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Abstract—The classical Fictitious Play (FP) algorithm is de-
fined within a framework of synchronous repeated play. In
practice, the global synchronization assumed in classical FP can
be difficult to achieve in large-scale multi-agent settings. The
paper considers FP with asynchronous updates—a variant of FP
in which players are permitted to be either “active” or “idle”
in each stage of the repeated play process. The FP process
with asynchronous updates is shown to be a generalization of
classical FP. Analytical convergence results are given for the
asynchronous variant of FP. Furthermore, the paper studies an
asynchronous continuous-time embedding of FP. The continuous-
time embedded FP process may be implemented in a real-world
setting where no global clock is available. Sufficient conditions
for convergence of the continuous-time embedded process are
provided as a consequence of the convergence analysis for FP
with asynchronous updates. Example implementations that attain
the sufficient condition are presented.

I. INTRODUCTION

Many game-theoretic learning algorithms (e.g., [1]–[5]) op-

erate within the learning framework of synchronous repeated
play. In this framework, a set of players repeatedly face off in

some fixed game. Each iteration of the repeated interaction,

players may adaptively change their strategies according to

some set of behavior rules. Ideally, the behavior rules should

be designed in such a manner as to ensure that the induced

dynamical system converges to the set of Nash equilibria (NE)

(or some other desirable equilibrium set), thus allowing players

to “learn” equilibrium strategies.

While convergence results for such algorithms are theo-

retically encouraging, they can be of limited practical value

in real-world scenarios where global synchronization may be

difficult to achieve.

Fictitious Play (FP) [6]–[8] is a highly prototypical game-

theoretic learning algorithm that is traditionally defined within

the framework of synchronous repeated play. In the FP al-

gorithm, each agent tracks the empirical action history of

opponents and chooses her next-iteration action according to

a myopic best response rule. The algorithm has been shown

to achieve NE learning in several classes of games, including

the class of multiplayer potential games [9], [10].

Our main contribution is the proposal of FP with asyn-
chronous updates—a variant of FP in which players may
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be active in some rounds and idle in others. We provide a

theoretical convergence analysis and give sufficient conditions

under which the asynchronous algorithm can be shown to

achieve NE learning.

In order to demonstrate how the convergence result for

FP with asynchronous updating can be applied to real-world

applications we present an (asynchronous) continuous-time

embedding of FP. Using the general asynchronous FP result

discussed above, we derive a simple sufficient condition that

ensures agents achieve NE learning in the continuous-time

embedded process. The condition requires the timing of agents

actions attain a fairly weak notion of synchronization: if Ni(t)
is a process counting the number of actions taken by agent i
up to time t, then the ratio Ni(t)/Nj(t) is required to converge

to 1 for all agent pairs.

In order to demonstrate how the condition can be achieved

in practice we present two simple examples of action timing

rules that achieve the sufficient condition. In the first example,

agents choose the timing of their actions according to a

stochastic process. In the second example, a group of agents

with disparate clock skew rates is assumed to be capable of

periodically (with respect to their local clocks) observing some

aggregate statistic. Agents adaptively choose the timing of

their actions according to some deterministic function of their

observation.

The remainder of the paper is organized as follows. Sec-

tion II sets up the notation to be used in the subsequent

development. Section III introduces the synchronous repeated

play framework and introduces classical FP as an algorithm

operating within this framework. Section IV presents our asyn-

chronous repeated play framework, presents our asynchronous

generalization of FP, and proves our main convergence result.

Section V presents the continuous-time embedding of FP,

states convergence results, and provides example implemen-

tations.

II. PRELIMINARIES

A. Notation

A game in normal form is given by the triple Γ =
(N , {ui, Yi}i,∈N ) where N = {1, . . . , Np} denotes the set

of players, Yi denotes the finite set of actions available to

player i, and ui :
∏

i∈N Yi → R denotes the utility function

of player i. Denote by Y :=
∏

i∈N Yi the joint action space.

In order to guarantee the existence of Nash equilibria, it

is necessary to consider the mixed-extension of Γ in which

players are permitted to play probabilistic strategies. Let mi :=
|Yi| be the cardinality of the action space of player i, and let

Δi := {p ∈ R
mi :

∑mi

k=1 p(k) = 1, p(k) ≥ 0, ∀k} denote the

set of mixed strategies available to player i—note that a mixed



strategy is a probability distribution over the action space of

player i. Denote by Δ :=
∏

i∈N Δi the set of joint mixed

strategies. When convenient, we represent a mixed strategy p ∈
Δ by p = (pi, p−i), where pi denotes the marginal strategy

of player i and p−i is a (n− 1)-tuple containing the marginal

strategies of the other players.

