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Abstract— In classical, centralized optimization, the Nesterov

gradient algorithm reduces the number of iterations to produce
an ✏-accurate solution (in terms of the cost function) with
respect to ordinary gradient from O(1/✏) to O(1/

p
✏). This

improvement is achieved on a class of convex functions with
Lipschitz continuous first derivative, and it comes at a very
small additional computational cost per iteration. In this
paper, we consider distributed optimization, where nodes in the
network cooperatively minimize the sum of their private costs
subject to a global constraint. To solve this problem, recent
literature proposes distributed (sub)gradient algorithms, that
are attractive due to computationally inexpensive iterations, but
that converge slowly–the ✏ error is achieved in O(1/✏2) itera-
tions. Here, building from the Nesterov gradient algorithm, we
present a distributed, constant step size, Nesterov-like gradient
algorithm that converges much faster than existing distributed
(sub)gradient methods, with zero additional communications
and very small additional computations per iteration k. We
show that our algorithm converges to a solution neighborhood,
such that, for a convex compact constraint set and optimized
stepsize, the convergence time is O(1/✏). We achieve this on
a class of convex, coercive, continuously differentiable private
costs with Lipschitz first derivative. We derive our algorithm
through a useful penalty, network’s Laplacian matrix-based
reformulation of the original problem (referred to as the clone
problem) – the proposed method is precisely the Nesterov-
gradient applied on the clone problem. Finally, we illustrate
the performance of our algorithm on distributed learning of a
classifier via logistic loss.

I. INTRODUCTION
The gradient algorithm proposed by Nesterov [1] signifi-

cantly reduces the convergence time with respect to the ordi-
nary gradient method from O(1/✏) to O(1/

p
✏), on a class of

convex functions with Lipschitz continuous first derivative.
In this paper, building from the ideas of the (centralized)
Nesterov gradient, we propose distributed Nesterov-like gra-
dient algorithms for cooperative optimization in networks.

Specifically, we consider the problem where N nodes
in the network cooperatively minimize the sum of their
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private convex costs
PN

i=1

fi(y) subject to a globally known
constraint y 2 Y , where Y ⇢ Rd is a closed convex set.
(Here by private cost fi(·) we mean that the function fi(·)
is known only by node i.) Existing distributed (sub)gradient
algorithms, e.g., the algorithm proposed in [2] and extended
and analyzed in [3], [2], [4], [5], [6], [7], and the one pro-
posed in [8] and extended and analyzed in [9], [10], converge
slowly. For example, assuming possibly non-differentiable,
convex fi’s, with bounded gradients over the constraint set,
algorithm [2] with constant step size ↵, after k iterations, has
the error in the cost O(↵+1/(↵k)), which, for the optimized
↵, gives O(1/✏2) convergence time. Reference [8] shows
(under the same class of the fi’s) that the algorithm therein
achieves ✏-accuracy in O(1/✏2); reference [8] provides a
tight estimate of the hidden constant as a number of nodes
N and the network topology.

In this paper, we propose a distributed Nesterov-like
gradient algorithm, that converges much faster than existing
distributed (sub)gradient algorithms: with the step size ↵
and after k iterations, the error in the cost function is
O(↵+1/(↵k2)), which gives O(1/✏) convergence time. The
improvement comes with no additional communication cost
per iteration k, and with a very small additional computa-
tional cost per k, when compared with existing methods [2],
[8]. We achieve this on a class of convex, coercive private
cost functions fi(·) that are continuously differentiable, have
Lipschitz continuous first derivative, and are Lipschitz on
the constraint set Y . (The Lipschitz condition holds, e.g., for
any continuously differentiable fi(·) when Y is compact.)
A major contribution of this paper is to derive a useful
penalty, graph Laplacian-matrix based reformulation of the
original problem – referred to as the clone problem – and
relate the clone and the original problems. The reformulation
allows for a novel interpretation of the algorithm in [2] as
being the (ordinary) gradient method on the clone problem.
Then, our Nesterov-based method arises naturally as a way
to speed up the (ordinary) gradient method on the clone
problem. We demonstrate the effectiveness of our algorithm
for distributed learning of the best linear classifier via logistic
loss. The simulation example demonstrates that our algorithm
converges significantly faster (in terms of k) than other
distributed (sub)gradient algorithms.

