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Abstract— We consider the problem of selecting a subset
of p out of n sensors for the purpose of event detection, in
a wireless sensor network (WSN). Occurrence or not of the
event of interest is modeled as a binary Gaussian hypothesis
test. In this case sensor selection consists of finding, among
all (”) combinations, the one maximizing the Kullback-Leibler
(KL) distance between the induced p-dimensional distributions
under the two hypotheses. An exhaustive search is impractical
if » and p are large, as the resulting optimization problem
is combinatorial. We propose a suboptimal approach with
computational complexity of order ¢(n’ p). This consists of
relaxing the 0/1 constraint on the entries of the selection
matrices to let the optimization problem search over the set
of Stiefel matrices. Although finding the Stiefel matrix is a
nonconvex problem, we provide an algorithm that guarantees
to produce a global optimum for p = 1, through a series of
judicious problem reformulations. The case p > 1 is tackled by
an incremental, greedy approach. The obtained Stiefel matrix
is then used to determine the sensor selection matrix which
best approximates its range space. Extensive simulations are
used to assess near optimality of the proposed approach. They
also show how the proposed approach performs better than
exhaustive searches once an upper bound on the computation
time is set.

I. INTRODUCTION

In wireless sensor networks (WSN), energy is a scarce
resource. To guarantee prolonged unattended deployment,
sensors need to be frugal with respect to energy usage. Sens-
ing, computing and communication need to be minimized
to ensure maximization of network lifetime. In addition, it
may be infeasible to collect and process all the possible
sensor data due to bandwidth and computational constraint.
Therefore, it is of practical interest to activate only a limited
number of sensors at any time instant. The power constraint
dictates how many sensors should be operating. For any
particular application, the following question arises: which is
the optimal subset of sensors to choose in order to maximize
a pre-specified performance metric ?
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The problem of sensor selection has attracted the interest
of many researchers in the past few years. In the context of
estimation [1], the authors propose an efficient heuristic for
finding a subset of sensors for optimal estimation. In [2], the
authors consider estimation of a convection-dispersion field
via Kalman filtering. The subset of sensors that will report
their measurements in each iteration is chosen to minimize
the next step error covariance matrix. In [20], the authors
determine the optimal sensor selection for estimation of the
state of a dynamical system in the case sensors communicate
using a Carrier Sensed Medium Access (CSMA) protocol.
The benefit of using more sensors is off-setted by the bot-
tleneck they would create in the network. In [3], the authors
propose an information-driven dynamic sensor selection for
target tracking tasks, using information utility measures such
as entropy, Mahalanobis and Kullback-Leibler distances. A
survey of sensor selection schemes in WSN can be found
in [4].

In this paper, we are interested in selecting sensors for
event detection in WSN. Sensor selection for event detection
in WSNs arises in many applications, namely in monitoring
pipes from breaking in building systems, or monitoring C0;
sequestration sites for gas leakage. Our goal is to find the
most informative subset of sensors whose readings are then
processed by a central node. This is different than distributed
detection. In the latter approach, each sensor makes a local
decision and transmits it to the fusion center, which, after
gathering all local decisions, performs the final detection.

Problem statement. Let us consider the problem of event
detection for a WSN composed of n sensors. Such problem
can be modeled as a binary Gaussian hypothesis test where
Hy (Hp) corresponds to the occurrence (non-occurrence) of
the event. The mean and the covariance matrix of the Gaus-
sian distributed sensor data vector x € R” under hypothesis H;
are denoted by (m;, S;) respectively and assumed known, e.g.,
they are estimated from available training data. Let us assume
that only p < n sensors are allowed to transmit their readings
to a central node. In other words, the fusion node conducts
the hypothesis test based on a p-dimensional data vector
y=E"x, where E is an n x p selection matrix having one
(resp. at most one) entry equal to 1 in each column (resp.
row), the remaining entries being 0. We address the question
of which subset of p sensors to choose, i.e., which matrix E
to pick, in order to maximize detection performance. We
are interested in evaluating the performance of the proposed
approach and compare to the optimal one when this is
feasible to compute, and to a suboptimal approach based on
a feasible exhaustive search over a subset of the all possible



choices.