In the context of mixed strategies, we often wish to retain

the notion of playing a single deterministic action. For this

purpose, let Ai := {e1, . . . , emi
} ⊂ Δi denote the set of

“pure strategies” of player i, where ej is the j-th canonical

vector containing a 1 at position j and zeros otherwise. Note

that there is a one-to-one correspondence between a player’s

action set Yi and the player’s set of pure strategies Ai ⊂ Δi.

The mixed utility function of player i is given by

Ui(p) :=
∑
y∈Y

ui(y)p1(y) . . . pNp(y)

where Ui : Δ→ R. Note that the mixed utility Ui(p) may be

interpreted as the expected utility of ui(y) given that players’

(marginal) mixed strategies pi are independent.

The set of Nash equilibria is given by NE := {p ∈ Δ :
Ui(pi, p−i) ≥ Ui(p

′
i, p−i), ∀p′i ∈ Δi, ∀i ∈ N}. The distance

of a distribution p ∈ Δ from a set S ⊂ Δ is given by d(p, S) =
inf{‖p−p′‖ : p′ ∈ S}. Throughout the paper ‖ · ‖ denotes the

standard L2 Euclidean norm unless otherwise specified.

Throughout, we assume there exists a probability space

(Ω,F ,P) rich enough to carry out the construction of the

various random variables required in the paper. For a random

object X defined on a measurable space (Ω,F), let σ(X)
denote the σ-algebra generated by X [11]. As a matter of

convention, all equalities and inequalities involving random

objects are to be interpreted almost surely (a.s.) with respect

to the underlying probability measure unless otherwise stated.

III. CLASSICAL FICTITIOUS PLAY

A. Classical (Synchronous) Repeated Play Learning

Let a normal form game Γ be fixed. Let players repeatedly

face off in Γ in discrete stages n ∈ {1, 2, . . .}. Let ai(n) ∈ Ai

denote the action played by player i in stage n of the repeated

play, and let the Np-tuple a(n) = (a1(n), . . . , aNp
(n)) denote

the joint action in stage n.

Note that in a classical (synchronous) repeated play learn-

ing, each player is assumed to be given the opportunity to

revise their action choice ai(n) each iteration of the repeated

play process.

Let the empirical history distribution (or empirical distribu-

tion) of player i be given by1

qi(n) :=
1

n

n∑
s=1

ai(s),

and let the joint empirical distribution be given by the n-tuple

q(n) := (q1(n), . . . , qNp(n)).
In Section IV we will consider a generalization of this

classical repeated play learning framework which may be

1Note that each ai(n) ∈ Ai is a Dirac distribution, and thus the empirical
distribution qi(n) is a normalized histogram of the action choices of player
i.

used to model asynchronous behavior within a discrete-time

framework.

B. Classical Fictitious Play Process

Classical FP operates within the classical (synchronous)

repeated play framework given in Section III-A. A sequence

of actions {a(n)}n≥1 is said to be a fictitious play process if

for all i ∈ N and n ≥ 1,2

ai(n+ 1) ∈ arg max
αi∈Ai

Ui(αi, q−i(n)).

Intuitively speaking, this describes a process where each player

(naively) assumes that her opponents are playing according to

stationary independent strategies. Following this intuition, the

player assumes that q−i(n) accurately represents the mixed

strategy of her opponents and chooses a next-stage action in

order to myopically optimize her next-stage utility.

In this paper we wish to demonstrate that FP retains its

fundamental convergence properties when implemented in an

asynchronous manner. In order to show this, we will leverage

certain robustness properties of FP. In particular, throughout

the paper we assume that the game Γ satisfies the following

assumption:

A. 1. The game Γ is such that if εn → 0 and Ui(ai(t +
1), q−i(n)) ≥ maxαi∈Ai

Ui(αi, q−i(n))− εn, ∀i, for all n ≥
1, then limn→∞ d(q(n), NE) = 0.

If a game Γ satisfies the above assumption, then we say

FP is best-response robust on Γ. Several classes of games

have been shown to satisfy A.1, including two-player zero-

sum games, generic 2×m games, and the class of multiplayer

games known as potential games [12]–[14].