We propose both diminishing and constant step size
variants of the algorithm; the diminishing step size variant
converges to the exact optimal value f? at rate O(log k/k)
(see [11]). In this paper, we focus on the constant step size
variant.

We make further comments on the literature. For the
problem of minimizing the sum of private costs

PN
i=1

fi(y)



subject to y 2 Y , existing work proposes: distributed
(sub)gradient algorithms, e.g., [2], [8], that have simple,
computationally cheap iterations k, and do not require sofisti-
cated programming, but converge slowly; and augmented La-
grangian (or ordinary Lagrangian) dual methods, e.g., [12],
[13], that have, in general, computationally expensive itera-
tions k, as they require solving certain local optimization
problems at each node i, at each k, but can reduce the
number of iterations k when compared to current distributed
(sub)gradient methods. This paper focuses on distributed
(sub)gradient algorithms and proposes an algorithm that con-
verges faster than [2], [8] while maintaining approximately
the same iterations’ computational cost. Finally, we note that
generally, for distributed optimization, algorithms different
than the (sub)gradients and augmented Lagrangians have
been developed: reference [14] considers the network flow
problem – a different optimization problem than the one
we consider here – and proposes a family of distributed
algorithms that use Newton approximate directions.

The paper is organized as follows. The next paragraph in-
troduces notation. Section II introduces the optimization and
network models that we assume and presents our distributed
algorithm. Section III analyzes the convergence speed of
our algorithms, and Section IV illustrates their performance
on the classification problem with logistic loss. Finally,
Section V concludes the paper.

Throughout, we denote by: Rd the d-dimensional real
coordinate space, d � 1; Aij the entry in the i-th row
and j-th column of a matrix A; ai the i-th entry of a
vector a; (·)> the transpose; k · k = k · k

2

the Euclidean
(respectively, spectral) norm of its vector (respectively, ma-
trix) argument (We note that k · k also denotes the modulus
of a scalar throughout); �i(·) the i-th smallest eigenvalue;
| · | the cardinality of a set; rJ (y) the gradient evaluated
at y of a function J : Rd ! R, d � 1; N (µ,�2

) the
normal distribution with mean µ and variance �2. Finally,
the notation r(k) = O(q(k)) means existence of a K > 0

such that r(k)  µ q(k), for some µ > 0, for all k � K.

II. DISTRIBUTED NESTEROV-LIKE GRADIENT
ALGORITHM

A. Optimization and network models

Optimization model. We consider a distributed optimization
problem where N nodes cooperatively solve:

minimize f(y) :=
PN

i=1

fi(y)
subject to y 2 Y,

(1)

where Y ⇢ Rd is a global constraint set, known by all nodes.
The function fi : Rd ! R is private, i.e., known only by
node i. We impose the following structure on fi’s and Y:

Assumption 1 (a) For all i, fi is convex, coercive, and
Lipschitz with respect to the Euclidean k · k norm on
the set Y , i.e., there exists G0 2 (0,1), such that:

kfi(y)� fi(z)k  G0 ky � zk , 8y, z 2 Y.

(b) fi is continuously differentiable, with Lipschitz contin-
uous first derivative of constant Lfi 2 (0,+1), i.e.,

krfi(y)�rfi(z)k  Lfiky � zk, 8y, z 2 Rd.

(c) The set Y is closed, convex, and non-empty.

We note that the condition 1 (a) on Lipschitz continuity
of fi(·) on Y holds for any function fi(·) that satisfies
the other Assumptions in 1 when Y is a compact set. By
Assumption 1, problem (1) is solvable, the optimal value
f? > �1, and the solution set is non-empty and compact,
e.g., [15]. For simplicity of presentation, we let d = 1 and
y 2 R throughout the paper, but our results hold for generic
d. (Throughout, we denote by k·k both the Euclidean l

2

-norm
of a vector and the modulus of a scalar.)
Communication model. We associate with problem (1) a
network V of N nodes, described by the graph G = (V, E),
where E ⇢ V ⇥ V is the set of edges.

Assumption 2 The graph G is connected, undirected, simple
(no self/multiple links,) and it does not change in time.

