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Abstract— We study the asymptotic exponential decay rate I
for the convergence in probability of products WkWk−1...W1 of
random symmetric, stochastic matrices Wk. Albeit it is known
that the probability P that the product WkWk−1...W1 is ε
away from its limit converges exponentially fast to zero, i.e.,
P ∼ e−kI , the asymptotic rate I has not been computed before.
In this paper, assuming the positive entries of Wk are bounded
away from zero, we explicitly characterize the rate I and show
that it is a function of the underlying graphs that support
the positive (non zero) entries of Wk. In particular, the rate
I is given by a certain generalization of the min-cut problem.
Although this min-cut problem is in general combinatorial, we
show how to exactly compute I in polynomial time for the
commonly used matrix models, gossip and link failure. Further,
for a class of models for which I is difficult to compute, we give
easily computable bounds: I ≤ I ≤ I , where I and I differ by
a constant ratio. Finally, we show the relevance of I as a system
design metric with the example of optimal power allocation in
consensus+innovations distributed detection.

I. INTRODUCTION

This paper calculates the exact exponential rate of conver-
gence in probability for the products of random stochastic
matrices. The convergence of products of stochastic matrices
has recently received increased interest, e.g., [1], [2], [3],
[4], in the study of consensus [5], [6], [4], and consen-
sus+innovations algorithms [7], [8], [9].

Specifically, we consider the product WkWk−1...W1 of
independent identically distributed (i.i.d.) symmetric stochas-
tic matrices. We assume that the positive entries of each
realization W of Wk are bounded away from zero. A
classical result is that, when the second largest in modulus
eigenvalue of E [Wk] is less than one and the diagonal entries
of Wk are almost surely positive, the product WkWk−1...W1

converges in probability1 to consensus, i.e., to the matrix
J := 1

N 11>, where 1 denotes the vector with unit entries. It
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is also well established that this convergence is exponentially
fast [5], [10]. However, the exact decay rate has not yet been
computed. In this paper, we calculate the exact decay rate I
for the convergence in probability:

lim
k→∞

1
k

log P (‖Wk...W1 − J‖ ≥ ε) = −I, (1)

where ‖ · ‖ is the spectral norm and ε > 0. Our results
reveal that the rate I depends only on the graph realizations
that support the non-zero entries of Wk, and that it does
not depend on ε. The rate I in (1) is an important metric
that plays a key role, e.g., with the consensus+innovations
distributed detection [8], where the detection performance
dramatically depends on the rate I; in particular, it exhibits
a phase transition. When I is above a threshold, then
distributed detection is asymptotically optimal and asymp-
totically equivalent to the centralized detection; below the
threshold, distributed detection achieves only a fraction of
the centralized detection performance.

Beyond the computation of I , we can draw the intuition
that the rate I is determined by the most likely way in which
the underlying graph stays disconnected for a long period of
time. Although determining this most likely way and the rate
I is, in general, a combinatorial problem, we show that, with
several commonly used models of Wk, the rate I is easily
computable. This is true, for example, for the link failure
and gossip models, for which we explicitly calculate the rate
I by solving a min-cut problem.

Calculation of the rate I is a useful tool in the design
of distributed algorithms. We demonstrate this with the link
failure model, where the link failure (fading) probability
depends on the transmission power that nodes (sensors) use.
We show that, under Rayleigh fading, the rate I is a convex
function of the sensors’ transmission power, which allows
to optimally allocate the sensors’ transmission power in
consensus+innovations distributed detection.

The purpose of this paper is to provide new results on the
rate I , and to extend the initial results established in [11].
These novel results are summarized as follows. First, we
show that, for a generic model of Wk’s, calculation of
the rate I is equivalent to solving a generalized min-cut
problem. Albeit solving the latter is computationally hard
in general, we approximate the rate I efficiently for a class
of gossip-like models that subsumes, e.g., standard pairwise
gossip and symmetrized broadcast gossip. For this class,
we provide easily computable tight approximations of I .
While in [11] we considered spatially independent fading
(failing) links, here we explicitly calculate the rate I for the



correlated fading. Namely, we show that, with this model,
there is a single critical link that determines the rate; this link
marks the transition between the connected and disconnected
regime of network operation. Finally, we give a closed form
solution for I for arbitrary type of averaging that runs on a
tree.
Paper organization. Section II introduces the model for
random matrices Wk and defines relevant quantities needed
in the sequel. Section III states the main result on the
existence of the limit (1) and computes the rate I for
ε = 1. Section IV formulates a generalized min-cut problem
and shows that its solution gives the rate I . In Section
V, we detail gossip and link failure averaging models, and
in Section VI we address the optimal power allocation for
distributed detection by maximizing the rate I . Section VII
summarizes the paper.

II. PROBLEM SETUP

In this section, we state the assumptions on the distributed
averaging process and define relevant concepts that pertain
to the graphs that underly the matrices Wk.

