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Abstract

This paper deals with the reconstruction of smooth, flexible, flat surfaces isometri-
cally embedded in 3D when observed from uncalibrated camera images. It provides a
cost function which captures the global geometry of the problem. The input data consists
of a sequence of matched feature points (i.e. known correspondence), but the algorithm
allows for missing data so that all points do not need to be visible in all images. Its per-
formance under these conditions is analyzed. A way of inferring the bend radius at each
point is provided which can be used back in the cost function, providing a higher order
fitting. The performance is validated using both synthetic data and real image examples,
where the reconstruction is compared to ground truth and reference points.

1 Introduction
The purpose of this paper is to allow reconstruction of deformable surfaces isometrically em-
bedded in 3D, e.g. a flag waving at the wind or someone waving a sheet of paper, from image
data. It is assumed that a set of non-calibrated images is available with matched features be-
tween them. For simplicity the cameras here are restricted to be scale-orthographic, each
modeled by a single scale factor and extrinsic parameters. Figure 1 illustrates the acquisition
process. From a single flat surface, modeled as a set of features, 3D isometric embeddings
are generated by passing the feature points through embedding functions I k. These are then
viewed by different cameras yielding the observed images.

There are two problems that can be formulated with images of isometrically embedded
surfaces. The first consists of estimating the 3D embedding (pose) of the surface in a partic-
ular image k, when the flat surface is assumed to be known. In figure 1 this roughly means
estimating (b) given (a) and (c). This problem will be called the pose estimation problem,
but will not be the focus of this paper. The second problem is given several images estimate
the surface that generates them. In the figure this means from several observations (c), obtain
(a). Here this problem shall be named the surface estimation problem and the embeddings
(b) are not considered important. Although not done yet, a future objective will be to unify
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Figure 1: Acquisition model of the isometrically
embedded surface observed by a camera.
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Figure 2: Visualization of the variables involved.

both problems, i.e. estimate the generating surface (a) and the various embeddings (b) given
only the set of images (c). This can be trivially achieved by first estimating the surface and
then applying a known pose estimation algorithm, future work will focus on integrating both
in a single problem.

1.1 Previous Work
The pose estimation problem has been receiving a lot of attention lately. Some works in
this area include [10] which describe a closed form solution to the problem of registering a
camera observation to an a-priori known model embedded in 3D. In a different approach de-
scribed in [11] the authors propose to recover 3D structure from a single camera by learning
the statistical deformation model of deformable surfaces. Other work (in which the isometry
property is not forced) include [2] which attempt to estimate the embedding function by min-
imizing compound energy and inferring a smoothing parameter and [8]. In [4] the authors
propose to use range data information as well. Non-rigid reconstructions have received a lot
of attention lately (see for example [1]) but the only known paper that deals directly with the
surface estimation problem is [5].

1.2 Contribution
This paper models accurately flexible flat surfaces following a similar strategy presented in
[5] where an initial approximation is given by a sequential algorithm. This approximation
is then fed to a global cost function, further refining the result and hopefully converging to
the global minimum. To better capture global constraints instead of just measuring local fit
in which integration error can accumulate a different optimization function is used. Here we
deal with the more realistic assumption that data can be missing, which is of utmost impor-
tance in deformable surfaces where self occlusion and partial observations are common. This
paper handles missing data and provides the required performance tests. Finally, one impor-
tant contribution is how to obtain second order information about the 3D embeddings, such
as how much the surface bends, which can be used for measurements and reused in the cost
function. Although the surfaces are assumed to be locally planar, second order information
provides relevant information in the presence of a sparser data set, as so often occurs.

In summary, this paper extends the current state of the art in structure from motion of
nonrigid flat surfaces by accuratley modeling what happens when surfaces bend and provides
a reliable way to estimate the surface.

2 Reconstruction of Flat Surfaces
The 2-D flat surface is sampled as a cloud of point features Q =

{
qi ∈ R2

}
which generates

K distinct 3-D point clouds by the isometric functions I k as I k(Q) =
{
I k(qi) : qi ∈Q

}
.