IV. FICTITIOUS PLAY WITH ASYNCHRONOUS UPDATES

In Section IV-A we introduce the generalized repeated

play framework used to model asynchronous interactions. In

Section IV we present our (discrete-time) model of FP with

Asynchronous Updates.

Several practical models of asynchrony can be reduced to

the framework considered here. For example, in Section V

we consider the implementation of FP in a continuous-time

setting where players do not have access to a global clock.

We show that the technical analysis of such a process reduces

to studying the (discrete-time) FP with Asynchronous Updates

presented in this section.

A. Asynchronous Repeated Play Learning

In order to model asynchrony in repeated play learning, we

consider an extension of the classical repeated play framework

of Section III-A in which players may be “active” in some

rounds and “idle” in others.

Let n ∈ N, and let {Xi(n)}n≥1, be a sequence of (deter-

ministic or random) variables Xi(n) ∈ {0, 1} indicating the

rounds in which player i is active. Let Ni(n) count the number

2The initial action a(1) may be chosen arbitrarily.



of rounds in which player i has been active up to and including

time n; i.e.,

Ni(n) :=
n∑

s=1

Xi(s).

Let ai(n) represent the action chosen by player i in round n.

Let the empirical distribution of player i be defined in this

setting as

qi(n) :=
1

Ni(n)

n∑
s=1

ai(s)Xi(s).

B. Fictitious Play with Asynchronous Updates

Within the generalized repeated-play framework given

above, we say a sequence of actions {a(n)}n≥1 is a FP pro-
cess with asynchronous updates (or asynchronous FP process)

if3

ai(n+1) ∈
{
argmaxαi∈Ai

Ui(αi, q−i(n)) if Xi(n+ 1) = 1,

ai(n) otherwise.
(1)

This models a scenario in which each player i may update her

action in round (n+ 1) according to traditional best-response

dynamics only if Xi(n) = 1; otherwise, the action of player

i persists from the previous round.4

Note that classical FP of Section III-B may be seen as a

special case within this framework with Xi(n) = 1, ∀i, n.

Combined with A.1, the following assumption is sufficient

(to be shown) to ensure that the FP process defined in (1)

leads to NE learning:

A. 2. (i) For each i there holds limn→∞ Ni(n) =∞; (ii) for
all i, j there holds, limn→∞

Ni(n)
Nj(n)

= 1.

Part (i) in the above assumption ensures that players are ac-

tive in infinitely many rounds. Part (ii) in the above assumption

ensures that the number of actions taken by each player remain

relatively close; effectively (ii) ensures that players obtain a

weak form of synchronization.

The following theorem shows that, under the above assump-

tion, FP with asynchronous updates achieves NE learning in

any game satisfying the robustness property A.1.

Theorem 1. Let Γ be a finite normal form game satisfying A.1.
Let the action sequence {a(n)}n≥1 be determined according
to a FP process with asynchronous updates and assume A.2
holds. Then players learn NE strategies in the sense that
limn→∞ d(q(n), NE) = 0.

Sections IV-C–IV-E are devoted to proving Theorem 1.

Sections IV-C–IV-D introduce notation and properties that are

useful in the proof, and Section IV-E presents a proof of

the theorem. We note that the proof of Theorem 1 below is

inspired by the development in [15].

3Let Xi(1) = 1, ∀i and let the initial action ai(1) be chosen arbitrarily
for all i.

4We chose to state the dynamics of (1) in their current form in order to
more clearly draw the parallel between FP with asynchronous updates of this
Section and the continuous-time embedded FP process of Section V. However,
it is to be noted that when Xi(n+ 1) = 0 the action ai(n+ 1) may in fact
be arbitrary (or even null, denoting a player is inactive and chooses not to
play any action)—the main convergence result (Theorem 1) still holds.

C. Some Additional Definitions

In order to prove Theorem 1 we will study an underlying

(synchronous) FP process that is embedded in the asyn-

chronous FP process defined in (1).

In particular, for s ∈ N+ define the following terms:

τi(s) := sup{n ∈ N+ : Ni(n) ≤ s}, ãi(s) :=
ai(τi(s)), ã(s) := (ã1(s), . . . , ãNp(s)), q̃i(s) :=
qi(τi(s)), q̃(s) := (q̃1(s), . . . , q̃Np(s)), q̂ij(s) :=
qj(τi(s+1)− 1), q̂i(s) := (q̂i1(s), . . . , q̂

i
Np
(s)). In words, the

term τi(s) denotes the round number when player i is active

for the s-th time. The terms marked with a ∼ correspond to

the embedded (synchronous) FP process that we will study

in the proof of Theorem 1.