Let {Wt : t = 1, 2, ...} be a discrete time (random) pro-
cess, where Wt are independent and identically distributed
(i.i.d.) stochastic N × N matrices. We assume that each
realization W of Wt is symmetric, with positive diagonal
entries and with positive entries bounded away from 0; that
is, there exists a scalar δ, such that, for any realization W , if
Wij > 0, then Wij ≥ δ. For a given averaging model, which
satisfies the above assumption, we denote by W the set of
all possible realizations of Wk. For example, with gossip on
a graph G with N vertices, WGossip is the set of all N ×N
matrices with sparsity structure of the Laplacian matrix of a
one link subgraph of G, with positive entries being arbitrary,
but bounded away from zero.
Graph process. For a doubly stochastic symmetric matrix
W , let G(W ) denote its induced undirected graph, i.e.,
G(W ) = (V,E(W )), where V = {1, 2, . . . , N} is the set of
all nodes and

E(W ) =
{
{i, j} ∈

(
V

2

)
: Wij > 0

}
.

We define the random graph process {Gt : t = 1, 2, . . .}
through the random matrix process {Wt : t = 1, 2, ...} by:
Gt = G(Wt), for t = 1, 2, . . .. As the matrix process is i.i.d.,
the graph process is i.i.d. as well. We collect the underlying
graphs of all possible matrix realizations W in the set G:

G := {G(W ) : W ∈ W} . (2)

Hence, each realization of Gt belongs to G, and we, thus,
refer to G as the set of realizable graphs (for the given
averaging process). Also, for H ∈ G, we denote by pH its
probability of occurrence, i.e., pH = P(Gt = H). Note that∑
H∈G pH = 1. Also, for a collection H ⊆ G we use pH to

denote the probability that a graph realization Gt belongs to
H:

pH =
∑
H∈H

pH . (3)

Supergraph disconnected collections. For a collection of
graphs H ⊆ G, let Γ(H) denote the graph that contains all
edges from all graphs in H. That is, Γ(H) is the graph with
the minimal number of edges that is a supergraph of every
H ∈ H:

Γ(H) := (V,
⋃
H∈H

E(H)), (4)

where E(H) denotes the set of edges of graph H .
A special type of a collection supergraph, which will

be important when determining the rate (see Lemma 2
in Section III), is the (random) supergraph of all graph
realizations Gt until some fixed time k and we denote it
by Γ(k, 0):

Γ(k, 0) := Γ({G1, G2, . . . , Gk}).

We note that Γ(k, 0) will contain all the links that occurred
at least once from time t = 1 until time t = k.

Consider next the sets of realizable graphs H ⊆ G whose
supergraph Γ(H) is disconnected and let Π(G) collect all
such sets:

Π(G) = {H ⊆ G : Γ(H) is disconnected} .

We call en element H of Π(G) a disconnected collection.
To relate Π(G) with the graph process Gt, t = 1, 2, . . ., we

note that, as long as the graph process draws its realizations
from some H ∈ Π(G), the supergraph Γ(t, 0) stays discon-
nected, for t = 1, 2, . . .. This means that there will exist two
sets of vertices (nodes) C1, C2 ⊆ V , that remain isolated
over time, i.e., the nodes from C1 will not “communicate”
with nodes from C2, as long as Γ(t, 0) stays disconnected.

III. RATE FOR CONVERGENCE IN PROBABILITY OF
CONSENSUS

Denote Φ(k, 0) := WkWk−1 · · ·W1, and Φ̃(k, 0) :=
Φ(k, 0) − J , for k ≥ 1. The norm of the matrix Φ̃(k, 0),
therefore, says how far the averaging process is from con-
sensus. Theorem 1 gives the exponential rate of decay for
the convergence in probability of Φ̃(k, 0) to 0.

Theorem 1 Consider an i.i.d. random process
{Wt : t = 1, 2, . . .} that takes realizations in the set
of symmetric stochastic matrices. Let there exist δ > 0,
such that each realization W of Wt satisfies Wii > δ and
Wij > δ, if Wij > 0. Then:

lim
k→∞

1
k

log P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε) = −I, ∀ε ∈ (0, 1] (5)

where
I =

{
+∞ if Π(G) = ∅
| log pmax| otherwise , (6)

and pmax = maxH∈Π(G) pH is the probability of the most
likely disconnected collection.

The proof of Theorem 1 can be found in [11]. However,
to justify the claim of Theorem 1 on an intuitive level, we
give here the key result behind Theorem 1, Lemma 2, which
discovers the relation between the decay of the norm of the



error matrix Φ̃(k, 0) and the Fiedler value of the associated
supergraph Γ(k, 0). Also, based on Lemma 2, we compute
here the rate I for ε = 1. (As we show in [11], the rate is
the same for all ε ∈ (0, 1].) The proof of Lemma 2 can be
found in [11].

Lemma 2 For any realization W1, . . . ,Wk, k ≥ 1:

‖Φ̃(k, 0)‖ ≤
(
1− δ2kλF (Γ(k, 0))

) 1
2 ,

where λF(G) denotes the Fiedler value of graph G, i.e., the
second smallest eigenvalue of the Laplacian matrix of G.