Contributions. To find the optimal subset of p sensors,
we propose to maximize the Kullback-Leibler (KL) distance
between the distributions of the selected p measurements
under the two hypotheses. Performing this maximization by
searching over all (Z) possible sensor selections is impracti-
cal for large n and p. We propose a suboptimal method with
computational cost of order &'(n3p) for maximizing the KL-
based cost function, showing near-optimal performance in
extensive simulations.

Our approach consists of relaxing the choice of 0/1
selection matrices to the set Stiefel ones [19]. This can be
interpreted as finding the linear map R” — R? which max-
imizes the KL distance between the “projected” Gaussian
distributions in the lower p-dimensional space. This problem
also appears in linear dimensionality reduction applications,
e.g., see [16], [15] for closely related approaches involving
the J-divergence and Chernoff distances. It is a difficult,
nonconvex optimization problem. To our best knowledge,
existing work on this topic either does not solve the prob-
lem in full generality (i.e., unequal means and covariance
matrices) or does not guarantee global optimality of their
solutions [16], [15].

Here, we solve this nonconvex problem globally for the
case p = 1, with small computational cost and full general-
ity (i.e., we allow arbitrary means and covariances). This
is achieved by reducing the original problem to a one-
dimensional one with an interval constraint. Our optimal
solution method for p =1 is then used as a building block for
the case p > 1. We propose an incremental, greedy approach
in which the p columns of the Stiefel matrix £ : n X p
are obtained one after the other: addition of each column
consists of using our p = 1 subroutine in successively lower
dimensional spaces. Thus, our results are directly applicable
to other linear dimensionality reduction problems (here, we
focus on the KL distance, but our p = 1 method can be
extended to the J-divergence and Chernoff distance).

The range space of an optimal Stiefel matrix can be
interpreted as the most informative p-dimensional subspace
in the observation space R". After the Stiefel matrix is
designed, we find the 0/1 selection matrix with the range
space closest to the suggested one. This can be done in
closed-form and involves almost no computations.

We perform extensive simulations to show how our ap-
proach closely approximates the optimal one in the case
where the latter can be calculated, and how it performs better
than other suboptimal schemes with comparable computa-
tional complexity.

Paper organization. The rest of the paper is organized as
follows. In section II we formulate the sensor selection prob-
lem. In section III we detail our sensor selection algorithm.
In section IV simulation results are presented and section V
summarizes the work presented in this paper.

II. PROBLEM FORMULATION

Gaussian hypothesis test. Let x = (x1,xp,. .. ,xn)T eR”
be the vector of all sensor measurements, where x; denotes

the ith sensor measurement. It is assumed that the data
vector x € R" was generated by one of two known Gaussian
distributions. Accordingly, we face the hypothesis test

Hy : x~ A (mo,So)
H : x~A(m,S)"’

where A" (m;,S;) denotes the Gaussian distribution with
mean m; and covariance matrix S;. Hypothesis H; (Hp)
corresponds to occurrence (non-occurrence) of the event of
interest.

Sensor selection. To meet power consumption restrictions,
we assume only p sensors are allowed to transmit their
measurements to a fusion node. Mathematically, this trans-
lates into selecting p out of the n sensors and conduct the
hypothesis test in the lower dimensional space R”. Sensor
selection corresponds to finding a selection matrix E € R"*?
with 0/1 entries such that y = E " x. Each column of E has
exactly a 1 at some coordinate i, meaning that sensor i is
selected (there is at most one 1 per row). The remaining
entries of E are 0. Thus, each choice of E implements a
data projection

R" - RP x+—y=E'x,

and induces a hypothesis test in the lower dimension
space R? given by

Hy : y~ AN (E"my,ETS)E)
H : y~AN(E"m,ETSE) "

Stein’s lemma. Before proceeding, we recall Stein’s
Lemma [14], a fundamental result from detection theory. It
relates the performance of a Neyman-Pearson (NP) detector
to the dissimilarity of the two distributions to be tested.
More precisely, it states that if a NP detector is employed to
discriminate between Hy : x ~ pg and H; : x ~ pi, then the
probability of false alarm decreases exponentially fast to zero
when the number of data samples — assumed independent
and identically distributed (i.i.d.) — goes to infinity. Indeed,
if Pea (k) denotes the probability of false alarm when & i.i.d.
samples are processed, then

lim @

k—soo

= —Dxv(p1]|po)

where

DkL(p1llpo) = /1" (x)log (;28) &

denotes the Kullback-Leibler distance between the distribu-
tions pg and p;. Thus, more dissimilar distributions lead to
lower probabilities of false alarm in the asymptotic regime.