An isometric function is here loosely defined as not changing the intrinsic interpoint distance
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(see [7] for a more formal definition). For the purpose of this paper this definition is enough,
together with the fact that the Jacobian matrix (i.e. derivative matrix) of these functions are
Stiefel matrices (i.e. two columns of a 3×3 orthogonal matrix). Each of these sets of points
I k(Q) correspond to the 3-D points of the bent flag or sheet of paper which are assumed
to be observed by cameras. These observations yield the point sets Pk = Ck ◦I k(Q) =
{pk

i ∈ R2 : pk
i = Ck ◦I k(qi), qi ∈Q}, where each Ck models a camera projection function

(see figure 2). Since camera motion is an isometry, Ck can be reduced to the projection of a
canonic camera at the origin.

For a dense enough point cloud, the smooth, locally planar approximation is valid for
embeddings with the isometries I k, preserving extrinsic distance and angles between neigh-
boring points. Note that this is always true for the intrinsic distance, but extrinsically only
if the considered points are contained in a planar submanifold. This approximation will be
exploited to allow surface reconstruction.

General isometry functions are hard to characterize, so instead of using them directly,
the known properties of their push-forwards (in a loose sense, their Jacobian matrices) will
be exploited. As stated before, when I k are isometries the corresponding push forward at
a point qi (here denoted as I k

qi∗) are represented as a Stiefel matrix when an orthonormal
tangent space basis is chosen. Hence, 2D tangent vectors of R2 at the same point are sent
to 3D vectors by matrix multiplication by this Stiefel matrix. The push forward of the ob-
servation function is here represented by Ck. By composition, the transformation of tangent
vectors at a point qi to tangent vectors in the observed image is given by a 2× 2 matrix
Sk

i = Ck ◦I k
qi∗.

When canonic orthographic cameras are used, the push-forward is Ck =
[
I2×2 0

]
which,

when composed with I k
qi∗, results in Sk

i matrices that are 2× 2 submatrices of larger or-
thogonal 3× 3 matrices (i.e. a Stiefel matrix without the bottom row). Henceforth these
matrices will be called Sub-Stiefel. Using the Cauchy Interlacing Theorem [6], these can be
characterized as the set of 2× 2 matrices with the largest singular value equal to 1: SS ={

S2×2 :
[

S ∗
∗ ∗

]
∈ SO(3)

}
= {S2×2 : σmax(S) = 1}. If canonic scaled orthographic cameras

are used a further sk multiplicative scale factor is needed.
Hence the surface estimation problem is formulated as: estimate the 2D point cloud Q

from multiple observations Pk. Although it is not assumed that all points are visible in all
images, it is assumed that their correspondence is known.

The notation [ j]i means the jth neighboring index point of i. If point i has ni neighbors,
then j ∈ {1 . . .ni}. Note that although point qi is always a neighbor of point q[ j]i , there is
no guarantee that in a particular image this neighbor is seen. Hence some additional care
is needed when stating “pk

i is a neighbor of point pk
[ j]i

”. To make notation less dense, using
the context there should not be any confusion from dropping the i in the notation hence [ j]
simply means the jth neighboring index point of the current point i. Since it is usual to cycle
through all the visible points, the set N = {(i, j,k) : pk

i and pk
[ j] are visible} is defined. This

set is the union of smaller per-image sets N k = {(i, j) : pk
i and pk

[ j] are visible}.

2.1 Cost Function
The objective of this paper is to solve the following optimization problem:

min ∑
(i, j,k)∈N

∥∥pk
[ j]−

(
p̂k

i + sk
i Ok

i (q[ j]−qi)
)∥∥2

s.t. p̂k
i ∈ R2, Ok

i ∈ SS, qi ∈ R2, {sk
i } ∈ camera model set

(1)
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Here, the variables p̂k
i represent the reconstructed image observations (in a noiseless, bend-

less case, the optimum solution would be p̂k
i = pk

i ). The optimization problem roughly states
that each neighboring points in each image pk

[ j] must agree with their reconstructions through

the aquisition model (current reconstructed point p̂k
i , Sub-Stiefel matrices Ok

i and surface es-
timates qi). See figure 2.