Lemma 2 asserts that, when the supergraph of the topologies
underlying averaging matrices becomes connected, the spec-
tral norm of the “error” matrix Φ̃(k, 0) drops below 1. This
drop can be uniformly bounded (over all possible connected
graphs Γ(k, 0) that are obtainable by the averaging model)
by
(
1− cδ2k

) 1
2 , where c = 2(1 − cos π

N ) is the Fiedler
value of the path on N vertices, i.e., the smallest Fiedler
value of all connected graphs on N vertices [12]. Thus,
if Γ(k, 0) is connected, then

∥∥∥Φ̃(k, 0)
∥∥∥ ≤ (

1− cδ2k
) 1

2 ,
and hence is smaller than 1. Suppose, on the other hand,
that Γ(k, 0) is disconnected. Then, Γ(k, 0) must have at
least two components, say C1 and C2, C1, C2 ⊂ V , such
that there are no edges in Γ(k, 0) connecting C1 and C2.
Further, each graph Gt, that occurred from time t = 1
through time t = k, will also lack edges between the sets of
vertices C1 and C2. Then, each of the matrices Wt can be
written in a block diagonal form (up to multiplication by a
permutation matrix), with one block corresponding to each
of the components C1 and C2. This implies that the product
matrix Φ(k, 0) = Wk · · ·W1 also has a block diagonal form,
and, thus, has two eigenvalues equal to 1. Therefore, the
spectral norm of Φ̃(k, 0) = Φ(k, 0) − J is equal to 1.
Summarizing, the norm of Φ̃(k, 0) is less than 1 if and only
if the graph Γ(k, 0) is connected, implying that∥∥∥Φ̃(k, 0)

∥∥∥ = 1 ⇔ Gt ∈ H, 1 ≤ t ≤ k for someH ∈ Π(G).

In other words, as long as the graph process chooses its
realizations from some disconnected collection, the norm of
Φ̃(k, 0) will remain equal to 1. Using this observation, we
can compute the probability in (5) for ε = 1 by 2

P
(∥∥∥Φ̃(k, 0)

∥∥∥ = 1
)

= P

 ⋃
H∈Π(G)

{Gt ∈ H, 1 ≤ t ≤ k}

 .

(7)
Bounding the probability of the union by the probability of
a fixed event from the union, we get

P
(∥∥∥Φ̃(k, 0)

∥∥∥ = 1
)
≥ P (Gt ∈ H, t = 1, . . . , k) = pkH,

2Because the matrices Wt are stochastic with probability 1, the prob-
ability of the event

{∥∥∥Φ̃(k, 0)
∥∥∥ > 1

}
is equal to zero, implying that

P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ 1
)

= P
(∥∥∥Φ̃(k, 0)

∥∥∥ = 1
)

.

where H ∈ Π(G) is some fixed disconnected collection and
the last equality follows by the independence assumption on
the graph realizations. To obtain the best bound, we choose
the most likely disconnected collection H which gives

P
(∥∥∥Φ̃(k, 0)

∥∥∥ = 1
)
≥ pkmax. (8)

Next, applying the union bound in (7) yields

P
(∥∥∥Φ̃(k, 0)

∥∥∥ = 1
)
≤

∑
H∈Π(G)

P (Gt ∈ H, t = 1, . . . , k)

≤ |Π(G)|pkmax, (9)

where |Π(G)| is the number of disconnected collections on
G. Combining (8) and (9), we get:

pkmax ≤ P
(∥∥∥Φ̃(k, 0)

∥∥∥ = 1
)
≤ |Π(G)|pkmax. (10)

Taking the log, dividing by k and taking the limk→∞ on both
sides of the previous inequality yields by the “sandwiching”
argument that, for ε = 1, the limit in (5) exists and equals
−| log pmax|.

IV. COMPUTATION OF pmax VIA GENERALIZED MIN-CUT

This section introduces a generalization of the minimum
cut (min-cut) problem and shows that computing pmax is
equivalent to solving an instance of the generalized min-
cut. For certain types of averaging, in which the number of
graphs that “cover” an edge is relatively small, we show
in Subsection IV-A that the generalized min-cut can be
well approximated with the standard min-cut, and thus can
be efficiently solved. We illustrate this with the broadcast
gossip example in Subsection V-A, where we find a 2-
approximation for pmax by solving two instances of the
standard min-cut.
Generalization of the min-cut. Let G = (V,E) be a given
undirected graph, with the set of nodes V and the set of
edges E. The generalization of the min-cut problem that is of
interest to us assigns a cost to each set of edges F ⊆ E. This
is different than the standard min-cut, as with the standard
min-cut the costs are assigned to each edge of E and, thus,
where the cost of F is simply the sum of the individual
costs of edges in F . Similarly as with the standard min-cut,
the goal is to find F that disconnects G with minimal cost.
More formally, let the function C : 2E 7→ R+ assign costs to
subsets of E, i.e., the cost of F is C(F ), for F ⊆ E. Then,
the generalized min-cut problem is

minimize C(F )
subject to F ⊆ E : (V,E \ F ) is disconnected . (11)

We denote by gmc(G, C) the optimal value of (11). We
remark that, when the cost C(F ) is decomposable over the
edges of F , i.e., when for all F ⊆ E, C(F ) =

∑
e∈F c(e),

for some function c : E 7→ R+, then the generalized min-cut
simplifies to the standard min-cut. For this case, we denote
the optimal value of (11) by mc(G, c).