When studying the embedded (synchronous) FP process

{ã(s)}s≥1, it will be important to characterize the terms

to which players are best responding. With this in mind,

note that per (1), the action at time τi(s + 1) is chosen as

ai(τi(s + 1)) ∈ argmaxαi∈Ai
Ui(αi, q−i(τi(s + 1) − 1)).

Thus, by construction, the (s + 1)-th action of player i in

the embedded (synchronous) FP process is chosen as

ãi(s+ 1) ∈ arg max
αi∈Ai

Ui(αi, q̂
i
−i(s)).

In the embedded (synchronous) FP process, the term q̃j(s)
may be thought of as the “true” empirical distribution of

player j, and the term q̂ij(s) may be thought of as an estimate

which player i maintains of q̃j(s), and the term q̂i(s) (note

the superscript) may be thought of as player i’s estimate of

the joint empirical distribution q̃(s) at the time of player i’s
(s+ 1)-th best response.

D. Some Useful Properties

Note that for i ∈ N and s ∈ {1, 2, . . .},

Ni(τi(s)) = s, (2)

and for i ∈ N and t ∈ {1, 2, . . .}
Xi(n) = 1 =⇒ τi(Ni(n)) = n. (3)

Furthermore, note that Xi(n) = 0 implies that Ni(n) =
Ni(n− 1), and in particular,

Xi(n) = 0 =⇒ qi(n) = qi(n− 1). (4)

These facts are readily verified by conferring with the defini-

tions of τi, Ni, and Xi.

E. Proof of Theorem 1

Proof. As a first step, we wish to show that

lims→∞ d(q̃(s), NE) = 0. We accomplish this by showing

that there exists a sequence {εs}s≥1 such that lims→∞ εs = 0
and

Ui(ai(s+ 1), q̃−i(s)) ≥ max
αi∈Ai

Ui(αi, q̃−i(s))− εs, ∀s ≥ 1.

(5)

By assumption A.1, it will then follow that

lims→∞ d(q̃(s), NE) = 0.

To that end, for i ∈ N define vi : Δ−i → R by

v(q−i) := maxαi∈Ai
Ui(αi, q−i), and note that by (1),



Ui(ai(τi(s+1)), q−i(τi(s+1)−1)) = vi(q−i(τi(s+1)−1)),
or equivalently by the definitions of ã(s) and q̂i(s),

Ui(ãi(s+ 1)), q̂i−i(s)) = vi(q̂
i
−i(s)). (6)

By Lemma 1 in the appendix (together with Lemma 7.3 of

[15]) there holds lims→∞ ‖q̂i(s) − q̃(s)‖ = 0. It follows

that lims→∞ ‖q̂i−i(s) − q̃−i(s)‖ = 0, which by the Lipschitz

continuity of Ui(·) implies that lims→∞ |Ui(αi, q̂
i
−i(s)) −

Ui(αi, q̃−i(s))| = 0, ∀αi ∈ Ai, ∀i, and lims→∞ |vi(q̂i−i(s))−
vi(q̃−i(s))| = 0, ∀i. By (6) we see that lim

s→∞ |Ui(ãi(s +

1)), q̃−i(s))−vi(q̃−i(s))| = 0, ∀i; i.e., there exists a sequence

{εs}s≥1 such that εs → 0 and (5) holds. It follows by A.1 that

lim
s→∞ d(q̃(s), NE) = 0. (7)

We now proceed to show that limn→∞ d(q(n), NE) = 0.

Let ε > 0 be given. By Lemma 1 (see appendix), for each i ∈
N there exists a time Si > 0 such that ∀s ≥ Si, ‖q(τi(s))−
q̃(s)‖ < ε

2 . Let S
′
= maxi{Si}. By (7) there exists a time S

′′

such that ∀s ≥ S
′′

, d(q̃(s), NE) < ε
2 . Let S = max{S′

, S
′′}.