Denote by A the adjacency matrix, defined by Aij = 1,
if {i, j} 2 E and zero otherwise (Aii = 0, for all i); D
the diagonal matrix with `i := Dii =

P
j 6=i Aij equal to

the degree of node i; and the graph Laplacian matrix L =

D � A.1 Because the graph is connected, we have that the
algebraic connectivity �

2

(L) > 0.

B. The algorithm

We propose the following distributed constant step size
Nesterov-like gradient algorithm to solve (1). Each node i
updates over iterations k: 1) its estimate xi(k) of a solution;
and 2) an auxiliary variable yi(k). With the initialization
xi(0) = yi(0) 2 Y , the update rule at node i is:

xi(k) = PY{(1� `i w0

) yi(k � 1) + w
0

X

j2Oi

yj(k � 1)(2)

� ↵rfi(yi(k � 1))}

yi(k) = xi(k) +
k � 1

k + 2

(xi(k)� xi(k � 1)) , k = 1, 2, ...,

where PY is the Euclidean projection onto the set Y:

PY {zi} = argminyi2Ykyi � zik2.

In (2), ↵ > 0 is the step size, w
0

= ↵⇢ > 0 is the averaging
weight, ⇢ > 0 is a parameter, and Oi is the neighborhood set
of node i (excluding i), and `i = |Oi| is its cardinality. The
algorithm operation is summarized as follows. Each node i,
at each iteration k: 1) broadcasts its variable yi(k � 1) to
all its neighbors j 2 Oi; 2) receives yj(k � 1) from all its
neighbors j 2 Oi; 3) updates xi(k) and yi(k) via (2). When
updating xi(k), node i makes a weighted combination of its
own and the neighbors’ variables yj(k � 1), whereby the
neighbors’ variables are weighted by a positive weight w

0

.

1We can allow for a weighted, symmetric, adjacency matrix, so that Aij
for {i, j} 2 E is a generic positive number, and the Aij ’s can be mutually
different over different edges.



(We detail the choice of w
0

> 0 and ↵ > 0 later.) Note that
the variables xi(k) are feasible, xi(k) 2 Y , for all k, while
the variables yi(k) may not be feasible. When compared to
the existing projected (sub)gradient methods in [5] and [8],
algorithm (2) introduces very small additional computational
cost, namely the cost of updating the variable yi(k). In terms
of the communication cost per k, with all three algorithms,
each node broadcasts a single variable to all its neighbors.
(With all three algorithms, the transmitted variable is of the
same size.)

We now write algorithm (2) in matrix form. Collect the
averaging weights in the N⇥N matrix W and introduce the
vector function F (x) as:

W = I � w
0

L (3)
F (x) = F (x

1

, x
2

, ..., xN ) = (f
1

(x
1

), f
2

(x
2

), ..., fN (xN ))

>.

Then, with xi(0) = yi(0) 2 Y , our distributed Nesterov-like
gradient algorithm (2) in matrix form is:

x(k) = PY {Wy(k � 1)� ↵rF (y(k � 1))} (4)

y(k) = x(k) +
k � 1

k + 2

(x(k)� x(k � 1)) , k = 1, 2, ...,

where

PY(y) = (PY(y1), PY(y2), ..., PY(yN ))

>

is the projection of y = (y
1

, ..., yN )

> on YN ⇢ RN – the
N -fold Cartesian product of Y’s.

C. Derivation of the algorithm

We now explain how we derive the structure of our
algorithm. Our derivation is based on the following clone
optimization problem:

minimize  ⇢(x) :=
PN

i=1

fi(xi) +
⇢
2

x>Lx
subject to x 2 YN ,

. (5)

where YN denotes the Cartesian product YN
= Y⇥...⇥Y (Y

repeated N times.) By Assumption 1, problem (5) is solvable
and has a compact solution set. Denote by  ?

⇢ the optimal
value of (5). We have that  ?

⇢  f?. Namely, for y?, a
solution to (1), construct a vector x•

= (y?, y?, ..., y?) 2
RN ; x• is feasible for (5), and f?

=  ⇢(x
•
) �  ?

