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Abstract—The paper concerns the development of distributed
equilibria learning strategies in large-scale multi-agent games
with repeated plays. With inter-agent information exchange being
restricted to a preassigned communication graph, the paper
presents a modified version of the fictitious play algorithm
that relies only on local neighborhood information exchange for
agent policy update. Under the assumption of identical agent
utility functions that are permutation invariant, the proposed
distributed algorithm leads to convergence of the networked-
averaged empirical play histories to a subset of the Nash
equilibria, designated as the consensus equilibria. Applications of
the proposed distributed framework to strategy design problems
encountered in large-scale traffic networks are discussed.

I. INTRODUCTION

We present a distributed algorithm for learning Nash equi-
libria in large-scale repeated games. The algorithm, which we
call modified fictitious play (MFP), is based on the well known
fictitious play (FP) algorithm. MFP is an adapted form of FP
which seeks to reduce the communication and computational
burdens which make FP egregiously impractical for large-scale
applications. We show that in a certain class of games, MFP
converges in average empirical frequency to a subset of the
Nash equilibria which we call the consensus equilibria.

FP was originally introduced as a way of computing Nash
equilibria in repeated two player games [2]. Since it was intro-
duced, FP has been the subject of much research to determine
the class of games for which it does in fact converge1. While
it has been shown that FP does not converge for all games,
there are many useful games for which convergence has been
proven. In particular, in [4] it was shown that FP can be
used to compute equilibria in identical interest games with an
arbitrarily large number of players. However, the algorithm
is limited in practicality due to the intense computational
requirements of FP in large games.

Concomitant to research in large-scale games is the study
of distributed convergence to Nash equilibrium. In a non-
distributed setting it is generally assumed that players have
unrestricted ability to observe the actions of all other players.
In a large-scale game it may be impractical or impossible
for players to have such universal knowledge. A distributed
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1In reference to FP or one of its variants, we use the term convergence to
mean that the empirical frequency distribution of a FP process asymptotically
converges to the set of Nash equilibria, a notion to be made precise in section
II.

setting generally implies a restriction on the ability of players
to observe the actions of others. It may be restricted to a
neighborhood of the player, or in the extreme case, a player
may only be permitted to observe their own actions [1],[9].
Some researchers have looked at adapting the FP algorithm
to a distributed setting. In Joint Strategy Fictitious Play [6],
the information tracking burden is reduced by requiring that
players only know the predicted utilities for each action. In [9],
a method is presented where players need only observe their
personal utility received at each stage. In this paper, we take a
slightly different approach to the problem. We investigate the
question: what if all players have access to only the average
empirical distribution of all players?

Our main contribution is a distributed learning algorithm
which converges in terms of average empirical frequency to
a subset of the mixed strategy Nash equilibria which we call
the consensus equilibria. Moreover, this convergence to the set
of consensus equilibria guarantees that each agent obtains an
accurate estimate of the limiting equilibrium strategy. Previous
work has not explicitly considered the scenario where infor-
mation gathering occurs through a preassigned communication
graph. We consider a scenario where players engaged in a
repeated game are able to exchange information once per
iteration of the game using a preassigned communication
graph G in order to estimate the average empirical distribution.
The graph G must be connected but may still be sparse.
Convergence results are proven for games with identical utility
functions and can be extended to the larger class of games
known as potential games [7] with the restriction that the
potential function be permutation invariant. We emphasize
that the mode of convergence used in this paper, convergence
in average empirical frequency, is different from the more
commonplace convergence in empirical frequency.2

The concept of a consensus equilibrium is closely related to
that of a symmetric equilibrium. The existence of symmetric
equilibrium in finite normal form games was first proven
by Nash [8] in the same work where the concept of Nash
equilibrium was originally presented. In general, a symmetric
equilibrium is a Nash equilibrium which is invariant under
automorphisms of the game. A consensus equilibrium, on the
other hand, is a Nash equilibrium in which all players use an
identical strategy. In the case of a symmetric game, the two
concepts coincide. Symmetric games can be useful, especially
when considering large-scale scenarios. As noted in [3], the
inherent symmetry can allow for ‘algorithmic shortcuts leading
to significantly more effective or efficient solution procedures.’
MFP may be considered as a tool which takes advantage of the

2We prove our results for the general case of arbitrary tie breaking rules.
By making stronger assumptions on the tie breaking rules it may be possible
to guarantee other modes of convergence.
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symmetry in certain classes of games to provide an efficient
method for finding consensus (symmetric) equilibria. As such,
MFP is specifically tailored to finding consensus equilibria,
and it remains to be seen to what extent the scope of MFP can
be enlarged for learning symmetric equilibria in more general
classes of games where the two concepts do not precisely
coincide.