Then

d(q(τi(s)), NE) < ε, ∀i, ∀s ≥ S. (8)

Let T = maxi{τi(S)}. Note that for some i, q(T ) =
q(τi(S)), and therefore by (8),

d(q(T ), NE) < ε. (9)

Also note that for any n0 > T , it holds that Ni(n0) ≥ S
(since Ni(τi(S)) = S, and Ni(n) is non-decreasing in n), and

moreover

Xi(n0) = 1 for some i =⇒ q(n0) = q(τi(Ni(n0))),

Xi(n0) = 0 for all i =⇒ q(n0) = q(n0 − 1),

(10)

where the first implication holds with Ni(n0) ≥ S. In the

above, the first line follows from (3), and the second line fol-

lows from (4). Consider n ≥ T . If for some i, Xi(n) = 1, then

by (10) and (8), d(q(n), NE) = d(q(τi(Ni(n))), NE) < ε.
Otherwise, if Xi(n) = 0 ∀i, then q(n) = q(n− 1).

Iterate this argument m times until either (i) Xi(n−m) =
1 for some i, or (ii), t − m = T . In the case of (i),

d(q(n), NE) = d(q(n − m), NE) = d(q(τi(Ni(n −
m))), NE) < ε, where the inequality again follows from

(8) and the fact that n − m > T =⇒ Ni(n − m) ≥ S.

In the case of (ii), d(q(n), NE) = d(q(T ), NE) < ε,
where the inequality follows from (9). Since ε > 0 was chosen

arbitrarily, it follows that lim
n→∞ d(q(n), NE) = 0.

V. CONTINUOUS-TIME EMBEDDING OF FICTITIOUS PLAY

In classical FP it is supposed that agents take actions in a

synchronous manner. In terms of real-world implementation,

this is tantamount to assuming that agents have access to a

global clock. In a large-scale distributed setting, this may be

an impractical assumption.

In this section we consider an implementation of the FP

algorithm in a setting where agents may not have access to a

global clock. It will be shown that such algorithms are closely

related to the discrete-time asynchronous FP process studied in

Section IV. Indeed, sufficient conditions for the convergence

of the continuous-time algorithms studied in this section will

be derived as a consequence of Theorem 1.

As in the models of repeated play learning discussed in

Sections III-A and IV-A, we suppose each player executes a

(countable) sequence of actions {ai(n)}n≥1. Furthermore, we

assume that each action is taken at some instant in real time

t ∈ [0,∞) as measured by some universal clock.5 In particular,

for each player i, let {τi(n)}∞n=1 ⊂ [0,∞) be an increasing

sequence where τi(n) indicates the time (as measured by the

universal clock) at which player i chooses an action for the

n-th time. Let ai(n) denote the n-th action taken by player i;
i.e., the action taken by player i at time τi(n). For t ∈ [0,∞),
let Ni(t) = sup{n : τi(n) ≤ t} denote the number of actions

taken by player i by time t. For t ∈ [0,∞), we define the

empirical distribution of player i in this settings as

qi(t) :=
1

Ni(t)

Ni(t)∑
k=1

ai(k).

In particular, for t ∈ [0,∞), let qi(t−) := limt̃↑t qi(t̃).
In this context, we say the sequence {ai(n)}n≥1 is an

asynchronous FP action process if for n ≥ 1 each player i
chooses their stage n action according to the rule:6

ai(n) ∈ arg max
αi∈Ai

ui(αi, q−i(τi(n)−)).

We call the sequence {τi(n)}n≥1 the action-timing process

for player i, and we refer to any method used to generate

{τi(n)}n≥1 (whether deterministic or stochastic) as an ac-

tion timing rule. Together, we refer to the joint sequence

{τi(n), ai(n)}i∈N ,n≥1 as a continuous-time embedded FP

process.

The following assumption provides a sufficient condition

on the action-timing process in order to ensure convergence

of the continuous-time embedded FP process. The assumption

is essentially a restatement of A.2, but in a continuous-time

setting.

A. 3. (i) For each i there holds limt→∞ Ni(t) = ∞, (ii) for
each i, j there holds limt→∞ Ni(t)/Nj(t) = 1.

Part (i) of the above assumption may be satisfied, for

instance, as long as the clock skew of each agent stays bounded

(with respect to the universal clock), and each agent takes

actions infinitely often with respect to their local clock. In

order to ensure (ii) is satisfied, slightly more care is needed,

as demonstrated by the specific application scenarios below.

The following theorem demonstrates that if the action-

timing sequence is chosen to satisfy A.3, then the continuous-

time embedding of FP will converge to the set of NE.

