
Fast Cooperative Distributed Learning
Du˘san Jakovetić1,2, José M. F. Moura1, and João Xavier2

1Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
2Instituto Superior Técnico (IST), Technical University of Lisbon, Lisbon, Portugal

Abstract— We consider distributed optimization where N
agents in a network minimize the sum

PN
i=1

fi(x) of their
individual convex costs. To solve the described problem, existing
literature proposes distributed gradient-like algorithms that are
attractive due to computationally simple iterations k, but have a
drawback of slow convergence (in k) to a solution. We propose
a distributed gradient-like algorithm, that we build from the
(centralized) Nesterov gradient method. For the convex fi’s
with Lipschitz continuous and bounded gradients, we show
that our method converges at rate O(log k/k). The achieved
rate significantly improves over the convergence rate of existing
distributed gradient-like methods, while the proposed algorithm
maintains the same communication cost per k and a very
similar computational cost per k. We further show that the
rate O(log k/k) still holds if the bounded gradients assumption
is replaced by a certain linear growth assumption. We illustrate
the gains obtained by our method on two simulation examples:
acoustic source localization and learning a linear classifier based
on l

2

-regularized logistic loss.

I. INTRODUCTION

Motivated by applications in sensor networks and dis-
tributed learning, we consider distributed optimization setup
in which each agent i (out of N agents) acquires data Di

to infer a vector quantity x? 2 Rd. Agents are situated
in a generic, connected network; agent i’s own data Di

give only a partial knowledge on x?, but the quantity x?

can be successfully reconstructed based on all agents’ data.
More formally, each agent i has a local convex cost function
fi(x) = fi(x;Di) of the variable x (parameterized by Di),
known only to agent i. The goal is for each agent to find x?

that solves the unconstrained problem (See Figure 1 for an
illustration of the problem on a N = 6-agent network):

minimize
NX

i=1

fi(x) =: f(x). (1)

Application examples of (1) include distributed learning of
a linear classifier, e.g., [1], or distributed acoustic source
localization in sensor networks, e.g., [2]. (See also Section II
for further details on the two problems.)

To solve (1) or related problems, existing literature pro-
poses distributed iterative gradient-like algorithms, see [3],

The work of the first and third authors is partially supported by:
the Carnegie Mellon|Portugal Program under a grant from the Fundação
para a Ciência e Tecnologia (FCT), Portugal; by FCT grants CMU-
PT/SIA/0026/2009; and by ISR/IST plurianual funding (POSC program,
FEDER). The work of the first and second authors is partially supported by
NSF under grants CCF-1011903 and CCF-1018509, and by AFOSR grant
FA95501010291. D. Jakovetić holds a fellowship from FCT.

Fig. 1. An example of a connected network with N = 6 agents. Each
agent i has a local convex cost function fi(x).

and more recent references [4], [5]. With these algorithms,
agents perform local gradient and consensus-type (averag-
ing) computations and communicate with their immediate
neighbors their current solution estimates. These algorithms
are attractive due to computationally inexpensive and simple
iterations k, but they converge slowly (in k) to a solution.

We propose a novel distributed gradient-like algorithm,
based on the (centralized) Nesterov gradient method [6].
Our distributed algorithm maintains: 1) iterations’ simplicity
(computational cost per k); and 2) communication cost per
k of existing methods [4], [5], but it significantly increases
the convergence rate. Specifically, on the class of convex
fi’s with Lipschitz continuous and bounded gradients, our
algorithm achieves the convergence rate O(log k/k). In con-
trast, as shown in [1], the method in [4] cannot achieve a
worst case rate better than ⌦(1/k2/3) on the same class
of cost functions. (See for details [1], equation (61).) We
further show that the rate O(log k/k) is maintained if we
replace the bounded gradients Assumption by a linear growth
Assumption (See Assumption 3.) We corroborate numerically
that our algorithm converges faster than existing methods
on two examples: acoustic source localization in sensor
networks and learning of a linear classifier based on l2-
regularized logistic loss.