⇢.
Problem (5) is related to the original problem (1), as we

explain now. Problem (5) assigns a local copy xi of the global
variable y to each node; the quadratic term

⇢

2

x>Lx =

⇢

2

X

{i,j}2E

kxi � xjk2

enforces that, for a large ⇢, nodes’ local copies at a solution
x?

(⇢) are close to each other, i.e., x?
i (⇢) ⇡ x?

j (⇢). Impor-
tantly, at any node i, x?

i (⇢) is an approximate solution to
the original problem (1). Now, consider an algorithm that
updates x(k) as follows. At iteration k, perform the projected
gradient step with respect to  ⇢(·):

x(k) = PY {x(k � 1)� ↵r ⇢(x(k � 1))} . (6)

Recall W in (3). By rearranging the terms, we can see that (6)

is rewritten as:

x(k) = PY {Wx(k � 1)� ↵rF (x(k � 1))} , (7)

and hence is distributed: to update xi(k), node i needs only
its own estimate xi(k� 1), the estimates xj(k� 1) from its
neighbors, and its local gradient rfi(xi(k�1)). To increase
the convergence speed of (7), we apply the fast Nesterov
gradient step to  ⇢(·) instead of the ordinary gradient step:

x(k) = PY {y(k � 1)� ↵r ⇢(y(k � 1))} (8)

y(k) = x(k) +
k � 1

k + 2

(x(k)� x(k � 1)) .

Equation (8), after rearranging the terms, and recalling W
in (3), is exactly (4). As desired, the resulting method is
completely distributed.

From the above derivations, we can see that our algo-
rithm (4) is exactly the Nesterov gradient applied to the clone
problem (5), and hence  ⇢(x(k)) converges to the optimal
value  ?

⇢. Now, for a large ⇢ and for all nodes i, f(xi(k))
converges to a neighborhood of f?, as desired, and as will
be shown in the next section.

The intermediate algorithm in our derivation in (7) is
the distributed (sub)gradient proposed in [2]. Hence, the
algorithm in [2] can be interpreted as the ordinary gradient
applied to the clone problem (5). It is natural to expect that
our algorithm (4) converges faster than the one proposed
in [2], because the Nesterov gradient converges faster than
the ordinary gradient.

Algorithm (4) converges to a neighborhood of f?. We can
force the algorithm to converge exactly to f? by letting the
function  ⇢(·) and the step size ↵ in (8) to be time varying.
This is considered in [11].

We finish the Section by detailing the choice of parameters
↵ and ⇢. As required by the Nesterov gradient algorithm,
the step size ↵  1/L

 

, where L
 

is a Lipschitz constant
of the gradient of  ⇢(·), which we can take as L

 

=

maxi=1,...,N Lfi + ⇢�N (L). Thus:

↵  1

maxi=1,...,N Lfi + ⇢�N (L) . (9)

Note that (9) imposes a condition on the averaging weight
w

0

 ⇢
maxi=1,...,N Lfi

+⇢�N (L)

< 1

�N (L)

.

III. CONVERGENCE ANALYSIS

We now study the convergence of the proposed distributed
algorithm under constant step size. We have the following
Theorem. (Note that we express the results below in terms of
the unnormailized optimality gap f(xi)�f? like in, e.g., [2],
while it is also possible (see, e.g., [8]) to expresses the results
in terms of the normalized optimality gaps 1

N (f(xi)� f?
).)

Theorem 1 Consider algorithm (2) under Assumptions 1
and 2, with the step-size

↵ =

1

maxi=1,...,N Lfi + ⇢�N (L) .

Then:



(a) for all i = 1, ..., N , for all k = 1, 2, ... :

f(xi(k))� f?  N2

(N � 1)(G0
)

2

2 ⇢
(10)

+

[2 (maxi Lfi + ⇢�N (L))] kx(0)� x?
(⇢)k2

k2
.

(b) Let Y be a compact set with kyk  B0, for all y 2 Y ,
and fix the desired accuracy ✏ > 0. Then, for:

⇢ = ⇢(✏) =
N2

(G0
)

2

(N � 1)

✏
,

we have: f(xi(k))� f?  ✏, 8k � k
0

(✏), 8i, where:

k
0

(✏) =
4N2

p
�N (L)G0B0

✏
+

4

p
NB0p

maxi Lfip
✏

,

i.e., the ✏-accuracy is achieved after at most k
0

(✏)
iterations.