The rest of the paper is organized as follows. Section II
sets up notation to be used in the subsequent development.
The set of consensus equilibria is defined and the classical
(centralized) FP algorithm is reviewed in the same section.
Section III introduces MFP as a low-information-overhead
repeated-play alternative to FP for learning consensus equilib-
ria in multi-agent games. A fully distributed implementation
of the proposed MFP, the distributed MFP, in multi-agent
scenarios in which agent information dynamics is restricted
to communication over a preassigned sparse communication
network, is presented and analyzed in section IV. In section VI
we demonstrate an application of distributed MFP in a traffic
routing scenario, whereas some generalizations are discussed
in section V. Finally, section VII concludes the paper.

II. SETUP AND NOTATION

A. Notation

Let Γ be an n-player game in normal form with the set
of players N = {1, 2, . . . , n}. The set of pure strategies for
player i is given by Yi and the set of joint pure strategies for
all players is Y = Y1×Y2×. . .×Yn. The utility of each y ∈ Y
for player i is given by ui(y) : Y → R. This paper will deal
mostly with games with identical utility functions such that
ui(y) = uj(y) ∀i, j, in such cases we drop the subscript and
write u(y) = ui(y) ∀i.

The set of mixed strategies3 for player i is given by ∆i

and the set of joint mixed strategies for all players is given
by ∆ = ∆1 × ∆2 × . . . × ∆n. The mixed utility for f ∈
∆ is given by Ui(f) =

∑
y∈Y ui(y)f1(y1)f2(y2) . . . fn(yn).

For convenience the notation Ui(f) will often be written as
Ui(fi, f−i) where fi ∈ ∆i is the mixed strategy for player i
and f−i indicates the joint mixed strategy for all players other
than i. This is merely a notational convenience and it should
be remembered that U(f) = U(fi, f−i).

Let {Υi(t, yi)}∞t=0 be a sequence of actions for player i.
Viewed as a mixed strategy, Υi(t) for each time t, may be
represented in terms of a Dirac or delta distribution over the
set of possible actions, i.e,

Υi(t, yi) =

{
1, if yi is the action taken at time t

0, otherwise.
(1)

In order to simplify notation we usually write this as Υi(t),
leaving out the second argument when it is clear from the
context. Let {Υ(t)}∞t=0 be the associated sequence of actions
in the joint mixed strategy space. Let fi(t) be the normalized
histogram (empirical distribution) of the actions of player i up

3A mixed strategy fi is a probability distribution over the set Yi. Player i
chooses an action by sampling fi.

to time t, i.e.,

fi(t) =
1

t

t∑

k=1

Υi(k).

Similarly,

f(t) =
1

t

t∑

k=1

Υ(k)

is the joint empirical distribution corresponding to the joint ac-
tions of the players up to time t. The sequence of distributions
{f(t)}∞t=0 is often called a belief sequence.

A mixed strategy f is a Nash equilibrium of Γ if U(f) ≥
U(gi, f−i) ∀gi ∈ ∆i. We define the set of Nash equilibria as

K = {f : Ui(f) ≥ Ui(gi, f−i) ∀gi ∈ ∆i}, (2)

and the set of consensus equilibria as

C = {f : Ui(f) ≥ Ui(gi, f−i) ∀gi ∈ ∆i,

f1 = f2 = · · · = fn}. (3)

Clearly, the set C of consensus equilibria defined above is a
subset of the set K of Nash equilibria. The set of ε Nash
equilibria is given by

Kε = {f : Ui(fi, f−i) + ε ≥ U−i(gi, fi) ∀gi ∈ ∆i}, (4)

The distance of a distribution f ∈ ∆ from C is given by
d(f, C) = inf{‖f − g"‖ : g" ∈ C}.

Unless stated otherwise, we will restrict attention to games
with identical permutation-invariant utilities; formally, we as-
sume:

A. 1. All players use the same strategy space.

A. 2. The players’ utility functions are identical and permu-
tation invariant

Let

f̄(t) =
1

n

n∑

i=1

fi(t)

be the average empirical distribution. With a slight abuse of
notation, let f̄n(t) = (f̄(t), f̄(t), . . . , f̄(t)) ∈ ∆ denote the
mixed strategy where all players use the empirical average as
their individual strategy. Both f̄(t) and f̄n(t) will be extremely
important in the exposition of MFP.

Note that under these assumptions, the set of consensus
equilibria is known to be nonempty [3].

