. Section VII provides
concluding remarks.

II. PRELIMINARIES
A. Game Theoretic Preliminaries

A review of game-theoretic learning algorithms—
including classical FP—can be found in [11], [12].

A normal form game is given by the triple I' =
(N, (Yi)iens (wi(+))ien), where N' = {1,...,N} repre-
sents the set of players, Y;—a finite set of cardinality m;—
denotes the action space of player ¢ and u; () : Hf\il Y; - R
represents the utility function of player .

Throughout this paper we assume:

A. 1: All players use identical utility functions.

Under this assumption we drop the subscript ¢ and denote
by w(-) the utility function used by all players. The set of
mixed strategies for player ¢ is given by A; = {p € R™: :
Siipk) = 1, p(k) > 0Vk = 1,...,m;}, the m;-
simplex. A mixed strategy p; € A; may be thought of as
a probability distribution from which player ¢ samples to
choose an action. The set of joint mixed strategies is given

The results of this paper are directly applied in [8] to prove a strong
learning result for a variant of ECFP. We also note that one possible
network-based implementation of ECFP has been presented in [5]. This
implementation—which considers fixed communication graph topologies
and synchronous communication rules—relies on a weak form of best-
response robustness (see [5], Assumption A.3). In order to consider ECFP
in more general distributed scenarios (e.g., random communication graph
topology and asynchronous communication rules) it is necessary to have
the full robustness property derived in this paper.

by AN = Hfil A;. A joint mixed strategy is represented
by the n-tuple (p1,...,pn), Where p; € A; represents the
marginal strategy of player 3.

The mixed utility function is given by U(-) : AN — R,
where,

Upr,....on) = > uwi(y)pr(y1) - .. oy (yn)-

yey

Note that U(-) may be interpreted as the expected value of
u(y) given that the players’ mixed strategies are statistically
independent. For convenience, the notation U(p) will often
be written as U (p;, p—i), where p; € A\; is the mixed strategy
for player 4, and p_; indicates the joint mixed strategy for

all players other than 1.
For e > 0,7 € N and p_; € A_;, define the e-best
response set for player ¢ as

BRic(p-i) = {pi € Ai : U(pi, p—i) 2 max Ulai,p—i) — e}

and for p € AV define
BR.(p) == (BR1,(p-1),--., BRN(D—n))-

The set of Nash equilibria is given by
NE = {p € AN : U(Pz»Pﬂ) Z U(pivpfi)vvp; € Aia VZ}

The distance of a distribution p € A" from a set S ¢ AN
is given by d(p,S) = inf{||p — p'|| : p’ € S}, where || - ||
denotes the Euclidean norm.

As a matter of convention, all equalities and inequalities
involving random objects are to be interpreted almost surely
(a.s.) with respect to the underlying probability measure,
unless otherwise stated.

B. Repeated Play

The learning algorithms considered in this paper assume
the following format of repeated play.

Let a normal form game I be fixed. Let players repeatedly
face off in the game I', and forn € {1,2,...}, let a;(n) € A;
denote the action played by player ¢ in round n.” Let the n-
tuple a(n) = (a1(n),...,an(n)) denote the joint action at
time 7.

Denote by ¢;(n) € A, the empirical distribution® of
player 7. The precise manner in which the empirical dis-
tribution is formed will depend on the algorithm at hand. In
general, ¢;(n) is formed as a function of the action history
{a;(s)}?_, and serves as a compact representation of the
action history of player ¢ up to and including the round
n. The joint empirical distribution is given by ¢(n) :=
(@1(n), ..., qn(n)).

2 An action is usually assumed to a be pure strategy, or a vertex of the
simplex A;. In this work, an action is permitted to be an arbitrary mixed
strategy (cf. [6], for the case of FP). Since the results hold for any actions
of this form, they also hold for the typical case where actions are restricted
to be pure strategies.