Consider now a general averaging model on the set of
nodes V and with the collection of realizable graphs G. Let



G = Γ(G), where G = (V,E) and E collects all the edges
that appear with positive probability. The following lemma
shows that the rate I for the general averaging model can be
computed by solving an instance of the generalized min-cut
problem.

Lemma 3 Let the cost function C : 2E 7→ R+ be defined by
C(F ) = P(∪e∈F {e ∈ E(Gt)}), for F ⊂ E. Then,

I = − log (1− gmc(G, C)) (12)

Proof: For each F ⊆ E such that (V,E \ F ) is
disconnected, define SF by: SF = {H ∈ Π(G) : E(Γ(H)) ⊆
E \ F}. Note that SF ⊆ Π(G), for each F . We show that
sets SF cover Π(G), i.e., that ∪F⊆E:(V,E\F ) is disc.SF =
Π(G). To this end, pick an arbitrary H ∈ Π(G) and let
F ? := E \ E(Γ(H)). Then, because supergraph Γ(H) is
disconnected, F ? must be a set of edges that disconnects G;
if we now take the set SF? that is associated with F ?, we
have that H belongs to SF? proving the claim above. Since
we established that ∪F⊆E:(V,E\F ) is disc.SF = Π(G), in order
to find pmax, we can branch the search over the SF sets:
pmax = max

H∈Π(G)
pH = max

F⊆E:(V,E\F ) is disc.
max
H∈SF

pH (13)

(where, for every empty SF , we define its corresponding
value maxH∈SF pH to be 0). Next, pick a fixed set F for
which SF is nonempty and define HF by:

HF = {H ∈ G : E(H) ⊆ E \ F} ; (14)

that is, HF collects all the realizable graphs whose edges
do not intersect with F . Note that, by construction of HF ,
E(Γ(HF )) ⊆ E \ F , proving that HF ∈ SF . Now, for an
arbitrary fixed collection H ∈ SF , since any graph H that
belongs to H must satisfy the property in (14), we have that
H ⊆ HF and, consequently, pH ≤ pHF . This proves that,
for every fixed non-empty SF the maximum maxH∈SF pH
is attained at HF and equals pHF = P(E(Gt) ⊆ E \ F ).
Combining the last remark with (13), yields:

pmax = max
F⊆E:(V,E\F ) is disc.

P(E(Gt) ⊆ E \ F ). (15)

Finally, noting that P(E(Gt) ⊆ E \ F ) = 1 −
P (∪e∈F {e ∈ E(Gt)}) completes the proof of Lemma 3.
Rate I for algorithms running on a tree. When the graph
that collects all the links that appear with positive probability
is a tree, we obtain a particularly simple solution for I using
formula (12). To this end, let T = (V,E) be the supergraph
of all the realizable graphs and suppose that T is a tree. Then,
removal of any edge from E disconnects T . This implies
that, to find the rate, we can shrink the search space of the
generalized min-cut problem in (12) (see also eq. (11)) to
the set of edges of the tree:

min
F⊆E:(V,E\F ) is disc.

C(F ) = min
e∈E
C(e).

Now, C(e) = P(e ∈ E(Gt)) can be computed by summing
up the probabilities of all graphs that cover e, i.e., C(e) =∑
H∈G:e∈E(H) pH . The minimum of C(e) is then achieved

at the link that has the smallest probability of occurrence
prare = mine∈E

∑
H∈G:e∈E(H) pH . Thus, the rate I is

determined by the probability of the “weakest” link in the
tree, i.e., the link that is most rarely online and

ITree = − log (1− prare) . (16)

A. Approximation of I by min-cut based bounds

We now explain how we can compute the rate I by
approximately solving the instance of the generalized min-
cut in (12) via two instances of the standard min-cut. Our
strategy to do this is to “sandwich” each cost C(F ), F ⊆ E,
by two functions, which are decomposable over the edges of
F . To this end, fix F and observe that

C(F ) = P

(⋃
e∈F
{e ∈ E(Gt)}

)
=

∑
H∈G:e∈E(H), for e∈F

pH .

(17)
By the union bound, C(F ) is upper bounded as follows:

C(F ) ≤
∑
e∈F

P(e ∈ E(Gt)) =
∑
e∈F

∑
H∈G:e∈E(H)

pH . (18)

We next assume that for every set of m edges we can find m
distinct graphs, say H1, . . . ,Hm ∈ G, such that Hi covers ei,
i = 1, . . . ,m3. Then, for each e ∈ F , we can pick a different
graph in the sum in (17), say He, such that e ∈ E(He),
until all the edges in F have its associated graph He. The
sum of the probabilities of the chosen graphs

∑
e∈F pHe is

then smaller than C(F ). Finally, we can bound each pHe by
the probability of the least likely graph that covers e, thus
yielding: ∑

e∈F
min

H∈G:e∈E(H)
pH ≤ C(F ).

Motivated by the previous observations, we introduce c, c :
E 7→ R+ defined by

c(e) =
∑

H∈G:e∈E(H)

pH , c(e) = min
H∈G:e∈E(H)

pH . (19)

Then, for each F ⊆ E, we have:∑
e∈F

c(e) ≤ C(F ) ≤
∑
e∈F

c(e).