B. Fictitious Play
In fictitious play the best response of player i at time t is

given by

vi(f(t)) = max
gi(yi)∈∆i

U(gi, f−i(t)) (5)

= max
gi(yi)∈∆i

∑

y∈Y

u(y)gi(yi)f−i(t, y−i) (6)

In words this means that at time t each player chooses a
best response by assuming that the empirical distributions of
the other players accurately represent their respective mixed
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strategies. A fictitious play process is a sequence {Υ(t)}∞t=0

such that,

vi(f(t)) = U(Υi(t+ 1), f−i(t))

A fictitious play process is said to converge in empirical
frequencies if limt→∞ d(f(t),K) = 0. In [4] it was shown
that a fictitious play process converges in the above sense for
games satisfying A. 1 - A. 2.

III. MODIFIED FICTITIOUS PLAY

In theory, FP is a powerful tool for learning equilibria
in n-player games. However, when it comes to practical
implementation, it quickly becomes infeasible as the game
size grows. The difficulty of implementing FP in large-scale
distributed games can be understood by analyzing the FP best
response calculation given in (6). The two major problems
with FP are:
i) Each player must have access to the marginal empirical
frequency distributions of the other n− 1 players in order to
compute a best response. It is impractical for each agent to
track the actions of all other agents.
ii) The computational complexity of computing the mixed
utility given an n dimensional pdf grows exponentially with
the size of the game.
Consider a modification of the FP best response given in (6),
such that each player calculates a best response by assuming
that all other players are independently playing the average
empirical distribution.

ṽi(f̄(t)) = max
gi(yi)∈∆i

∑

y∈Y

u(y)gi(yi)f̄−i(t, y−i) (7)

where

f̄−i(t, y−i) = f̄(t, y1) . . . f̄(t, yi−1)f̄(t, yi+1) . . . f̄(t, yn),

is the joint distribution where the other −i players indepen-
dently use f̄(t). In words, this means that player i chooses
a best response by assuming that all other players are in-
dependently using the mixed strategy given by f̄(t). Using
such a best response rule, there would be no need for each
player to track the empirical distribution of all other players;
rather, each player need only have access to the average
empirical distribution, f̄(t). This is the fundamental idea of
MFP. The information tracking problem of FP is mitigated by
requiring that players only track f̄(t). The second problem of
computational complexity is resolved in a less direct manner.
By exploiting the symmetry inherent in the MFP best response
calculation, the computation can often be greatly simplified.
For example, in the distributed traffic routing scenario of
section VI, the complexity of the best response calculation is
reduced to constant time complexity, in terms of the number
of players.

In an ideal MFP process, the best response calculation is
given by (7). We consider a more general case where players
do not have access f̄(t) directly. Instead, player i has access to
f̂i(t), an approximation of f̄(t). Let εmax(t) ≥ max

i∈N
‖f̄(t)−

f̂i(t)‖∞ be the maximum error in any players approximation

of f̄(t). We make the following assumption about the decay
rate of the error,

A. 3. εmax(t) = O( log t
tr ), r > 0

A sequence of actions {Υ(t)}∞t=0 is a modified fictitious
play process if

vmi (f̄(t)) = max
gi(yi)∈∆i

∑

y

u(y)gi(yi)f̂i(t, y−i)

=
∑

y

u(y)Υi(t+ 1, yi)f̂i(t, y−i).

That is, each player best responds to f̂i(t) his personal estimate
of f̄(t). We use the superscript in vmi () to indicate the MFP
best response, as opposed to the traditional FP best response
of (6).

Theorem 1. Let {Υi(t)}∞t=1 be a MFP process such that A.
1 - 3 hold. Then d(f̄n(t), C) → 0 as t → ∞.

The proof of theorem 1 follows along essentially the same
lines as the proof in [4] for convergence of classical FP in
games with identical interests, though with obvious modi-
fications4. We emphasize that this result shows that the n-
tuple of the average empirical distribution converges to C,
d(f̄n(t), C) → 0. This is not the same as the more traditional
definition of convergence in empirical frequencies,

d(f(t), C) → 0 as t → ∞. (8)

In fact, it is not difficult to construct a counter example that
violates (8) given our assumptions.5 The practical meaning
of the theorem is that it allows player i to to learn a mixed
strategy f̂i(t) which is part of a Nash equilibrium strategy.