Theorem 1 says that, with our proposed algorithm, for the
compact set Y and appropriately set ⇢, the convergence
time for ✏-accuracy in the cost function is O(1/✏). Hence,
we reduce the convergence time with respect to [5], [8]
by paying zero price in terms of the communication cost
per k. Our simulation example shown here, as well as
all other examples that we have tested, confirm that our
algorithm significantly reduces convergence time. Of course,
the improvement comes at the cost of restricting the admis-
sible cost functions with respect to [5], [8]. Our admissible
cost functions are continuously differentiable with Lipschitz
continuous first derivative.

Proof: [Proof of Theorem 1] We first prove claim (a).
The proof consists of two parts. First, we use the convergence
results for the Nesterov method [16], [17] to estimate the
error in terms of the clone function  ⇢(x(k))� ?

⇢. Second,
we relate the clone error  ⇢(x(k)) �  ?

⇢ and the true error
at any node j: f(xj(k))� f?.

Clone function error. By the convergence results for the
Nesterov gradient method [16], and noting that the Lipschitz
constant of  ⇢ equals maxi=1,...,N Lfi + ⇢�N (L), we have
that, for all k:

 ⇢(x(k))� ?
⇢ (11)

 [2 (maxi=1,...,N Lfi + ⇢�N (L))] kx(0)� x?
(⇢)k2

k2

=:

C
 

k2
.

Relating the clone and the true errors. We now fix a node
j and start with the clone error:

 ⇢(x(k))� ?
⇢ (12)

=

NX

i=1

fi(xi(k)) +
1

2

⇢x(k)>Lx(k)� ?
⇢. (13)

Consider equation (12), and fix a node j at which we want
to estimate the true error. By Lipschitz continuity of fi(·) on
Y and by the fact that xi(k), xj(k) 2 Y , we have that:

kfi(xi(k))� fi(xj(k))k  G0kxi(k)� xj(k)k. (14)

Now, adding and subtracting f? from (12) while using the
fact that  ?

⇢  f?, and using (14) gives:

 ⇢(x(k))� ?
⇢ �

NX

i=1

fi(xj(k))� f? (15)

�
NX

i=1

G0kxi(k)� xj(k)k+
1

2

⇢x(k)>Lx(k)

� f(xj(k))� f? �N G0
✓
max

i: i 6=j
kxi(k)� xj(k)k

◆

+

1

2

⇢x(k)>Lx(k).

We now lower bound the quadratic form

x>Lx =

X

{i,j}2E

kxi � xjk2,

for any x 2 RN . Let maxi: i 6=j kxi � xjk =: kxs � xjk.
Because the graph is connected, there is a path of length D
from node s to node j, say (s = i

1

) ! i
2

! ... ! (iD+1

=

j), where 1  D  N � 1. Then:

x>Lx � kxs � xi2k2 + ...+ kxiD � xjk2

= D

✓
1

D
kxs � xi2k2 + ...+

1

D
kxiD � xjk2

◆

� D

����
1

D
(xs � xi2) + ...+

1

D
(xiD � xj)

����
2

(16)

=

1

D
kxs � xjk2 � 1

(N � 1)

kxs � xjk2,

where we use the fact that, for any path, D  (N � 1),
and inequality (16) uses convexity of the quadratic function
z 7! kzk2. Using the latter bound for x = x(k), we have:

 ⇢(x(k))� ?
⇢ � f(xj(k))� f?

� NG0
✓
max

i:i 6=j
kxi(k)� xj(k)k

◆

+

1

2

⇢

(N � 1)

✓
max

i:i 6=j
kxi(k)� xj(k)k

◆
2

(17)

� f(xj(k))� f? � N2

(N � 1)(G0
)

2

2 ⇢
, (18)

where (18) follows by maximizing NG0� � 1

2

⇢
(N�1)

�2 over
� 2 R. Equation (18) allows us to relate the clone and the
true errors:

f(xj(k))�f?   k(x(k))� ?
⇢+

N2

(N � 1)(G0
)

2

2 ⇢
. (19)

Equation (19), combined with (11), completes the proof of
part (a).