Because the inequality above holds for all F ⊆ E, we have
that:

mc(G, c) ≤ gmc(G, C) ≤ mc(G, c). (20)

Therefore, we can efficiently approximate the rate I by
solving two instances of the standard min-cut problem,
with the respective costs c and c. To further simplify the
computation of I , we introduce D– the maximal number
of graphs that “covers” an edge e, where the maximum is
over all edges e ∈ E. We also introduce p and p to denote
the probabilities of the most likely and least likely graph,

3The case when this is not true can be handled by splitting the probability
pH of a graph H into d equal parts, where d is the number of edges covered
by H . The approximation bounds (that are derived further ahead) would then
depend on d; we omit the details here due to lack of space



respectively, i.e., p = maxH∈G pH and p = minH∈G pH .
Then, the function c can be uniformly bounded by Dp and,
similarly, function c can be uniformly bounded by p, which
combined with (20) yields4:

pmc(G, 1) ≤ gmc(G, C) ≤ Dpmc(G, 1); (21)

The expression in (21) gives a Dp/p-approximation for
gmc(G, C), and it requires solving only one instance of the
standard min-cut, with uniform (equal to 1) costs.

V. EXAMPLES: RANDOMIZED GOSSIP AND FADING
MODEL

This section computes the rate I for the commonly used
averaging models: randomized gossip and link failure. Sub-
section V-A studies two types of the randomized gossip
algorithm, namely pairwise gossip and symmetrized broad-
cast gossip and it shows that, for the pairwise gossip on
a generic graph G = (V,E), the corresponding rate can
be computed by solving an instance of the standard min-
cut; for broadcast gossip, we exploit the bounds derived
in Subsection IV-A to arrive at a tight approximation for
its corresponding rate. Subsection V-B studies the network
with fading links for the cases when 1) all the links at a
time experience the same fading (correlated fading), and 2)
the fading is independent across different links (uncorrelated
fading). Similarly as with the pairwise gossip, the rate for the
uncorrelated fading can be computed by solving an instance
of a min-cut problem. With the correlated fading, there exists
a threshold on the fading coefficients, which induces two
regimes of the network operation, such that if at a time t
the fading coefficient is above the threshold, the network
realization at time t is connected. We show that the rate is
determined by the probability of the “critical” link that marks
the transition between these two regimes.

A. Pairwise and broadcast gossip

Min-cut solution for pairwise gossip. Let G = (V,E) be
an arbitrary connected graph on N vertices. With pairwise
gossip on graph G, at each averaging time, only one link
from E can be active. Therefore, the set of realizable graphs
GGossip is the set of all one link graphs on G:

GGossip = {(V, e) : e ∈ E} .

Now, consider the probability P(∪e∈F {e ∈ E(Gt)}), for a
fixed subset of edges F ⊆ E. Because each realization of
Gt can contain only one link, the events under the union are
disjoint. Thus, the probability of the union equals the sum of
the probabilities of individual events, yielding that the cost
C(F ) is decomposable for gossip, i.e.,

C(F ) =
∑
e∈F

p(V,e)

4We are using here the property of the min-cut with uniform positive costs
by which mc(G,α1) = αmc(G, 1), for α ≥ 0 [13], where 1 denotes the
cost function that has value 1 at each edge

Therefore, the rate for gossip is given by

IGossip = − log
(
1−mc(G, cGossip)

)
, (22)

where cGossip(e) = p(V,e). We remark here that, for pairwise
gossip, functions c, c in (19) are identical (each link e has
exactly one graph (V, e) that covers it, hence c(e) = c(e) =
p(V,e)), which proves that bounds in (20) are touched for this
problem instance. For the case when all links have the same
activation probability equal to 1/|E|, the edge costs cGossip(e)
are uniform and equal to 1/|E|, for all e ∈ E and (22) yields
the following simple formula for the rate for uniform gossip:

IGossip = − log (1− 1/|E|mc(G, 1)) . (23)

2-approximation for broadcast gossip. With bidirectional
broadcast gossip on an arbitrary connected graph G =
(V,E), at each time a node v ∈ V is chosen at random
and the averaging is performed across the neighborhood of
v. Thus, at each time t, the set of active edges is the set
of all edges adjacent to the vertex that is chosen at time t;
hence, the set of realizable graphs GB-Gossip is

GB-Gossip = {(V, {{u, v} : {u, v} ∈ E} : v ∈ V } .

We can see that each edge e = {u, v} can become active
in two ways, when either node u or node v is active. In
other words, each edge is covered by exactly two graphs.
This gives D = 2 and using (20) we get the following
approximation:

pmc(G, 1) ≤ gmc(G, C) ≤ 2pmc(G, 1),

where p and p are the probabilities of the least, resp., most,
active node. For the case when all the nodes have the same
activation probability equal to 1/N , using (21) we get a 2-
approximation:

1
N

mc(G, 1) ≤ mc(G, C) ≤ 2
N

mc(G, 1).