IV. DISTRIBUTED MFP

A. Distributed Problem Formulation

The result given in theorem 1 is powerful in that it
guarantees convergence to a Nash equilibrium given only an
estimate of average of all players empirical distributions f̄(t),
rather than all of the individual empirical distributions f(t).
In a distributed setting, not only is it impractical for players
to track f(t) precisely, but it is impractical to even have
precise knowledge of f̄(t). We show that if players are able
to exchange information through a connected communication
graph in order to estimate f̄(t), then a modified fictitious
play process will converge to the set of consensus equilibria.
Consider the following problem setup.

Players are engaged in an n-player repeated game. Players
are able to exchange information with neighboring agents
once per iteration of the game via a sparse but connected
communication graph, G = (V,E) where each node represents
a player. In the distributed problem formulation we maintain
assumptions 1 and 2 given in section II for MFP and we

4The proofs in this paper are omitted due to space constraints. The complete
proofs can be found in the forthcoming longer version of this paper.

5A counterexample can be constructed by taking advantage of the arbitrary
tie breaking rules. By constraining the tie breaking rules it may be possible
to ensure convergence in empirical frequencies, as mentioned in footnote 2.
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add an additional assumption pertaining to the communication
network.

A. 4. The ancillary communication network can be modeled
by a connected graph.

In order to compactly describe the distributed MFP al-
gorithm, we recast some of the previous definitions of the
paper in terms of vectors and matrices. Let Υi(t) ∈ R1×m

be a delta function representing player i’s action at time t.
Let fi(t) = 1

t

∑t
s=1 Υi(s), fi(t) ∈ R1×m be the empirical

distribution for player i. Let

f(t) =





f1(t)
f2(t)

...
fn(t)




∈ Rn×m. (9)

Let f̄(t) ∈ R1×m be the average empirical distribution,

f̄(t) =
1

n

n∑

i=1

fi(t). (10)

Let f̂i(t) ∈ Rn×m be player i’s estimate of f̄(t). Let

f̂(t) =





f̂1(t)
f̂2(t)

...
f̂n(t)




. (11)

B. Distributed MFP algorithm
Initialize

i) At time t = 0, players have not taken any actions. The
empirical distribution for all players is given by fi(0) = 0.
The average empirical distribution is also given by f̄(0) =
0. Players initialize their estimate of the average empirical
distribution to be f̂i(t) = 0. At time t = 1 players choose an
arbitrary initial action Υi(1). fi(1) is updated to reflect the
action taken.

fi(t+ 1) = fi(t) +
1

t+ 1
(Υi(t+ 1)− fi(t)) (12)

Iterate
ii) Each player computes a new estimate of the average using
the following update rule:

f̂i(t+ 1) =
∑

j∈Ni

wi,j f̂j(t) + fi(t+ 1)− fi(t) (13)

where Ni is the set of neighbors of player i. This update rule
can be represented in more compact notation as,




f̂1(t+ 1)
f̂2(t+ 1)

...
f̂n(t+ 1)




= W





f̂1(t)
f̂2(t)

...
f̂n(t)




+





f1(t+ 1)
f2(t+ 1)

...
fn(t+ 1)




−





f1(t)
f2(t)

...
fn(t)





(14)
or equivalently,

f̂(t+ 1) = Wf̂(t) + f(t+ 1)− f(t) (15)

where W ∈ Rn×n is a weighting matrix defining the weight
given to each neighbor. W must satisfy the following assump-
tion

A. 5. W is an n×n matrix that is doubly stochastic, aperiodic,
and irreducible.

Note that given assumption 4 (G is a connected graph), it is
always possible to find a matrix W satisfying these conditions.

iii) Player i computes the set of best responses using f̂i(t)
as the assumed mixed strategy for each of the n − 1 other
players.6 The next action

Υi(t+ 1) ∈ {arg max
gi∈Yi

U(gi, f̂−i(t))} (16)

is played according to the best response calculation. In the
event of multiple pure strategy best responses, any may be
chosen arbitrarily. fi(t + 1) is updated to reflect the action
taken.

fi(t+ 1) = fi(t) +
1

t+ 1
(Υi(t+ 1)− fi(t)) (17)

Terminate
iv) steps ii) - iii) are repeated until a termination condition is
reached

C. Main Result
We refer to any sequence of actions {Υi(t)}∞t=1 which can

be attained using the distributed MFP algorithm of section
IV-B as a distributed MFP process.

Theorem 2. Let {Υi(t)}∞t=1 be a distributed MFP process
such A. 1, 2, 4, and 5 hold. Then d(f̂(t), C) → 0 as t → ∞.
In particular, the agent estimates f̂i(t)’s reach asymptotic con-
sensus, i.e. d

(
f̂i(t), f̂j(t)

)
→ 0 as t → ∞ for each pair (i, j)

of agents. Moreover, the agents achieve asymptotic strategy
learning, in the sense that d((f̂i(t))n, C) → 0 as t → ∞ for
all i = 1, . . . , n.