Theorem 2. Let Γ be a game satisfying A.1. Suppose that
{ai(n), τi(n)}i∈N , n≥1 is a continuous-time embedding of FP

5We use the term “universal clock” to refer to some reference clock by
which we can compare the timing of actions taken by individual players.
However, the universal clock is merely an artifice for analyzing the process,
and we do not suppose that players have any particular knowledge concerning
it.

6Let τi(1) = 0 for all i, and let the initial action ai(1) be chosen arbitrarily
for all i.



satisfying A.3. Then players learn NE strategies in the sense
that limt→∞ d(q(t), NE) = 0.

The proof of Theorem 2 follows readily from Theorem 1.

In the following two subsections, we give two simple exam-

ples of action-timing rules that illustrate different methods for

achieving A.3 (and hence NE learning in the continuous-time

embedded FP process).

A. Independent Poisson Clocks

Let wi(n) = τi(n+ 1)− τi(n) denote the stage n “waiting

time” for player i. Suppose that for each player i and n ≥
1, wi(n) is an independent random variable with distribution

wi(n) ∼ exp(λ), where λ > 0 is some parameter that is

common among all i. In this case, the action-timing process

{τi(n)}n≥1 is said to be a homogenous Poisson process.

The following theorem shows that if the action-timing

process is randomly generated in this manner, then players

will achieve NE learning.

Theorem 3. Let Γ be a normal-form game satisfying A.1.
Suppose that players are engaged in a continuous-time embed-
ded asynchronous FP process and the action-timing sequences
{τi(n)}n≥1 are generated as independent homogenous Pois-
son processes with common parameter λ for all i. Then players
learn NE strategies in the sense that limt→∞ d(q(t), NE) =
0, almost surely.

Proof. By Theorem 1 it is sufficient to show that

limt→∞ Ni(t) =∞, ∀i, and limt→∞
Ni(t)
Nj(t)

= 1 for all i, j.

First, note that for any i and n ≥ 1, wi(n) < ∞ almost

surely. Hence, τi(n) =
∑n

k=1 wi(k) < ∞ for all i, almost

surely. Equivalently, for any M > 0, almost surely there exists

a (random) time T > 0 such that Ni(t) ≥ M for all t ≥ T .

Hence, limt→∞ Ni(t) =∞, almost surely.

Now we show that limt→∞
Ni(t)
Nj(t)

= 1 for all i, j. Let

τ(1) := mini τi(1) and let T1 := {τi(n)}i∈N ,n≥1\τ(1). For

n ≥ 2, let τ(n) := min Tn−1 and let Tn := Tn−1\τ(n).
For n ≥ 1, i ∈ N , define Xi(n) ∈ {0, 1} to be an indicator

variable with Xi(n) = 1 if τ(n) ∈ {τi(k)}k≥1 and Xi(n) = 0
otherwise.

Let F0 := ∅ and for n ≥ 1, let Fn := σ({τ(k)}nk=1). For

n ≥ 1 let ξi(n) := P(Xi(n) = 1| Fn−1).
Since for each i, {τi(n)}n≥1 is a Poisson process with

common parameter λ, there holds ξi(n) =
1
Np

for all i and

n.7 By Levi’s extension of the Borel-Cantelli Lemma (see [11]

p.124) there holds

lim
n→∞

∑n
k=1 Xi(n)∑n
k=1 ξi(n)

= 1, a.s. (11)

Note that for each i,
∑n

k=1 Xi(k) = Ni(τ(n)) and∑n
k=1 ξi(n) =

n
Np

. Thus by (11),

lim
n→∞

Ni(τ(n))

Nj(τ(n))
= lim

n→∞
Ni(τ(n))

n/Np

n/Np

Nj(τ(n))
= 1, a.s., ∀i, j.

7Recall that Np denotes the number of players.

Finally, note that limn→∞ τ(n) =∞ a.s., and for each i Ni(t)

is constant on [0,∞)\{τ(n)}n≥1. Thus, limt→∞
Ni(t)
Nj(t)

= 1,

almost surely.

B. Adaptive Clock Rates

In this section we consider a scenario in which each player

chooses the timing of her actions (deterministically) according

to a personal clock with a skew rate that may be different

among players.

Let wi(n) = τi(n + 1) − τi(n) again denote the stage

n “waiting time” for player i. For each i, let wi,0 denote

a base waiting time for player i. The base waiting time of

player i may be interpreted as the amount of time which

expires according to the universal clock during one unit of

time as measured by player i’s personal clock. In this manner,

the disparity in the wi,0 reflects disparate skew rates among

players’ personal clocks.