3The term empirical distribution is often used to refer explicitly to
the time-averaged histogram of the action choices of some player ¢;
ie., gi(n) = %Z?:l a;(s). However, using a broader definition as
considered here, allows for interesting algorithmic generalizations; e.g.,
learning processes that place greater emphasis on observations of more
recent actions. See [6] for further discussion.
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C. Classical Fictitious Play

FP may be intuitively described as follows. Players re-
peatedly face off in a stage game I'. In any given stage of
the game, players choose a next-stage action by assuming
(perhaps incorrectly) that opponents are using stationary
and independent strategies. In particular, let the empirical
distribution be given by the time-averaged histogram

1 n
gi(n) =~ > ai(s); (1)
s=1

in FP, players use the empirical distribution of each oppo-
nent’s past play as a prediction of the opponent’s behavior
in the upcoming round and choose a next-round strategy that
is optimal (i.e., a best response) given this prediction.

A sequence of actions {a(n)},>1 such that*

ai(n + 1) S BRZ(q,Z(n)), Vi,

for all n > 1, is referred to as a fictitious play process. It
has been shown that FP achieves Nash equilibrium learning
in the sense that d(¢(n), NE) — 0 as n — oo for select
classes of games including two-player zero-sum games [13],
two-player two-move games [14], and multi-player potential
games [15], [16].

D. Empirical Centroid FP Setup

A presentation of ECFP in its most elementary form (i.e.,
all players are grouped into a single equivalence class) is
given in [5]; the elementary formulation is less notationally
involved, and can serve as a useful means of conveying the
basic ideas of the approach in a straightforward manner. In
this paper we focus on the general formulation of the ECFP
algorithm.

In ECFP, players are grouped into sets of equivalence
classes, or “permutation invariant” classes. Such grouping
allows players to analyze collective behavior by tracking only
the statistics of each equivalence class, rather than tracking
the statistics of every individual player.

Let m < N, denote the number of classes, let I =
{1,...,m} be an index set, and let C = {C,...,Cy,} be
a collection of subsets of A/; ie. Cp, C N, Vk € I. A
collection C is said to be a permutation-invariant partition
of NV if],

(1) ChNCr=0,for k£ el, k+#{,
(ii) U Ck =N,
kel
(t3) for ke I,4,5 € Cy, Y; =Y,
(i) for k € I, 1,5 € Cy, there holds for any strategy profile
y=WiY,¥-ij) €Y,

U(ymyja y—(i,j)) = U([yj]i, [yi]ja y—(m‘))’

where the notation ([y;];, [y;]:,¥—(,;)) indicates a permuta-
tion of (only) the strategies of players ¢ and j in the strategy
profile y = (yi, yj,Y—(i,5))-

“In all learning algorithms discussed in this paper, the initial action a; (1)
may be chosen arbitrarily for all 4.

For a collection C, define ¢(-) : N'— I to be the unique
mapping such that ¢(7) = k if and only if ¢ € Cy.

For k € I, and p € AN, and permutation-invariant
partition C, define

=1 D> p )
1€Cy,

to be the k-th centroid with respect to C, where |C| denotes
the cardinality of the set Cj. Likewise for p € AN define

DN ), 3)

where p; = p®(%), to be the centroid distribution with respect
to C.

Given a permutation-invariant partition C, let the set of
symmetric Nash equilibria (relative to C) be given by,

SNE:={pe NE:p;=p; Vi,j € Cy, Y k €},

and let the set of mean-centric equilibria (relative to C) be
given by,

ﬁ:: (ﬁlaﬁQv" .

MCE = {pe A" : U(pi,p—i) > Up;,p—:),p; € Ay, Vi}.

The set of MCE is neither a strict superset nor subset of the
NE—rather, it is a set of natural equilibrium points tailored
to the ECFP dynamics [17]. The set of SNE however, is
contained in the set of MCE.

The sets of SNE and MCE relative to a partition C can
be shown to be non-empty under A.l using fixed point
arguments similar to [17], [18].

III. EMPIRICAL CENTROID FICTITIOUS PLAY

Let the game I" be played repeatedly as in Section II-B. Let
the empirical distribution for player ¢ be formed recursively
with ¢;(1) = a;(1) and for n > 1,

gi(n+1) = qi(n) +ym (ai(n +1) —gi(n)), 4

where we assume:

A. 2: The sequence {7, }n>1 in (4) satisfies v, > 0, Vn,
Y on>1 Y =00, and lim, o v, = 0.

Typical FP-type learning algorithms® consider the empir-
ical distribution to be a time-averaged histogram that places
equal weight on all rounds; this corresponds to a step size
of the form v, = %H,Vn (e.g., (1)). If a FP-type algorithm
retains its fundamental learning properties under the more
general assumption A.2, then we say the algorithm is step-
size robust.