Proof Sketch. It can be shown that in a distributed MFP
process, the maximum error in any players estimate of f̄(t)
decays as O( log t

t ). Applying theorem 1, d(f̄n(t), C) → 0,
from which it follows that d(f̂(t), C) → 0.

Again, we emphasize that this is not the same as the more
traditional definition of convergence in empirical frequencies
given in (8). In words, theorem 2 says that joint strategy profile
f̂(t) where each player uses his estimate of f̄(t) will converge
to the set of consensus equilibria.

The notion of convergence to mixed equilibrium in empir-
ical frequency has been the subject of criticism [5] since it
does not actually imply that the strategies played will ever
be optimal. Convergence in empirical frequency means only
that the time average of the strategies played will converge to
the Nash equilibrium. In many cases this can mean that play
simply cycles through strategies as t → ∞ but, the actual

6According to (7), U(·) should be maximized over the set ∆i. The set
of mixed strategy best responses is the convex hull of all pure strategy best
responses, so calculating the set of pure strategy best responses implicity gives
the set of mixed strategy best responses.
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strategies played at any given t are never truly optimized.
Our notion of convergence in average empirical frequency
is not exempt from this criticism; play is never necessarily
optimal. Even so, as play progresses in MFP, players do,
in some sense, learn an optimal strategy. Each player i has
direct access to f̂i(t), which is their portion of the converging
equilibrium strategy. This is an important point to note, since
a distributed learning algorithm would be of limited use if it
required much global knowledge, or if players did not learn
the strategy relevant to their play.

V. GENERALIZATIONS

The assumption A. 2, of identical permutation invariant
utility functions can be relaxed in lieu of the following broader
assumption:

A. 6. The game Γ is an exact potential game with a permu-
tation invariant potential function.

Potential games were studied in [7]. A game which admits
an exact potential function is known as an exact potential
game. The class of potential games includes congestion games.
Congestion have many useful applications in economics and
engineering. We present an example of a congestion game
in the distributed traffic routing example presented in the
following section.

VI. APPLICATIONS

A. Distributed Traffic Routing

We simulated 25 cars traversing a traffic network of 6 roads.
All vehicles start from the same location and have the same
destination. The delay on road r for a joint strategy y is
given by a cubic cost function. In this particular simulation,
the weights wi,j (see (13)) were computed to optimize the
speed of distributed linear averaging [10]. A graph of the
communication network used for simulations is shown in
figure 2.

The key results in this paper are based around showing
d(f̂(t), C) → 0. An important practical implication of this
result is that f̂(t) ∈ Kεt where εt → 0 and Kεt is defined
in (4). Figure 1 shows a plot of the minimum εt such that
f(t) ∈ εt. This plot shows that εt tends to zero which is sug-
gestive of the fact that d(f̂(t), C) → 0 holds as well. For the
traffic routing application, this means that players concurrently
learn a mixed strategy εt equilibrium, where εt can be made
arbitrarily small. Once εt is sufficiently small for the game
designers purposes, the algorithm can be terminated. The cost
functions used to model road delay were specifically chosen as
cubic polynomials in order to model a situation in which there
may exist multiple consensus equilibria. Distributed MFP is
particulary relevant to such situations since it can be used not
only to compute a consensus equilibrium, but also to ensure
that players agree on which consensus equilibrium is reached.

This example is an instance of a congestion game. Any
congestion game can be shown to satisfy assumption 6, and
therefore falls within the purview of MFP.

101 102

101

102

ε
t

iterations

Fig. 1. The minimum εt on each iteration t such that f̂(t) ∈ Kεt . The trend
εt → 0 is consistent with convergence to the set of consensus equilibria, i.e.
d(f̂(t), C) → 0 as t → ∞, as stated in theorem 2.

Fig. 2. Randomly generated sparse communication graph.

VII. CONCLUSIONS

We have introduced a variant of fictitious play which we call
modified fictitious play. MFP simplifies the communication
and computational burdens inherent in FP, making it suitable to
applications in large-scale games. MFP is shown to converge to
the set of consensus equilibria for exact potential games with
permutation-invariant potential functions. Our main result is
a distributed implementation of MFP in which where players
communicate via a preassigned, sparse communication graph.
Future research may involve extending the scope of MFP to
include finding general symmetric equilibria in both symmetric
games, and more general games. It is also interesting to
consider variants of MFP for learning non-consensus equilibria
in broader classes of games.
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