Optimization problem. Inspired by Stein’s lemma, we
propose to search for the selection matrix E which yields
the largest KL distance between the induced p-dimensional
distributions. That is, we formulate the following optimiza-
tion problem

maximize f(E)
subject to  Ej; € {0,1} (1)
E'E=I,



where I, denotes the p x p identity matrix and
f(E) :=DxL (JV(ETml,ETSlE),JV(ETmO,ETSOE)) .
It can be shown that
f(E) = % {tr ((ETSOE)_I(ETle)) +

(m1 — mo)TE(ETS()E)_lET(ml — mo)

det (ETS|E)
—log—————~ —
det (ETS()E)

III. SENSOR SELECTION ALGORITHM

The optimization problem (1) is combinatorial and solving
it by searching over all (") combinations of sensors is
intractable for sufficiently large n and p. We propose a sub-
optimal approach with computational cost of order & (n’p).
It consists of two phases:

Phase 1: relaxation. We discard the 0/1 constraints and
address the relaxed optimization problem

maximize f(E)

subject to E'E=1I, @

Thus, we seek to maximize the objective f over the manifold
of Stiefel matrices. This phase has computational complexity
of order 0'(n’p).

Phase 2: polishing. After an approximate solution of (2)
is found, a local search around a nearby selection matrix is
performed. This entails (n— p)p evaluations of f.

A. Phase 1: relaxation

Problem (2) is nonconvex and still difficult to solve.

Case p = 1. For p =1, the Stiefel matrix E : n x p reduces
to an unit-norm vector, say E = e, and problem (2) consists
of

T
CE 1 Je' Se
maximize 5
2 {eTSoe

-

subjectto e'e=1

((my—mg)Te)® log elSje 1}

el Spe e’ Spe

3)
It can be shown that (3) reduces to the following one-
dimensional problem:

maximize
subject to

()
1 € [1/Amax (S), 1/ Amin(S)] 4)

where the objective is
Y(t) = Amax (S — 1S+ M) +1log(z), (5)

S :=8;"2818)""/2 and M :=mm’ with m = Sy~ (m, —
mp). Here, Anin(S) and Amax(S) denote the minimum and
maximum eigenvalues of the matrix S, respectively. The
equivalence of (3) and (4) is a major contribution of this
paper. Let t* solve (4) and let up,x be an unit-norm eigenvec-
tor associated with the maximum eigenvalue of S —¢*S+ M.
Then SO_I/Zumax/ ‘Sgl/zumax solves (3).

We can solve (4) by discretizing the constraint inter-
val [1/Amax(S),1/Amin(S)] and picking the point in the grid
with the highest objective y. However, a more efficient
approach is a bound maximization iterative approach which

works as follows. Let #; be the current iteration. We consider
a lower bound function Y, which touches y at t =, i.e.,
Y (t) < y(r) for all feasible ¢ and Y(z) = ¥(#). The next
iteration is given by maximizing the lower bound

fry1 = argmax % (2) . (6)

subject to ¢ € [1/Amax(S), 1/ Amin(S)]

Note that Y(ty1) > %(tk+1) > Y%(tx) = y(tx). Thus, we're
making progress with respect to the true objective 7. This
iterative approach is attractive if the bound 7, is simple
enough to make (6) easy to solve. In our case, we can
find such a convenient bound. We reason as follows. It is
straightforward to show that 7 — @(f) := Apax (S—2S+M)
is a convex function. Thus,

¢(1) = ¢(te) +8k(t—1) forall z, (7)
where g; denotes an element of the subdifferential of ¢ at #.
We can pick g; = fu;Suk where u; denotes a unit-norm
eigenvector associated with the maximum eigenvalue of S —
1S+ M. Plugging (7) into (5) yields the concave lower bound

%(t) = ¢ (tr) + gu(t — 1) +1og(z). 3

For this choice of ¥, the solution of (6) is trivial and given
by

1

lep1 = ——-

8k
In our simulations, we observed that usually it takes only 5
to 7 iterations for this iterative method to converge to the
global maximizer of (4) with precision 1077,

Case p > 1. We tackle the generic case p > 1 through
an incremental, greedy approach in which the p columns
of E=[ejey---e,] € R™P are obtained one after the other:
first e, then e, and so on. Appending one column consists
of solving (4) with the problem data (m,S) living in a
successively lower-dimensional space, as orthogonality with
the previously found columns is enforced at each step.
Algorithm 1 details this approach.