Here the terms p̂k
i are used to impose per-image global constraints, minimizing inte-

gration error where the reconstructed surface might be locally correct but starts to skew or
slightly distort when viewed globally. These variables also provide an entry point into fusing
the pose estimation problem with the surface estimation problem which is still considered
future work.

The cost function is simple to integrate
Hard Problem

Optimization 

Method
Solution

Initial 

Approximation

Figure 3: Overview of the optimization strategy. First
an initial approximated solution is computed to start the
optimization.

with the optimization strategy considered
in [5], here overviewed for convenience. To
solve the highly non-convex cost function
presented, first an approximate solution is
obtained and later this is used to iterate an
optimization algorithm directly on the cost

function (see figure 3). The approximate solution is obtained by relaxing the optimization
problem and later projecting the variables to their constraint sets. The first simplification
is to fix the variables p̂k

i = pk
i . These will be later unfrozen when solving the global cost

function.

2.2 Factorization With Missing Data
Dealing with missing data is implemented during the factorization step. The cost function
can be simplified so as to allow bilinear factorization techniques to be used:

min ∑
(i, j,k)∈N

∥∥(pk
[ j]−pk

i )− Ôk
i wi[ j]

∥∥2 s.t. Ôk
i ∈GL(2), wi[ j] ∈ R2 (2)

where the variables wi[ j] relax q[ j]−qi and Ôk
i relax the constraints skOk

i . Note that all hard-
to-solve constraints are effectively eliminated. If missing data is not considered, this can be
put in matrix form as

Vi =

v1
i[1] . . . v1

i[ni]
...

. . .
...

vK
i[1] . . . vK

i[ni]

 Ôi =

Ô1
i

...
ÔK

i

 Wi =
[
wi[1] . . . wi[ni]

]
where vk

i[ j] = pk
[ j]−pk

i are the available observations. This allows it to be rewritten, decoupled
at each point, as:

∑
i

min
∥∥Vi− ÔiWi

∥∥2 s.t. Ôi ∈ R2K×2, Wi ∈ R2×ni (3)

Rank factorization techniques can be applied directly to this problem. When missing
data is considered, matrix Vi has missing entries. This is a well known problem and several
algorithms exist, either that solve it exactly (in some cases) or provide an approximate so-
lution ([3] is a recent survey on the problem). These algorithms usually provide the needed
rank factorization as output.

Once a solution Ô∗i ,W∗
i (p1 on figure 4) has been found, it is far from unique. Any set

of matrices Gi ∈ GL(2) generates another equally valid solution Ô∗i G−1
i and GiW∗

i . The
set of all possible solutions generates set B in the figure. Next, these remaining degrees
of freedom will be used to find a solution which is as close as possible to the sets where
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wi[ j] = q[ j]−qi (set C in the figure) and the set where Ok
i ∈ SS (set A in the figure). Here

an approximate solution is given in a sequence of steps.

2.3 Shape Consistency
First the shape consistency wi[ j] = q[ j]−qi is approximated. This is accomplished by solving
the problem

min∑
i, j
‖Giw∗i[ j]− (q[ j]−qi)‖2

GL(2) s.t. ‖[G1 ...GN q1 ...qN ]‖= 1 (4)

The notation implies a GL(2) invariant norm in the cost

p1 p2

p3

p4

p5

p6
A

B

C

Figure 4: Illustration of the ap-
proximation algorithm. The ambi-
ent space is the cartesian product
Ôi×Wi.

function. The unit norm constraint is needed to eliminate the
trivial solution Gi = 0 and qi = 0. As [5] shows, this is a
sparse eigenvalue problem, solvable using adequate software
such as MATLAB’s svds.