Thus, the rate I for the broadcast gossip with uniform node
activation probability satisfies:

IB-Gossip ∈ [− log(1− 1
N

mc(G, 1)),− log(1− 2
N

mc(G, 1))].
(24)

We now compare the rates for the uniform pairwise and
uniform broadcast gossip when both algorithms are running
on the same (connected) graph G = (V,E). Consider first
the case when G is a tree. Then, E = N − 1 and, since all
the links have the same occurrence probability 1/(N − 1),
the formula for gossip gives IGossip = − log(1−1/(N −1)).
To obtain the exact rate for the broadcast gossip, we recall
formula (16). As each link in the tree is covered by exactly
two graphs, and the probability of a graph is 1/N , we
have that prare = 2/N . Therefore, the rate for broadcast
gossip on a tree is IGossip = − log(1 − 2/N), which is
higher than IGossip = − log(1 − 1/(N − 1)). Consider
now the case when G is not a tree. Then, the number
of edges |E| in G is at least N and we have IGossip =
− log(1 − 1/|E|mc(G, 1)) ≤ − log(1 − 1/Nmc(G, 1)). On



the other hand, by (24), IB-Gossip ≥ − log(1−1/Nmc(G, 1)).
Combining the last two observations yields that the rate of
broadcast gossip is always higher than the rate of pairwise
gossip running on the same graph. This is in accordance with
the intuition, as with broadcast gossip more links are active
at a time, and, thus, we would expect that it performs the
averaging faster.

B. Link failure: fading channels

Consider a network of N sensors described by graph G =
(V,E), where the set of edges E collects all the links {i, j}
that appear with positive probability, i, j ∈ V . To model the
link failures, we adopt a symmetric fading channel model,
a model similar to the one proposed in [14] (reference [14]
assumes asymmetric channels). At time k, sensor j receives
from sensor i yij,k = gij,k

√
Sij/dαijxi,k + nij,k, where Sij

is the transmission power that sensor i uses for transmission
to sensor j, gij,k is the channel fading coefficient, nij,k is
the zero mean additive Gaussian noise with variance σ2

n, dij
is the inter-sensor distance, and α is the path loss coefficient.
We assume that gij,k, k ≥ 1, are i.i.d. in time and that
gij,t and glm,s are mutually independent for all t 6= s;
also, the channels (i, j) and (j, i) at time k experience the
same fade, i.e., gij,k = gji,k. We adopt the following link
failure model. Sensor j successfully decodes the message
from sensor i (link (i, j) is online) if the signal to noise
ratio exceeds a threshold, i.e., if: SNR = Sijg

2
ij,k

σ2
nd
α
ij

> τ , or,

equivalently, if g2
ij,k >

τσ2
nd
α
ij

Sij
:= γij . Since link occurrences

are “controlled” by the realizations of the fading coefficients,
the set of realizable graphs in the link failure model depends
on the joint distribution of {gij,k}{i,j}∈E . In the sequel, we
study the cases when the fading coefficients at some time k
are either fully correlated or uncorrelated, and we compute
the rate I for each of these cases.
Uncorrelated fading. With uncorrelated fading, gij,k are
independent across different links for all k. Therefore, in this
model, the indicators of link occurrences are independent
Bernoulli random variables, such that the indicator of link
{i, j} being online is 1 if the fading coefficient at link
{i, j} exceeds the communication threshold of {i, j}, i.e., if
g2
ij,k > γij , and is zero otherwise. Due to the independence,

each subgraph H = (V,E′) of G, E′ ⊆ E, is a realizable
graph in this model, hence,

GFail-uncorr = {H = (V,E′) : E′ ⊆ E} .

Denote with Pij = P(g2
ij,k > γij) the probability that

link {i, j} is online. We compute the rate IFail-uncorr for the
uncorrelated link failure using the result of Lemma 3. To this
end, let F be a fixed subset of E and consider the probability
that defines C(F ). Then,

C(F ) = P
(
∪{i,j}∈F {{i, j} ∈ E(Gt)}

)
= 1− P

(
∩{i,j}∈F {{i, j} /∈ E(Gt)}

)
= 1−

∏
{i,j}∈F

(1− Pij),

where the last equality follows by the independence of the
link failures. To compute the rate, we follow formula (12):

1− min
F⊆E:(V,E\F ) is disc.

C(F ) (25)

= max
F⊆E:(V,E\F ) is disc.

∏
{i,j}∈F

(1− Pij)

= exp(− min
F⊆E:(V,E\F ) is disc.

∑
{i,j}∈F

− log(1− Pij)). (26)

Now, the optimization problem in the exponent is an in-
stance of the standard min-cut problem with edge costs
cFail-uncorr({i, j}) = − log(1−Pij). By formula (12), the rate
is obtained from the expression in line (25) by taking the
− log, which finally yields:

IFail-uncorr = mc(G, cFail-uncorr). (27)

Correlated fading. With the correlated fading, at any time k
each link experiences the same fading, i.e., gij,k = gk for all
{i, j} ∈ E and so the realization of the common fading gk
sets all the link occurrences at time k. For instance, if g2

k =
ḡ2, then all the links {i, j} with γij < ḡ2 are online, and the
rest of the links are offline. Therefore, the graph realization
corresponding to the fading realization ḡ2 is (V,E′), where
E′ =