Algorithm 1 Greedy algorithm
1: for j=1to p do
2. Compute U ¢ R™0=7i+1) () .= 1), an orthonor-
mal basis for the orthogonal complement of the j—1
dimensional subspace span{ej,es,...,e;_1}

3:  Compute the projected means and covariances mi] ) =

U ' my, s9 =00 SUO) for i =0,1

4 Compute §U = (s§/)~1/2s) (SO</>)—1T/2, ml) —
(S )‘—1/2(m<1/_) _ ng> )y MU) = mD ()

5. Letel) e R"/+! denote a solution of (3) for (m,S) =
(m(j>’g(j>)

6:  Compute the jth column of E as e; = UU)el)

7: end for




B. Phase 2: polishing

Let E be the Stiefel matrix produced by the greedy
algorithm. In general, this will not be a selection matrix,
i.e., with 0/1 entries. Thus, we need a mechanism to return
to the feasible set of (1). A tempting approach would be to
round each column of E to the nearest 0 /1 vector (with only
one entry equal to 1). However, note the intrinsic ambiguity
exhibited by the objective function of (1). We have f(E) =
f(EQ) for every Stiefel matrix E and orthogonal p X p
matrix Q. This invariance with respect to right multiplication
of orthogonal matrices highlights the fact that f depends
on E only through the p-dimensional subspace spanned by
its columns, and not on its particular entries. Thus, instead
of rounding the entries of E, we round its range space.
More precisely, we look for the 0/1 selection matrix with
range space closest to the range space of E. Since EE is
the orthogonal projector onto the range space of a Stiefel
matrix E, this translates into solving

E= argmin HEET—EETH 9)
subject to  Ej; € {0,1}
E'E=I,,
where || - || denotes the Frobenius norm. Note that this

rounding approach captures the aforementioned invariance:
both E and EQ (where Q is orthogonal) yield the same
solution E (up to a permutation of columns, which is
unavoidable), whereas rounding directly E and EQ could
lead to fundamentally distinct selection matrices. Solving (9)
is straightforward: if (ji, j2,...,j,) denote the indices of the
largest entries of the diagonal of the projector EE", then
E = [ij ij, ---ij,] where i; stands for the jth column of the
identity matrix I,,.

Local refinement. We finish with a local maximization
of f around E. We sweep the p columns of E, trying to
improve each one. This consists of p steps. In the ith step
(i=1,2,...,p) all columns of the current selection matrix are
fixed except the ith one, which is viewed as an optimization
variable. Solving (1) only over this column is straightforward
and consists of comparing n — p+ 1 evaluations of f. We
denote the result of this local refinement by E*.

Computational complexity. We now comment on the
overall computational complexity of the proposed algorithm,
by going through both of its phases. Phase 1 (relaxation
phase) consists of p loops, where the complexity decreases
at each next loop (see algorithm 1). For the j-th loop (j =
1,..., p), steps 2) and 4) bear main computational burden; step
2) requires computation of the orthogonal complement of the
the collection of vectors {el,eg, e 1} and has complex-
ity of order & ((n— j+1)%). Step 4) requires computation

of —1/2 power of matrix S(()’) of the dimension n— j+ 1 and

it also has complexity of order & ((n— j+1)3).

In phase 2) (polishing phase), major computation is con-
sumed in the local refinement step. It consists of p(n— p+
1) evaluations of the cost function f(-), where each cost
function evaluation requires inversion of a p X p matrix. A
naive implementation of phase 2 entails & (np*). However,

TABLE I
KL DISTANCES FOR OPTIMAL AND SUBOPTIMAL SELECTION

KL distance p=1 p=2 p=3 p=4 p=>5 p=38
SUBOPT
n
10 1.0430 1.8802 3.7991 4.8723 113714  59.1499
20 1.0579 24793 3.7191 4.4632 4.8182 8.8611
30 1.0225 27789 44219 5.6727 6.5402  10.0490
40 1.1092  3.1995 7.0466  8.5552  13.0797 19.0771
50 1.0875 23586 3.3338 52191  6.1373
OPTIMAL
n
10 1.0430 23332 3.7991 6.1536  11.3714  59.1499
20 1.0579 24793 3.7191 4.4632 5.3216 8.9598
30 1.0225 2.7789 44219 5.6727 7.0785  10.0490
40 1.1092  3.1995 7.0466 9.4557 13.0797  21.9207
50 1.0875 23586 3.6754 53809  6.8906

structure can be exploited to lower down this estimate, and

the details are left for a journal version of this work.
Combining complexities of phase 1 and phase 2 we get

that the overall complexity of the proposed algorithm is

7 (n3p).
IV. SIMULATION RESULTS

In this section we will provide simulation results on
the performance of the proposed algorithm. All simulation
results are obtained using MATLAB.