In figure 4 we present a graphical sketch of the several
steps involved. The solution of this problem moves p1 to p2
which represents the point (Ô∗i G−1

i ,GiW∗
i ). Note that the so-

lution is still in set B, meaning that it is still a valid solution
to the problems in equations 2 and 3. This step also computes
a first solution to the unfolded variables qi, in the figure this
is represented as point p4. Note that the solution is still not
unique since left multiplying by a single matrix G ∈ GL(2)

every G∗i and q∗i , solutions of problem 4, is still a solution. This is depicted in the figure as
the dotted lines passing through p2 and p4, which are equidistant to each other.

2.4 Model Consistency
Model consistency means forcing matrices Ôi as close to obeying the “isometric embedding
observed by scale-orthographic cameras model“ as close as possible (Ôi = skOi, see problem
1). One possibility is to solve the optimization problem

min∑
(i,k)

d2
SS

(
Ôk∗

i G/sk
)

s.t. G ∈GL(2), sk ∈ R (5)

where d2
SS denotes a square distance function to the Sub-Stieffel matrix set. Here the function

d2
SS(O) = log2

σmax(O) is used, as hinted by the Cauchy Interlacing Theorem mentioned
earlier, since it provides expected statistical properties to the solution. To solve the problem,
a Newton-like optimization algorithm is run, which can tipically provide a solution in 4 or 5
iterations.

Refering back to figure 4, the solution to this problem G∗ moves points p2 and p4 to
p3 and p5 respectively. This cost function does not provide the closest Ok

i ∈ SS which is
represented as point p6 in the figure. This will be important in the next section. Note that the
solution is still not unique (a global rotation and scaling of the points is still allowed). This
is expected and under scale-orthographic cameras cannot be solved.

2.5 Global Solution
Here an initial approximation to almost all variables is known. To solve the optimization
problem 1 a simple coordinate cycling optimization method is used. Variables p̂k

i are un-
frozen, retaining their initial approximate value. Since the matrices Ok

i are the only ones not
available, the coordinate cycling algorithm starts by computing these.
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Figure 5: Left: Second order model. At each point there is a direction through which the surface does not bend
and another of maximum bend. Here, r denotes the bend radius and a denotes the axis of revolution. The tangent
space at each point varies smoothly as the surface bends. Right: Cut along the axis of bend.

Fixing all variables but Ok
i , the problem to be solved is

min∑
i,k

∥∥Ak
i −Ok

i Bk
i
∥∥2 s.t. Ok

i ∈ SS (6)

in which matrix A = [pk
[1]− p̂k

i ...pk
[ni]
− p̂k

i ] and matrix Bk
i = sk

i [q[1]−qi ...q[ni]−qi]. The cost

function can be decoupled resulting in various smaller problems, each involving a single Ok
i

matrix. This problem is known as the 2×2 Sub-Stiefel Procrustes problem, and is solvable
by finding the real roots of a 6 degree polynomial using Gröbner basis techniques applied to
the polynomial system of equations resulting from the Karush-Kuhn-Tucker conditions.

Since the cost function is a linear least squares problem in the variables p̂k
i and qi, these

can be solved simultaneously. The system is also a linear least squares problem in the vari-
ables sk making it also easy to iterate over these. In the next sections it will be shown how
to further improve these estimates by introducing a second order model which takes into
account intrinsic characteristics of flat surfaces.

3 Estimating Extrinsic Bend

When a flat surface is embedded in 3-D one important property is verified: through every
point of the embedded surface there is a direction where it is locally linear (see for example
[9]). This means that through each point, the embedding is allowed to curve in only one
direction, making it locally like a cylinder (this is a second order approximation). Since
the word “curvature” has a very precise meaning (all the surfaces here considered have 0
curvature), here this embedding-specific second order property shall be called “bend” at a
point, and its “bend radius” will be the radius of the smallest osculating circle through that
point. In differential geometry this terminology refers to the sectional curvature.

An interesting question that can be posed is if these local cylinders can be estimated
and somehow incorporated back into the cost function. This section provides the affirmative
answer to this question.

The first key point is to notice that on a cylinder, there is a direction through which the
affine tangent spaces are parallel, and orthogonally these affine tangent spaces change the
quickest (see figure 5). The second key point is that this rate of change can be measured by
the estimated surface and Sub-Stiefel matrices.