In ECFP [5], players do not track the empirical distribu-
tion of each individual player. Instead, they track only the
centroid ¢*(n) for each k € I (see (2)). Intuitively speaking,
in ECFP each player ¢ assumes (perhaps incorrectly) that for
each class C}, € C the centroid g*(n) accurately represents
the mixed strategy for all players j € Cj. Each player @
chooses her next-stage action as a myopic best response
given this assumption.

5We use the term FP-type learning algorithm to refer to an algorithm in
which players choose their next-stage action as a myopic best response to
some forecast rule based on the current time-averaged empirical distribution
of play; cf. the learning framework considered in [19].
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Formally, the joint action at time (n + 1) is chosen
according to the rule®

a(n+1) € BRe, (q(n)), (5)

where ¢(n) is the centroid distribution associated with ¢(n)
(see (3)), and where it is assumed that,

A. 3: The sequence {€, },>1 in (5) satisfies lim,,_, oo €, =
0.
Typical FP-type learning algorithms assume that players are
always perfect optimizers; i.e., ¢, = 0, Vt. If a FP-type
learning algorithm retains its fundamental learning properties
under A.3, we say the algorithm is best-response robust. The
work [6] first considered generalizations to FP of the forms
indicated in A.2-A.3 and showed that classical FP is both
step-size robust and best-response robust. In this work we
show that ECFP is also robust in both these senses.

Combining (4) with (5), gives the following difference
inclusion governing the behavior of {g(n)},>1,

q(n+1) € (1 =) qn) + mBR, (G(n).  (6)

Likewise, Lemma 6 (see appendix) shows that the sequence
of centroid distributions {g(n)},>1 follows the difference
inclusion,

q‘(n + 1) S (1 — 'Yn) (j(n) + 'YnBREn (‘j(n)) )

We refer to the sequence {g(n), g(n)}n>1 as a discrete-time
ECFP (DT-ECFP) process with respect to (I',C).

The following theorem is the main result of the paper—
it states that, if I" is an identical interests game (A.l),
then under the relatively weak assumptions A.2—A.3, players
engaged in ECFP asymptotically learn elements of sets of
SNE and MCE. Learning of MCE occurs in the sense that
d(q(n), MCE) — 0—this form of learning corresponds
to the typical notion of setwise convergence in empirical
distribution typical in classical FP (see Section II-C and
[20], [12]). Learning of SNE occurs in the sense that
d(g(n), SNE) — 0. This notion of learning, while similar
in spirit to the typical notion of convergence in empirical
distribution, differs in that it is the empirical centroid distri-
bution (3) that is converging to the set of SNE, rather than
the empirical distribution itself.

Theorem 1: Assume A.1-A.3 hold. Let C be a
permutation-invariant partition of the player set N.
Let {¢(n),q(n)},>1 be an ECFP process with respect to
(T',C). Then,

(i) players learn a subset of the MCE in the sense that
lim,, 00 d(g(n), MCE) = 0,
(ii) players learn a subset of the SNE in the sense that
lim,, 00 d(g(n), SNE) = 0.

We note that if €, = O(logt/t"), r > 0and v, = 1/(n+
1), then convergence of ECFP in the sense of Theorem 1 was
established in our prior work [5].

In order to prove Theorem 1 in its full generality we
follow the approach of [6], [10]—we first study the set of
continuous-time differential inclusions associated with ECFP,

The action a(1) may be chosen arbitrarily.

and then derive Theorem 1 from the continuous-time results
via tools from the theory of stochastic approximations.

In particular, Section IV discusses the notion of a per-
turbed solution of a differential inclusion, introduces the
notion of a chain transitive set, and presents key results that
allow one to relate the limit sets of perturbed solutions to
internally chain transitive sets of the associated differential
inclusion. Section V then presents continuous-time ECFP
(CT-ECFP) and shows convergence of CT-ECFP to the sets
of SNE and MCE using Lyapunov arguments.