To test the performance of our algorithm, we compare the
values of the KL distance for the subset of sensors obtained
by our algorithm with the KL distance of the optimal subset
of sensors, obtained by exhaustive search. We randomly
generated parameters for two Gaussian distributions for cases
n = 10, 20, 30, 40, 50, and for each of them we ran our
algorithm for p = 1, 2, 3, 4, 5, 8. The results are shown in
Table 1. It can be seen that the values of KL distance match
in most of the cases the optimal ones, and, in the worst case,
stay within a mere 20% distance from the global optimum.

We also compared the detector performances of our sub-
optimal solution to the one relative to the optimal choice of
sensors. To accomplish this we used a maximum likelihood
detector (MLD). For each of the cases stated above, we ran
10° instantiations of tests for the samples coming from each
of the two distributions. Based on the data from tests, we
calculated probabilities of false alarm (PFA). The results
are shown in Table 2. Values of PFA for suboptimal choice
of sensors are very close to the ones for the optimal choice.

Note that, in Table 2, the probability of false alarm of the
suboptimum approach is lower than for the optimal choice
for some simulated configurations, e.g., (n = 20,p = 8).
This is no paradox. Indeed, Stein’s lemma only states an
asymptotic connection between the probability of false alarm
and the KL distance. In our case, we are not in the asymptotic
regime as we decide on the basis of only k = 1 sample. To
illustrate further this point, we also performed simulations
closest to the asymptotic regime, namely, with k = 10. That



TABLE V
KL DISTANCES FOR SUBOPTIMAL SELECTION MATRIX AND BEST RANDOM SELECTION MATRIX

n=>50 n =100 n =200
p=>5 p=10 p=20 p=10 p=20 p=40 p=20 p=40 p=2380
SUBOPTIMAL KL dist  0.784146  2.046895  5.699933 0.435614  1.633185  7.035000 0.763321  2.596785  11.050338
BEST RANDOM KL dist  0.784513  1.592929  4.827790 0.303585  1.006640  5.127912 0.509236  1.863333 7.983869
TABLE II TABLE IV
PROBABILITY OF FALSE ALARM (PFA) FOR OPTIMAL AND SUBOPTIMAL PROBABILITY OF FALSE ALARM (PFA) FOR OPTIMAL AND SUBOPTIMAL
SELECTION SELECTION
PFA p=1 p=2 p=3 p=4 p=>5 p=28 PFA p=1 p=2 p=3 p=4 p=>5 p=2_8
SUBOPT SUBOPT
n n
10 0.2324  0.1667 0.1109 0.1097 0.0641  0.0185 10 04731 0.1757 0.1029  0.0508 0.0487  0.0023
20 02332 0.1349 0.0880 0.0687 0.0623  0.0341 20 0.4741  0.2230 0.1176  0.0702  0.0285  0.0043
30 02371  0.1250 0.0821 0.0605 0.0502  0.0330 30 0.4705  0.2679 0.1605  0.1051  0.0609  0.0088
40 02293  0.1120 0.0560  0.0417  0.0260  0.0090 40 0.4707  0.3257 0.2491 02016 0.1396  0.0679
50 02294  0.1380 0.1005 0.0608  0.0464 50 0.4767  0.2897 0.1679  0.1229  0.0943  0.0269
OPTIMAL OPTIMAL
n n
10 0.2324  0.1373  0.1109 0.1102  0.0641  0.0185 10 0.4731  0.1757 0.1029  0.0508  0.0290  0.0023
20 0.2332  0.1349 0.0880 0.0687 0.0685 0.0412 20 0.4741 0.1976  0.0778 0.0523  0.0296  0.0014
30 02371  0.1250 0.0821 0.0605 0.0503  0.0330 30 0.4705 0.2186 0.1175 0.0791  0.0478  0.0093
40 02293 0.1120 0.0560 0.0361  0.0260 0.0102 40 0.4707 0.2804 0.2176  0.1704  0.1255  0.0513
50 02294  0.1380 0.0923  0.0595 0.0444 50 0.4767 0.2533  0.1679  0.1188  0.0804  0.0277
TABLE III