The idea is that Sub-Stiefel matrices can be completed into rotation matrices with positive
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determinant with only a sign ambiguity[
o11 o12
o21 o22

]
︸ ︷︷ ︸

Sub-Stiefel Matrix

⇒
o11 o12 o13

o21 o22 o23
o31 o32 o33


︸ ︷︷ ︸

Rotation Matrix 1

or

 o11 o12 −o13
o21 o22 −o23
−o31 −o32 o33


︸ ︷︷ ︸

Rotation Matrix 2

by choosing a sign for o31 = ±
√

1−o2
11−o2

21 (if it is zero choose another column). Then

there a single choice for o32 such that o2
32 = 1−o2

12−o2
22 and the second column is orthogonal

to the first. The third column is simply the cross product of the first two columns (so as to
yield a rotation matrix with positive determinant).

Here the distance between two Sub-Stiefel matrices is defined as the minimum of the 4
possible completion combinations. Hence if O and S are Sub-Stiefel, call their 2 possible
completions O+, O− and S+, S−, so the distance is d(O,S) = mina,b∈{+,−}

{
d
(
Oa,Sb

)}
where the distance between rotation matrices [7] is d(R1,R2) = acos

(
(tr(RT

1 R2)−1)/2
)

Hence for a cylinder, there is a direction where this distance function will be 0 when
applied to the corresponding Sub-Stiefel matrices, and an orthogonal direction where this
distance function will vary linearly with the distance to the current point. Mathematically it
means that at each point i in each image k, there’s a vector bk

i such that for each neighbor [ j]

d
(

Ok
i ,O

k
[ j]

)
=
∣∣∣bkT

i (q[ j]−qi)
∣∣∣⇔ d

(
Ok

i ,O
k
[ j]

)2
= (q[ j]−qi)T bk

i bkT

i (q[ j]−qi)︸ ︷︷ ︸
wi[ j]

writting bk
i bkT

i =
[

x1 x2
x2 x3

]
the former can be rewritten using the kronecker product as

d
(

Ok
i ,O

k
[ j]

)2

︸ ︷︷ ︸
Dk

i[ j]

= wT
i[ j]⊗wT

i[ j]


1 0 0
0 1 0
0 1 0
0 0 1


︸ ︷︷ ︸

Ai[ j]

x1
x2
x3

 (7)

Hence a way of estimating x = [x1, x2, x3]T is by the constrained least squares problem
(assuming all other variables known):

min ∑
j:(i, j)∈N k

∥∥∥Dk
i[ j]−Ai[ j]x

∥∥∥2
s.t. rank

([
x1 x2
x2 x3

])
≤ 1 (8)

This problem is simply solved by replacing the constraint with x1x3− x2
2 = 0 (zero determi-

nant) and the use of Lagrange multipliers. This yields a 4 polynomial system of equations
which can be solved through gröbner basis by finding the zeros of a degree 4 polynomial.

A singular value decomposition on the resulting matrix yields the direction of greatest
bend and the rate of change of the tangent plane. It is easy to see that the bend radius is the
inverse of the rate of change.

3.1 Cost Function Using Second Order Information
When the manifold bends, the equality that tangent vectors in the image can be approximated
by wi[ j] = p[ j]−pi is only a first order approximation. In particular, intrinsic vector lengths
are always larger than the image extrinsic information, as shown in figure 5, where intrinsic
distance is s, while extrinsically it is d (before projection on the camera plane). Here a simple
correction is implemented.
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Figure 6: 20× 20 grid embedded in 3D by 3 different embedding functions. From the left: half cylinder, sine
wave and swiss roll.