Let Nmin(t) := mini Ni(t). At time t, we suppose that

player i has knowledge of Nmin(s) at the time instances s ∈
{kwi,0 : k ∈ N+, kwi,0 ≤ t} . For each i, let Bi ∈ R be a

number satisfying Bi > maxi wi,0.
Suppose that player i adaptively chooses her stage n waiting

time according to the rule:

wi(n) = min
{
kwi,0 : k ∈ N+, Nmin(τi(n) + kwi,0) (12)

≥ Ni(τi(n))−Bi

}

In words, this rule may be described as follows: Player i
periodically observes Nmin(t). If Ni(t)−Nmin(t) ≤ Bi then

player i takes a new action. If Ni(t) − Nmin(t) > Bi then

player i waits for Nmin(t) to increase sufficiently (satisfying

Ni(t)−Nmin(t) ≤ Bi) before taking a new action.

Theorem 4. Let Γ be a normal-form game satisfying A.1.
Suppose that players are engaged in a continuous-time em-
bedded asynchronous FP process in which the action-timing
sequence {τi(n)}n≥1 is generated according to the adaptive
rule (12). Then players learn NE strategies in the sense that
limt→∞ d(q(t), NE) = 0.

Proof. By Theorem 1, it is sufficient to show that

limt→∞ Ni(t) = ∞ for some (and hence all) i, and that

limt→∞
Ni(t)
Nj(t)

= 1.

Note that for i∗ ∈ argmaxi wi,0, there holds Ni∗(t) =

 t
wi∗,0

�+1, and hence limt→∞ Ni∗(t) =∞. Furthermore, by

construction, |Ni(t) − Ni∗(t)| ≤ 2maxi Bi for all i and for

all t ≥ 0. Hence, limt→∞
Ni(t)
Nj(t)

= 1, for all i, j.

VI. CONCLUSIONS

Classical FP implicitly assumes agents are capable of syn-

chronizing the timing of their actions. This assumption may

be difficult to satisfy in large-scale multi-agent settings where

no global clock is available. We introduced an asynchronous

generalization of FP and provided sufficient conditions for

convergence of the algorithm to the set of NE. We also studied

a class of asynchronous continuous-time implementations of

FP that may be practical to implement in real-world scenarios.



APPENDIX

Lemma 1. Let i, j ∈ N , let τi(s) and q̃j(s) be de-
fined as in Section IV-C, and assume A.2 holds. Then
lims→∞ ‖qj(τi(s))− q̃j(s)‖ = 0.

Proof. Note that for any n ∈ N, qj(n) = qj(τj(Nj(n))) =
q̃j(Nj(n)), where the first equality follows from [15] Lemma
7.4, and the second equality follows from the definition of
q̃j(s). Note also that for s ∈ N+, ‖q̃j(s+1)− q̃j(s)‖ ≤ 1

sMj ,
where Mj := maxp′,p′′∈Δj

‖p′− p′′‖, and more generally, for
s1, s2 ∈ N,

‖q̃j(s1)−q̃j(s2)‖ ≤
max(s1,s2)−1∑

s=min(s1,s2)

‖q̃j(s+1)−q̃j(s)‖ ≤ |s2 − s1|
min(s1, s2)

Mj .

Hence,

‖qj(τi(s))− q̃j(s)‖ = ‖q̃j(Nj(τi(s)))− q̃j(s)‖
= ‖q̃j(Nj(τi(s)))− q̃j(Ni(τi(s)))‖

≤ |Nj(τi(s))−Ni(τi(s))|
min(Ni(τi(s)), Nj(τi(s)))

Mj ,

where the second equality follows from the fact that

Ni(τi(s)) = s (see (2)). Thus, it suffices to show that

lim
s→∞

|Nj(τi(s))−Ni(τi(s))|
min(Ni(τi(s)), Nj(τi(s)))

= 0.

But, by A.2, for any i, j there holds: 0 = limn→∞
Ni(n)
Nj(n)

−1 =
lims→∞

Ni(τi(s))
Nj(τi(s))

− 1 = lims→∞
Ni(τi(s))−Nj(τi(s))

Nj(τi(s))
, where

the second equality follows from the fact that (again by A.2)

lims→∞ τi(s) =∞.
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