KL DISTANCES FOR OPTIMAL AND SUBOPTIMAL SELECTION

KL distance p=1 p=2 p=3 p=4 p=>5 p=28
SUBOPT
n
10 0.0011  0.1808 03723  0.6157 0.5887  1.9549
20 0.0012  0.1245 03190 0.4792 09392 1.9089
30 0.0012  0.0807 0.2062 0.3692 0.5840 1.7459
40 0.0011  0.0463 0.0975 0.1365 0.2571  0.5275
50 0.0012  0.0610 0.1972 0.2893  0.4292  0.8135
OPTIMAL
n
10 0.0011  0.1808 03723  0.6157 0.9044  1.9549
20 0.0012  0.1609 04744 0.6936 1.1677 3.8261
30 0.0012  0.1270  0.3221  0.4751 0.6951  1.8829
40 0.0011  0.0739  0.1348  0.1996 0.2846  0.6690
50 0.0012  0.0933 0.1972 0.2952 0.4381 0.9775

is, the detector chooses one of the hypothesis on the basis
of a batch of k =10 i.i.d. samples. Tables 3 and 4 are the
counterparts of Tables 1 and 2 for this scenario, although
different Gaussian distributions were used. We can see that
in the configurations where the aforementioned phenomenon
occurs the performance gap decreases significantly.

The receiver operating characteristics (ROC) of MLD for
cases (n=40,p=2) and (n =40, p =4) are shown in Fig.1.
For the first case, (n =40,p = 2), the algorithm found the

optimal selection and thus the ROC curves coincide. For
the other case, (n = 40,p = 4), it can be seen that the
performance of the suboptimal sensor subset is very close
to the optimal one.

It is also easy to see that, for fixed n, the detection
performance increases with p, as expected. In addition,
for practical issues, finding (sub)optimal KL distance for
specific choice of p gives a measure of best achievable
detection performance for given p. This provides invaluable
information for design. By computing (sub)optimal solutions
for different values of p we can determine the minimum
number of sensors required to satisfy a certain performance
specification. Our algorithm provides tight lower bound on
best performance with small computational cost.

Finally, we tested the performance of our algorithm at
scale. As the number of sensors grows the combinatorial
problem becomes infeasible. In this case we compared the
values of KL distance given by the proposed approach, with
the values of KL distance for the best subset of sensors
(the one that gives highest value of KL distance) among 10°
randomly chosen subsets, for n = 50, 100, 200 and p=10, 20,
40 % of n. The results are shown in Table 5. The comparison
shows that with the exception of the case (n=50,p=15) for
which the difference between values of KL distance is very
small, our proposed approach yields far greater performance
together with significant savings in computation time. For
example, for the case n =100 p = 10 it takes 2 sec to find
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Fig. 1. ROC curves for optimal and suboptimal selection

sensor selection matrix, while to check 10° 100 x 10 matrices
it takes about 2 min on a 1.7 GHz personal computer.

V. CONCLUSION

In this paper we propose a sensor selection algorithm for
event detection in wireless sensor networks. We propose to
reduce the dimensionality of the problem by selecting p
sensors, out of n, that maximize the KL distance between
the selected measurement distributions. Selecting sensors is
amenable to sensor networks as it decreases the sensing,
computational and communication burden, increasing this
way its lifetime. The computational complexity of our selec-
tion strategy is of order &'(n®p) operations, compared to the
non scalable original combinatorial problem. Our solution,
although suboptimal in principle, shows near optimal perfor-
mance in most cases. For large systems, where the original
combinatorial solution is not computable, our algorithm
shows better performance and lower computational time if
compared with Montecarlo-bases suboptimal solutions. Our
results are also of immediate interest for linear dimensional-
ity reduction applications since, as an intermediate step, we
addressed the problem of finding the linear map R” — R?”
which maximizes the KL distance between distributions in
the lower p-dimensional space. We globally solved this
nonconvex problem for the case p = 1 and capitalized on
that tool to tackle the generic case p > 1 via an incremental,
greedy approach, which provides near optimal result with
small computational cost.
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