Section VI presents Lemmas 2 and 3 that relate the limit
sets of DT-ECFP to the limit sets of CT-ECFP. Lemma 2
shows that the limit sets of DT-ECFP are contained in the
internally chain transitive sets of the corresponding CT-ECFP
process. This is accomplished by first showing that DT-ECFP
processes may be considered to be perturbed solutions of the
associated CT-ECFP differential inclusion, and then invoking
Theorem 2 to clinch the result. Lemma 3 then shows that the
internally chain transitive sets of CT-ECFP are contained in
the sets of MCE and SNE. This is accomplished by invoking
Proposition 2 together with the Lyapunov arguments derived
for CT-ECFP processes in Section V.

The proof of Theorem 1 then follows by combining
Lemmas 2 and 3, as noted in Section VI-A.

IV. DIFFERENCE INCLUSIONS AND DIFFERENTIAL
INCLUSIONS

We study the limiting behavior of DT-ECFP by first
studying the behavior of a continuous-time version of ECFP,
and then relating the limit sets of DT-ECFP to the limit sets
of its continuous-time counterpart.

Following the approach of [10], [6], let F' : R™ = R™
denote a set-valued function mapping each point £ € R™ to
a set F(§) € R™. We assume:

A. 4: (i) F is a closed set-valued map.’

(ii) F(£) is a nonempty compact convex subset of R™ for
all £ e R™.

(iii) For some norm || - || on R™, there exists ¢ > 0 such that
for all £ € R™, sup,c pe) [0l < (1 + [I€])-

Definition 1: A solution for the differential inclusion ‘;—f €
F(z) with initial point £ € R™ is an absolutely continuous
mapping z : R — R™ such that 2(0) = £ and dzgt) €
F(z(t)) for almost every t € R.

In order to study the asymptotic behavior of discrete-time
processes in this context, one may study the continuous-
time interpolation. Formally, we define the continuous-time
interpolation as follows:

Definition 2: Consider the discrete-time process

w(n+1) — 2(n) € i1 F(a(n)).
Set 9 = Oand 7, = Y., 7 for n > 1 and define the
continuous-time interpolated process w : [0, 00) — R™ by

z(n+1) —xz(n)

w(Th, +8) =x(n) + s
(n ) () Tn+l — Tn

, §€ [0,7n+1)~

"Le., Graph(F) := {(&,n) : € F(€)} is a closed subset of R™ x R™.
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In general, the continuous-time interpolation of a discrete-
time process will not itself be a precise solution for the
differential inclusion as stated in Definition 1. However, the
interpolated process may be shown to satisfy the more re-
laxed solution concept—namely, that of a perturbed solution
to the differential inclusion. We first define the notion of a
d-perturbation which we then use to define the notion of a

perturbed solution.
Definition 3: Let F' : R™ = R™ be a set-valued map,
and let § > 0. The J-perturbation of F' is given by

Fi(z):={y e R™:3z e R™ st. ||z2—x| < 6, d(y, F(2)) < 6},

where d(y, F'(2)) := infiep(z) |ly — t||.

Definition 4: A continuous function y : [0,00) — R™
will be called a perturbed solution to F' if it satisfies the
following set of conditions:

(1) y is absolutely continuous.
(i) dZ—Ef) € FOM(y(t)) for almost every ¢ > 0, for some
function § : [0, 00) — R with §(¢) — 0 as t — co.

The following proposition gives sufficient conditions under
which an interpolated process will in fact be a perturbed
solution.

Proposition 1: Consider a  discrete-time  process
{z(n)}n>1 such that v, ! (z(n+1) — x(n)) € Fo(x(n))
where {7, }n>1 is a sequence of positive numbers such that
Yo — 0and Y7 v, = o0, {d,}n>1 is a sequence of non-
negative numbers converging to 0, and sup,, ||z(n)|| < co.
Then the continuous-time interpolation of {x(n)},>1 is a
perturbed solution of F'.

The proof of Proposition 1 follows similar reasoning to
the proof of Proposition 1.3 in [10].