We now prove part (b). Let the set Y be compact, such
that kyk  B0, for all y 2 Y . Denote by B :=

p
NB0. Then,

kx(0)� x?
(⇢)k  kx(0)k+ kx?

(⇢)k  2B,



which gives:

f(xi(k))� f?  N2

(N � 1)(G0
)

2

2 ⇢
(20)

+

[2 (maxi Lfi + ⇢�N (L))] (2B)

2

k2

=

C
1

⇢
+ ⇢

C
2

k2
+

C
3

k2
, (21)

with C
1

=

N2
(G0

)

2
(N�1)

2

, C
2

= 8B2�N (L), and C
3

=

8(maxi Lfi)B
2. Now, fix an ✏ > 0, and consider the time

K(⇢)–the smallest time k at which f(xi(k)) � f?  ✏, for
all i. Our goal is then to find ⇢ > 0 that minimizes K(⇢)
and to find the corresponding minimal value K?

(✏). Instead
of finding the actual minimum, it suffices for our purpose to
find an upper bound on K?

(✏), and a sub-optimal ⇢, which
we call ⇢(✏). By (21), we have that

K2

(⇢)  ⇢2C
2

+ ⇢C
3

✏⇢� C
1

=: M(✏, ⇢), ⇢ > C
1

/✏. (22)

Now, set ⇢(✏) :=

2C1
✏ =

N2
(G0

)

2
(N�1)

✏ . This value, when
plugged in the right hand side of (22), gives:

M(✏, ⇢(✏)) =
4C

1

C
2

✏2
+

2C
3

✏
.

From above, using inequality
p
x+ y 

p
x+

p
y, x, y � 0,

we can conclude that:

K?
(✏) 

p
M(✏, ⇢(✏))  2

p
C

1

C
2

✏
+

p
2C

3p
✏

,

which, substituting the values of C
1

, C
2

, and C
3

, yields the
result (b).
Remark. The bounds in Theorem 1 can be improved using
the network’s diameter Diam. Namely, replacing in (16)
kxs�xjk2

N�1

by kxs�xjk2

Diam

, we obtain, for part (a) of Theorem 1
(equation (10)), that the term N2

(N�1)(G0
)

2

2⇢ is replaced by:
N2

Diam(G0
)

2

2⇢ . Likewise, in part (b) of Theorem 1, setting

⇢0(✏) =

N2
Diam(G0

)

2

✏ , the convergence time is k0
0

(✏) =

4N3/2
Diam

1/2
p

�N (L)G0B0

✏ +

4

p
NB0p

maxi Lfip
✏

.

IV. SIMULATION EXAMPLE

We demonstrate with an example of distributed learning
of the best linear classifier via logistic loss that our algorithm
converges much faster than existing distributed (sub)gradient
methods [5], [8]. Training data is distributed across nodes in
the network; each node has Ns data samples, {aij , bij}Ns

j=1

,
where aij 2 Rm is a feature vector (data vector,) and bij 2
{�1,+1} is the class label of the vector aij . Based on the
data samples available at all nodes, we want to learn (in a
distributed way) the linear classifier a 7! sign

�
a>x0

+ x00�,
i.e., to determine a sparse vector x0 2 Rm and a scalar x00 2
R, that minimizes the logistic loss:

minimize
PN

i=1

PNs

j=1

�
�
�bij(a

>
ijx

0
+ x00

)

�

subject to kx0k  c0, x00 2 R. . (23)

Here �(t) = log(1 + e�t
), and kx0k  c0 = 100 is the

regularization.
Setup. We consider a connected network with N = 20 nodes
and 86 undirected links. The network is a geometric graph:
nodes are uniformly randomly placed on a unit 2D square
and the pairs of nodes whose distance is less than a radius
are connected by an edge. We generate feature vectors aij
independently over i and j, where we draw each entry of
aij from N (0, 1). Each node has Ns = 5 data samples.
We generate the “true” vector x

0

= ((x0
)

>, x00
)

> 2 R4 by
drawing its entries independently from N (0, 1). The class
labels are: bij = sign

⇣
(x0

0

)

>
aij + x00

0

+ �ij

⌘
, where �ij’s

are drawn independently from N (0, 0.01). We numerically
evaluate the optimal value f? via the centralized projected
gradient algorithm.