{
{i, j} ∈ E : γij < ḡ2

}
. We can see that the higher the

ḡ2 is, the more links are online. Also, if we slide ḡ2 from
zero to +∞, the corresponding graph realization gradually
increases in size by adding one more link whenever ḡ2

crosses some threshold γij – starting from the empty graph
(ḡ2 = 0), until the full graph (V,E) is achieved, which
occurs when ḡ2 crosses the highest threshold. Therefore,
if we order the links in the increasing order with respect
to their thresholds γij , such that e1 ∈ E has the lowest
threshold, γe1 = min{i,j}∈E γij , and e|E| ∈ E has the
highest threshold, γe|E| = max{i,j}∈E γij , then the set of
all realizable graphs with the correlated fading model is

GFail-corr = {Hl = (V, {e1, e2, . . . , el}) : 0 ≤ l ≤ |E|} ,

where the graph realization corresponding to l = 0 is the
empty graph (V, ∅). For fixed l, 0 ≤ l ≤ |E|, let pl = P(g2

k >
γl) denote the probability that link el is online. Then, the
probability pHl of graph realization Hl is pHl = pl−pl+1 =
P(γl < g2

k ≤ γl+1). Let lc be the index corresponding to
the link that marks the connectedness transition of graphs
Hl, such that Hl is disconnected for all l < lc, and Hl

is disconnected, for all l ≥ lc. Then, any disconnected
collection on GFail-corr is of the form {H1, H2, . . . ,Hl},
where l < lc. The most likely one is {H1, H2, . . . ,Hlc−1},
and its probability is pH1 + pH2 + . . .+ pHlc−1 = 1− pcrit,
where we use pcrit to denote the probability of the “critical”
link elc (i.e., pcrit = plc ). Therefore, pmax = 1− pcrit and the
rate for the correlated fading model is:

IFail-corr = − log
(
1− pcrit)

)
.



VI. APPLICATION: OPTIMAL POWER ALLOCATION FOR
DISTRIBUTED DETECTION

We demonstrate the usefulness of the rate I by opti-
mally allocating the sensors’ transmission power for con-
sensus+innovations distributed detection.

We briefly explain the distributed detection problem. The
goal is that each of N sensors make the decision on the
valid hypothesis, H1 versus H0, by acquiring measurements
Yi,k over time k, and by cooperating with its neighbors. The
measurement Yi,k has the density f1(·) under H1, and f0(·)
under H0.

To resolve the detection problem above, each sensor i
performs the local decision at time k by comparing its local
decision variable xi(k) against the zero threshold. To update
xi(k), sensor i exchanges its current decision variable with
its neighbors, and assimilates the new measurement through
the log-likelihood ratio Li,k = log f1(Yi,k)

f0(Yi,k) :

xi,k =
∑
j∈Ni,k

Wij,k

(
k − 1
k

xj,k−1 +
1
k
Lj,k

)
, (28)

where xi,0 = 0, Ni,k is the (random) neighborhood of sensor
i at time k (including i), and Wij,k is the (random) averaging
weight, for k = 1, 2, ...

To re-write (28) in matrix form, we let xk =
(x1,k, x2,k, ..., xN,k)> and Lk = (L1,k, ..., LN,k)>, and
collect Wij,k’s in the N×N matrix Wk, such that Wij,k = 0
if i and j do not communicate at time k. By unwinding the
recursion (28) and using the vector quantities, we obtain:

xk =
1
k

k∑
t=1

Φ(k, t− 1)Lt, k = 1, 2, ... (29)

Clearly, the dynamics of xk, and hence the distributed detec-
tion performance, depend heavily on the convergence speed
of products Φ(k, t− 1), and thus on the rate of consensus I .
In fact, reference [9] shows that, when I is above a threshold
I? = I?(f1, f0, N), then distributed detector at any sensor i
is asymptotically optimal, i.e., it achieves the highest possible
exponential rate of decay of the error probability. Below the
threshold, distributed detector at any sensor i achieves only
a fraction of this best possible rate.

The threshold level I = I? has a significance in a practical
wireless sensor network scenario, where the inter-sensor
communication channels experience fading. The probability
of successful communication, and thus the rate I , increases
with the increased transmission power. However, at the point
I = I?, distributed detector achieves the optimal detection
rate; further increase of the transmission power (and the
increase of rate I) does not pay off in terms of the detection
performance. Thus, the transmission power that sets I to I?

leads to the optimal power allocation.
We address the optimal power allocation problem for the

symmetric Rayleigh fading channels. Denote by Sij the
transmission power that sensor i uses to transmit xi(k) to
sensor j. Then, the probability of successful decoding is

modeled as (see [14] for details):

Pij = e
−
Kij
Sij , (30)

where the parameter Kij > 0 depends on the distance
between i and j (Kij = τσ2

nd
α
ij , see Subsection V-B for

details).

Mathematically, the symmetric Rayleigh fading is the link
failure model where links fail independently, and the link
occurrence probability is given by (30). Hence, the rate I is
calculated as in (27), where the weight cij associated with
link (i, j) is:

cij(Sij) = − log
(

1− e−Kij/Sij
)
.