Our end goal is to characterize the set of limit points
of the discrete-time process {x(n)},>1 by characterizing
the set of limit points of its continuous-time interpolation.
With that end in mind, it is useful to consider the notion
of a chain-transitive set—a set of natural limit points for
perturbed processes.

Definition 5: Let || - || be a norm on R™, and let F :
R™ = R™ be a set valued map satisfying A.4. Consider the
differential inclusion

dx

(a) Given a set X C R™ and points £ and 7, we write
& — n if for every € > 0 and T > 0 there exist an integer
n* > 1, solutions x1,...,z,+ to the differential inclusion
(8), and real numbers t4,...,t,~ greater than 7" such that
(i) zi(s) € X, forall 0 < s <t; and for all i =1,...,n*,
() [|zi(t;) — zi41(0)|| < eforall i =1,...,n* — 1,

(i) [|1.(0) — €]| < € and [ (tn-) = 7l| < .

(b) X 1is said to be internally chain transitive if X is
compact and & — ¢ for all £ € X.

The following theorem from [10] allows one to relate
the set of limit points of a perturbed solution of F' to the
internally chain transitive sets F'.

Theorem 2 ( [10], Theorem 3.6): Let y be a bounded per-
turbed solution to F. Then the limit set of y, L(y) =
(Ni>o {y(s) : s >t} is internally chain transitive.

In our study of ECFP, we have restricted our focus to
the class of identical interests games—a subset of the class
of potential games. The existence of a potential function is
useful in that it allows us to infer the existence of a Lyapunov
function that may be used to characterize the internally chain
transitive sets.

In particular, the differential inclusion (8) induces a set-
valued dynamical system {®;},;cr defined by

D, (20) := {z(t) : x is a solution to (8) with x(0) = z¢}.

Let A be any subset of R™. A continuous function V :
R™ — R is called a Lyapunov function for A if V(y) <
V(zo) for all zp € R™M\A, y € Py(xg), t > 0, and
V(y) < V(xzo) for all zgp € A, y € P4(xp) and ¢ > 0. The
following proposition ( [10], Proposition 3.27) allows one to
relate the chain transitive sets of a differential inclusion to
Lyapunov attracting sets.

Proposition 2: Suppose that V' is a Lyapunov function
for A. Assume that V(A), the image of A under V, has
empty interior. Then every internally chain transitive set L
is contained in A and V|L, the restriction of V' to the set L,
is constant.

In order to prove Theorem 1 we will show that the
continuous-time interpolations of the ECFP processes (6) and
(7) are in fact bounded perturbed solutions to the associated
differential inclusions (9) and (10), and hence by Theorem
2, the limit points of the ECFP process are contained in the
internally chain transitive sets of the associated differential
inclusions. Furthermore, using Proposition 2, we will show
that every internally chain transitive set of (9) and (10) is
contained in the set of SNE and MCE respectively. Hence,
the limit points of (6) and (7) are contained in the sets of
SNE and MCE respectively.

V. CONTINUOUS-TIME ECFP

In this section we consider a continuous-time version
of ECFP. It will be shown that the continuous-time ECFP
processes converge to the sets of SNE and MCE in a
manner paralleling the convergence claimed in Theorem 1.
Furthermore, the analysis presented in this section lays the
essential groundwork needed to invoke Proposition 2 and
show that the chain-transitive sets of continuous-time ECFP
are contained in the sets of SNE and MCE respectively.

Let I" satisfy A.1 and let C be a permutation-invariant
partition of A/. In analogy to® (6), for ¢ > 0 let

q°(t) € BR(q(t)) — ¢°(t), ©)

where we use the superscript ¢°(¢) to indicate a continuous-
time analog of the empirical distribution, and where, for p €
AN, we let BR(p) :== BR.(p) with ¢ = 0, and ¢°(t) is the
centroid distribution associated with ¢(¢) (see (3)). We refer
to the process {¢°(t), g°(t) }+>0 as a continuous-time ECFP
(CT-ECFP) process relative to (I',C).