We compare our proposed distributed Nesterov-like gradi-
ent algorithm with the distributed (sub)gradient algorithm [2]
and the distributed dual averaging algorithm [8]. As a metric,
we use the relative error in the objective function averaged
across nodes:

ef (k) =
1

N

NX

i=1

f(xi(k))� f?

f?
, f? 6= 0. (24)

All three algorithms involve, as an intermediate step, a local
averaging process. With all three algorithms, we use the
Metropolis averaging weights: Wij = 1/(1 + max(`i, `j)),
for {i, j} 2 E, where we recall that `i is node i’s degree;
for i 6= j, {i, j} /2 E, Wij = 0; and Wii = 1 �

P
j 6=i Wij ,

for all i. Note that this corresponds to a straightforward
generalization of our algorithm (2) to non-uniform weights
w

0

. With the algorithm in [8], we use a quadratic proximal
function z 7! 1

2

kzk2. With all algorithms, we use a constant
step size ↵k = ↵. In this situation, all the three algorithms
converge to a solution neighborhood. For each algorithm,
we adjust the step size so that our algorithm saturates at a
lower level ef than [5], [8]. Note that this is in favor of [5],
[8], because, to achieve the same precision as our algorithm,
we would have to further reduce the step size of [5], [8]
and make these algorithms slower. We note that all three
algorithms have similar computational cost per iteration k,
and the same communication cost.
Results. Figure 1 plots ef (k) versus the iteration number
k (2), and the algorithms in [2] and [8]. We can see that
our algorithm (2) performs much better than the other two:
to achieve precision of ef ⇡ 0.002, (2) takes about 600

iterations, while the algorithms in [2] and [8] require more
than 30000 iterations. Thus, (2) reduces the number of
iterations more than 50 times, when compared with [2]
and [8]. We also show the results for the diminishing step-
sizes (Figure 2,) under which algorithms [2] and [8] converge
to the exact value f?. Although we did not show here that our
algorithm (2) converges exactly to f? under the diminishing
step size, simulations here suggest that the algorithm indeed
converges to f?. With our algorithm, we set ↵k = 1/k.
With the algorithms in [2] and in [8], we set ↵k = 1/

p
k.

The best choice of ↵k for [2], [8] under the function class
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Fig. 1. Relative error in the objective function (24) versus iteration number
k for the proposed algorithm in (2), dual averaging [8], and (sub)gradient [2],
with constant step sizes.

that we study has not been proposed; [8] considers a wider
class of functions than we do here (see [8] for details) and
shows that the decay of order 1/

p
k with the algorithm

therein is optimal; we thus set the decay order 1/
p
k for

both [2] and [8]. Reference [2] does not recommend the
decay order for the diminishing step size. We can see that
our proposed algorithm again converges much faster than
other algorithms. Interestingly, in the simulation shown in
Figure 2, our algorithm converges linearly (geometrically)
to the solution, at least in the iterations range k = 5000–
k = 15000; we note that, in general, even when all the
fi’s are strongly convex, the algorithm is not guaranteed to
achieve the global linear convergence rate.
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Fig. 2. Relative error in the objective function in (24) versus itera-
tion number k for the proposed algorithm (2), dual averaging [8], and
(sub)gradient [2], with diminishing step sizes.

V. CONCLUSION

We considered distributed optimization in networks, where
N nodes cooperatively minimize the sum of their private
cost functions subject to a a globally known constraint. We
proposed a distributed Nesterov-like gradient algorithm that,

when compared with existing (sub)gradient algorithms, sig-
nificantly reduces the number of iterations for convergence
without introducing additional communications per iteration
k, and by maintaining computationally cheap and simple
iterations, i.e., introducing very little additional computations
per k. Our algorithm with step size ↵ reduces the error in
the cost function to O(↵+1/(↵k2)) after k iterations. This,
for the optimized ↵, gives O(1/✏) convergence time for an
✏–accurate solution, while existing distributed (sub)gradient
algorithms require much longer time O(1/✏2). We prove
the result for convex, coercive, continuously differentiable
private costs with Lipschitz continuous first derivative and
a compact constraint set Y . A simulation example for dis-
tributed learning of a classifier via logistic loss demonstrates
the effectiveness of our distributed algorithm.
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