As figure 5 shows, along the axis of bend, the following correction is needed:

s = αr, sin
(

α

2

)
=

d
2r

=⇒ d = 2r sin
( s

2r

)
(9)

By letting r = 1/‖bk
i ‖ as the last section showed, b̂k

i = bk
i /r and finally ĉk

i = b̂k⊥
i denote the

orthogonal complement, vector wi[ j] is written in the bend-directions coordinate system:

wi[ j] = ĉk
i ĉkT

i wi[ j]︸ ︷︷ ︸
no bend component

+b̂k
i b̂kT

i wi[ j]︸ ︷︷ ︸
bend component

(10)

The bend component needs to be corrected by equation 9. Hence the corrected vector will
be

ŵi[ j] =
[
ĉk

i b̂k
i

]1 0

0 2r
ĉkT

i vi[ j]
sin
(

ĉkT
i vi[ j]

2r

)[ĉkT

i
b̂kT

i

]
︸ ︷︷ ︸

Bk
i

wi[ j]

where Bk
i is the bend correcting matrix. This can be used back in the cost function 1 as:

min ∑(i, j,k)∈N
∥∥pk

[ j]− (p̂k
i + sk

i Ok
i Bk

i (q[ j]−qi)
∥∥2

s.t.
p̂k

i ∈ R2, Ok
i ∈ SS,

qi ∈ R2, {sk
i } ∈ camera model set

(11)

A possible optimization strategy is to consider Bk
i constant at each optimization step (initially

equal to the identity matrix) and recompute it at the end of each global optimization loop step.

4 Results
The synthetic data set was generated as a 20×20 2D grid with 0.05 units of space between
adjacent points. This grid is then rotated, passed through an embedding function and rotated
again in 3D. Figure 6 shows some examples of the embeddings. These embeddings are then
orthographically projected (z component removed). For each experiment, gaussian noise
with a given standard deviation is added and some points are randomly removed to simulate
missing data. Finally the results are scaled (scale factor chosen randomly between 0.5 and
2) to simulate scaled-orthography.

Figure 7 provides a performance comparison in the presence of noise and missing data
for 10 input images. The data is run through the algorithm and the final result is compared,
using mean squared error, with the original 2D grid. Since the output of the algorithm is only
given up to a rotation and scaling, the output is first rotated and scaled to match the original
grid as closely as possible. Hence if the original grid is given in a matrix X (one column
per data point) and the output of the algorithm in a matrix Y, the final performance measure
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Figure 7: Logarithmic mean squared error as a func-
tion of gaussian noise with a given standard deviation
and missing data percentage. Each test is performed
with 10 synthetic images and 10 neighbors. Noise and
outlier are chosen randomly before each experiment.

Figure 8: Reconstruction of the bed cover cloth over-
laid on an image taken of the cloth laying flat. Blue
crosses are the reference clicked points, red circles are
the results given by the algorithm.
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Figure 9: Results of estimating the bending axis and radius from the data. Left: Image to be measured. Middle:
The computed axis of bend at each point is shown. Right: histogram of the computed radius at each point (the
radius is normalized to be 1 unit).

function is:
min log 1

N ‖X− sRY‖2

s.t. s ∈ R, R ∈ SO(2)
(12)

As the results show, gaussian noise does not affect performance as much as missing data.
The results also show that 10%

In a different experiment, bend radius and axis are computed for an embedding wrapped
around a cylinder (bend radius at each point is 1). Figure 9 shows the obtained results. Note
that although at most points the bend axis is similar, there are a few outliers. The histogram
shows that bend radius estimates concentrate around the correct value but some noise exist.

In a real world example, 12 images of a bed cover were taken (see figure 10) at various
angles and differently folded. In these images, 118 different points were hand clicked (when
visible) and the algorithm was run on them. The results obtained are shown in figure 8
(overlaid on a picture taken of the flat cloth fabric). Results provide a benchmark for real
world data, hand clicked, not very dense for the amount of bending, and for embeddings not
truly obeying the isometric properties since cloth is easily sheared.

5 Conclusions
This paper describes how to reconstruct a non-rigid surface isometrically embedded in 3D
that is observed by multiple images with occlusion. It also describes how to measure the
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Figure 10: Images (3 out of 12) taken of a bed cover made of cloth.

amount of bend at each point. Results are provided for different noise levels and amount of
missing data. Also, a real world example is provided for evaluation. As stated in the text, a
future direction is to fuse the pose estimation problem with the surface estimation problem.
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