8Note that (6) may be written

: as qn + 1) — qn) €
L (BR., (a(n)) — q(n)).
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As our end goal involves studying the limiting behavior of
{@(t)}+>1, note that for k € I, and g**(¢) defined similar
to (2), there holds

~c d - c - d c
0= Lol Y g = 1ol Y g
JECK JECK
=Gl D ),
JECK

Let p(t) = ¢°(t) +¢°(t), so that p(t) = (p1(t), ..., pn(t))
with p;(t) = p?@ (t) for i € N (see (3)). By the above, and
the linearity of differentiation, p(t) = ¢°(t)+q(n). Thus, by
Lemma 3, (9) implies that p(t) € BR(g“(t)), or equivalently,

¢°(t) € BR(Z°(t)) — G°(t).

A. Convergence in Continuous Time

(10)

This section studies the convergence of continuous-time
ECFP to the sets of SNE and MCE.

For any solution ¢°(t) of (9) and associated centroid
process ¢°(t), let w(t) := U(g°(t)) and let v(t) =
LS U(gg(t), G, (t)). There holds,

=1 T
N .
>3 [V + 0).74(0) - U@ ()]
1;1
—2 L??X Ule, 324(t)) = UW@))} > 0,(11)
i=1 &

where the second line follows from the concavity of U in
pi, and the third follows from (10).
By Lemma 4 there holds

N
S U000 = U@ @). (2)

Hence v(t) = w(t), there holds 0(¢) > 0. Moreover, the
following expansion is useful in order to study v as a
Lyapunov function for the set of MCE:

o(t) = w(t) =

-

{max Ui, @4(t)) — U(qc(t))]

a; €A

i=1

I
M=

Jmax Ulai, @4()) = nU(3 (1))

1

-
Il

[
NE

max Ufas, ¢-i(t)) —

@
Il
—
<
Il
—

Il
.MZ

{max Ul d4(8)) — U(qf(tmﬁi(t»] >0,

a; EAG
1
(13)
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where the first inequality follows from (11), and the third
line follows again from (12).

By (11), w(t) is weakly increasing, and is constant in
a time interval T if and only if max,,ea, U(a;, @, (t)) —
U(g°(t)) = 0, Vi; i.e., if and only if g°(¢t) € SNE for all
teT.

By (13), v(t) is weakly increasing, and o(t) = 0
in some interval T implies maxq,ca, U(ay, q°,(t)) —
Ulgé(t),qc;(t) =0, Vi e N, t € T ie., ¢°(t) € MCE
for all t € T'. Moreover, by Lemma 5, ¢°(t) € MCE, Vt €
T = ¢(t) € SNE, vVt € T, which by the above
comments implies w(¢) = 0 in T, or equivalently ©(¢) = 0
in T Thus, v(t) is constant in a time interval T if and only
if ¢°(t) € MCE forall t € T.

Proposition 3: Assume A.l holds. Then,

(1) The limit set of every solution of (10) is a connected
subset of SNE along which U is constant;

(i) For p € AN, let V(p) := X 5"V U(p;,¢°,;). The limit
set of every solution of (9) is a connected subset of MCE
along which V' is constant.

The proof of this proposition follows from the above com-
ments.

VI. LIMIT SETS OF DISCRETE-TIME ECFP

In this section we study the limit sets of DT-ECFP by
relating them to the limit sets of CT-ECFP. Lemmas 1 and
2 show that the limit sets of DT-ECFP are contained in
the internally chain transitive sets of CT-ECFP. Lemma 3
shows that the internally chain transitive sets of CT-ECFP
are contained in the sets of SNE and MCE.

The following lemma shows that for e sufficiently small,
the set of € best responses is contained in the set of o-
perturbations of the best response. Combined with Proposi-
tion 1 and Theorem 2 it will allow us to immediately relate
the limit sets of the DT-ECFP processes (6) and (7) to the
internally chain transitive sets of the CT-ECFP differential
inclusions (9) and (10).

Lemma 1: Let €,, — 0 as n — oo. Then there exists a
sequence d,, — 0 such that BR,, (p) C BR%*(p) uniformly
for p € AN,

The proof of this result is omitted due to space constraints.
The complete proof can be found in the forthcoming paper
[21].

The following lemma shows that the limit sets of the DT-
ECFP processes (6) and (7) are contained in the internally
chain transitive sets of the CT-ECFP differential inclusions
(9) and (10).