Denote by {Sij} the set of all Sij’s, {i, j} ∈ E; then, the
rate I ({Sij}) = mc(G, c), with cij = − log(1− e−Kij/Sij ),
for {i, j} ∈ E, and cij = 0 else. We can now formulate
the optimal power allocation problem as minimizing the total
power consumption per k, 2

∑
{i,j}∈E Sij , such that the rate

I exceeds the optimality threshold I?.

minimize
∑
{i,j}∈E Sij

subject to I ({Sij}) ≥ I?
. (31)

This study of optimal power allocation across sensors such
that the rate I is at the optimal detection operating point
I? is also considered in [11], where we show that (31) is
a convex problem. Here we address the case of a larger
network and where the distributed detection algorithm is
defined by constant averaging weights. We solve an instance
of (31) on a random geometric graph G = (V,E) with
N = 20 sensors and |E| = 86 edges (we obtain G by
placing 20 sensors uniformly over a square and connecting
those whose distance is less than a radius). We remark that
each link {i, j} ∈ E is a failing links; thus, the number
of variables Sij in the optimization problem that we are
solving is 86. The coefficients Kij are dependent on the
inter-sensor distances, and we choose Kij = 6.25d2

ij , where
dij is the distance between nodes i and j in the obtained
geometric graph. We solve the corresponding instance of (31)
by applying the subgradient algorithm on the unconstrained
exact penalty reformulation of (31) (see, e.g., [15]). Denote
with {S?ij} the obtained optimal solution.

Simulations. This section compares by simulations perfor-
mance of two detection algorithms – one running on a
network with uniform transmission powers and the other
running on a network with optimally allocated sensors’ trans-
mission powers. The common ground for the comparison is
the total power “invested” at each iteration of the algorithm
which is equal to STOT := 2

∑
{i,j}∈E S

?
ij . (Note that

factor 2 accounts for transmissions of both nodes i and j.)
Then, with uniform powers, the transmission power at each
sensor is S0, where STOT = 2

∑
{i,j}∈E S0. The averaging

process is for both algorithms defined by the constant weights
δ = 1/(dmax + 1), where dmax is the maximum degree
of G; that is, if at a time k link {i, j} ∈ E is online,
then Wij,k = δ, and Wij,k = 0 otherwise; also, Wii,k =



1 −
∑
j∈Oi,kWij,k. We draw sensors’ measurements from

the Gaussian distribution with parameters m = 0.15, and
σ2 = 1; the value of I? is, for the Gaussian model equal to
(N−1)N m2

8σ2 (see [8]), and equals 0.0027 for this simulation
setup. As the performance metric of the detection algorithms,
we adopt detection error probability of the worst sensor
at a time k, Pmax(k) := maxi=1,...,N P

e
i (k); Pmax(k)

is numerically estimated by performing 5000 Monte Carlo
runs. Figure 1 plots Pmax(k) versus time k for the optimal
power allocation (solid red line), and the uniform power
allocation (dotted blue line). The figure shows clearly that the
optimal power allocation scheme outperforms the uniform
power allocation. For example, to achieve the target error
probability 0.01, the uniform power allocation needs 400
iterations; this is 2.5 times more than what the optimal
power allocation needs to achieve the target accuracy (150).
Therefore, the total power that is needed to invest with the
uniform allocation to achieve the desired accuracy of 0.01 is
400STOT, implying that the optimal allocation saves about
60% of this power.

0 100 200 300 400 500

10-2

10-1

100

time step k

m
x.

 e
rro

r p
rb

.a
cr

os
s 

no
de

s

 

 

uniform

optimal

Fig. 1. Detection error probability of the worst sensor versus time k for
the optimal and uniform power allocations

VII. CONCLUSION

We studied convergence in probability of products
Wk · · ·W1 of i.i.d. random stochastic, symmetric matrices.
Existing literature already established that the convergence
in probability of such products is exponentially fast, but
did not provide the exact asymptotic convergence rate I . In
this paper, we explicitly characterize the rate I for generic
distributions of Wk, as long as the positive entries of Wk are
bounded away from zero. We demonstrated the connection
between the rate I and a generalized min-cut problem.
The relation with the min-cut enabled us to find tight
approximations or even the exact value I , for: 1) gossip-like
models; and 2) models with (possibly spatially correlated)
link failures. Finally, we demonstrated the usefulness of rate
I by optimally allocating sensors’ transmission power in
consensus+innovations distributed detection.
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[2] B. Touri and A. Nedić, “Product of random stochastic matri-
ces,” Submitted to the Annals of Probability, 2011, available at:
http://arxiv.org/pdf/1110.1751v1.pdf.

[3] ——, “On backward product of stochastic matrices,” 2011, available
at: http://arxiv.org/abs/1102.0244.

[4] A. Tahbaz-Salehi and A. Jadbabaie, “Consensus over ergodic sta-
tionary graph processes,” IEEE Transactions on Automatic Control,
vol. 55, no. 1, pp. 225–230, January 2010.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508–2530, June 2006.

[6] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and
A. Scaglione, “Gossip algorithms for distributed signal processing,”
Proceedings of the IEEE, vol. 98, no. 11, pp. 1847–1864, November
2010, digital Object Identifier: 10.1109/JPROC.2010.2052531.

[7] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed parameter
estimation in sensor networks: Nonlinear observation models
and imperfect communication,” Accepted for publication in IEEE
Transactions on Information Theory, 51 pages, August 2008. [Online].
Available: arXiv:0809.0009v1 [cs.MA]
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