Lemma 2: Assume A.1-A.3 hold. Let {g(n), §(n)},>1 be
a discrete-time ECFP process. Then,

(i) The set of limit points of {G(n)},>1 is a connected
internally chain transitive set of (10),

(ii) The set of limit points of {g(n)},>1 is a connected
internally chain transitive set of (9).

Proof: For p € AV, let Fi(p) = BR(p) — p and
let F5(p) = BR(p) — p. By Lemma 1 and A.3, there exist
sequences 61, — 0 as n — oo and 3, — 0 as n — oo
such that v (G(n 4+ 1) — g(n)) € F*"(q(n)) (see (7)) for
all n and v, ! (g(n + 1) — q(n)) € Fy>"(q(n)) (see (6)) for
all n. By Proposition 1, the continuous-time interpolation
of g(n) is a perturbed solution to F; and the continuous-
time interpolation of ¢(n) is a perturbed solution to F5. By
Theorem 2, the set of limit points of a bounded perturbed
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solution of a differential inclusion is contained in the chain
transitive set of the differential inclusion, which clinches the
result. u
The following lemma relates internally chain transitive sets
of (9) to the set of MCE, and the internally chain transitive
sets of (10) to the set of SNE; combined with Lemma 2 this
will prove Theorem 1.
Lemma 3: Let I be an identical interests game. Let C be
a permutation-invariant partition on I'. Then,
(1) Every internally chain transitive set of (10) is contained
in the set of SNE.
(i) Every internally chain transitive set of (9) is contained
in the set of MCE.

Proof: Proof of (i): Let W := —U. By Section V-A (in
particular, see (11)), W is a Lyapunov function for the set
of SNE with «(¢) := ¢°(¢). Note that W is multilinear and
hence continuously differentiable.

For a differentiable function f : R™ — R, we say
x € R™ is a critical point of f if for ¢ = 1,...,m, the
partial derivative at x is zero, i.e, % (x) = 0. By Sard’s
Theorem ( [22], p. 69), if C'P is the critical points set of W,
then W (CP) contains no intervals. By definition, the set of
NF is contained in the critical points set of U, and hence
also contained in the critical points set of W. Furthermore,
by definition, SNE C NEF, and hence the set SNFE is
contained in the critical points set of W. Thus, by Proposition
2, every internally chain transitive set of (10) is contained in
the set SNE.
Proof of (ii): Note that by Lemma 5, p € BR(p) —
p € BR(p). Thus, p € MCE implies that p € SNE.
Let V : AN — R, with V(p) = 15N Upi, i),
and note that by Lemma 4, V(p) = U(p). Invoking again
Sard’s Theorem, U(NE) contains no intervals, and hence
U(SNE) C U(NE) contains no intervals. Since U(SNE)
contains no intervals, V(M CFE) also contains no intervals.

By Section V (in particular, see (13)) the function V is a
Lyapunov function for the set of MCE with z(t) := ¢°(¢).
It follows from Proposition 2 that every chain transitive set
of (9) is contained in MCE. |

A. Proof of Theorem 1

Theorem 1 follows directly from Lemmas 2 and 3.

VII. CONCLUSIONS

Classical Fictitious Play (FP) is robust to alterations in the
empirical distribution step-size process and robust to best-
response perturbations. These robustness properties allow
for interesting modifications to FP which can be of great
practical value. Empirical Centroid Fictitious Play (ECFP)
is a generalization of FP designed for large games. The
paper showed that ECFP is also robust to step-size alterations
and best-response perturbations. This result enables future
research to consider practical modifications to ECFP, similar
to those already developed for FP.

APPENDIX

The proofs of these results are omitted due to space con-
straints. The complete proofs can be found the forthcoming
paper [21].

Lemma 4: Let C be a partition of A\, and for p € AN et
7 be as defined in (3). Then 1 S°N  U(p;,p—;) = U(p).

Lemma 5: Let ¢ € AV, let ¢ be as defined in (3), and let
€ > 0. If p € BR.(q), then p € BR.(q).

Lemma 6: Assume A.l holds and suppose the action
sequence {a(n)},>1 is chosen according to (5). Then the
centroid process {G(n)}n>1 follows the differential inclusion

(.
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