Finally, we note that [1] proposed an algorithm with the
convergence rate faster than O(log k/k); the algorithm uses
the Nesterov gradient type update at the outer iteration level,
and the consensus algorithm at the inner iteration level; the
algorithm achieves the convergence rate O(1/K2�⇠

), where
⇠ > 0 is arbitrarily small, and K is the number of per-agent
communications. We refer to [1] for details and numerical
comparisons with the algorithm studied here.

Paper organization. Section II explains the problem
model and gives more details on the acoustic source localiza-
tion and the classifier learning examples. Section III presents
our distributed Nesterov gradient algorithm, and Section IV
gives the results on its convergence rate. Section V illustrates



the algorithm’s performance on the two examples above.
Finally, Section VI concludes the paper.

Notation. We denote by: Rd the d-dimensional real co-
ordinate space, d � 1; Aij the entry in the i-th row and
j-th column of a matrix A; ai the i-th entry of a vector
a; (·)> the transpose; I the identity matrix; 1 the vector of
appropriate dimension with unit entries; J =

1
N 11> the ideal

consensus matrix; k · k = k · k2 the Euclidean (respectively,
spectral) norm of its vector (respectively, matrix) argument
(k · k also denotes the modulus of a scalar); rJ (x) the
gradient evaluated at x of a function J : Rd ! R, d � 1.
Finally, for two positive sequences ⌘n and �n, ⌘n = O(�n)

means that lim supn!1
⌘n

�n
< 1; ⌘n = ⌦(�n) means

that lim infn!1
⌘n

�n
> 0; and ⌘n = ⇥(�n) means that

⌘n = O(�n) and ⌘n = ⌦(�n).

II. PROBLEM MODEL

Optimization model. We assume that N agents solve (1).
The function fi : Rd ! R is known only by agent i and has
the following structure.

Assumption 1 (Cost functions: Basic assumption) (a) For
all i, fi : Rd ! R is convex, and problem (1) is
solvable.

(b) For all i, function fi has Lipschitz continuous first
derivative with constant L 2 [0,+1), i.e.,

krfi(x)�rfi(y)k  Lkx� yk, 8x, y 2 Rd.

From Assumption 1 (b), e.g., [7]:

fi(y)  fi(x)+rfi(x)
>
(y� x)+

Lky � xk2

2

, 8x, y 2 Rd.

(2)
Also, under Assumption 1, the function f(x) =

PN
i=1 fi(x)

is also convex, and it has Lipschitz continuous gradient with
constant NL. In addition to (1), we impose either one of the
two following Assumptions.

Assumption 2 (Bounded gradients) There exists G 2 [0,1)

such that, for all i, krfi(x)k  G, for all x 2 Rd.

Assumption 3 (Linear growth) There exists a pair (b, B),
b > 0, B > 0, such that, for all i:

fi(x) � bkxk whenever kxk � B.

Note that, under Assumption 3, the function fi is coercive,
i.e., fi(x) ! 1 whenever kxk ! 1.

Denote by x? a solution to (1), and by f?
=

infx2Rd f(x) = f(x?
) the optimal value.

Communication model. We associate with problem (1) a
network V of N agents, described by the graph G = (V, E),
where E ⇢ V ⇥ V is the set of links.

Assumption 4 (Network model) The graph G is connected,
undirected, and simple (no self/multiple links.)

Denote by di the agent i’s degree – the number of its
neighbors. We associate to graph G a symmetric, stochastic

(rows sum to one and all the entries are non-negative),
N ⇥ N weight matrix W , with, for i 6= j, Wij > 0

if and only if, {i, j} 2 E, and Wii = 1 �
P

j 6=i Wij .
We require that µ := kW � Jk < 1, which is, for a
connected G, true for any W with strictly positive diagonal
entries Wii’s, 8i. Further, we require that �1(W ) > 0, i.e.,
the matrix W is positive definite. Under Assumption 4, a
possible choice for W that ensures µ < 1,�1(W ) > 0,
is: Wij = 1/(1 + 3 max{di, dj}), {i, j} 2 E; Wij = 0,
{i, j} /2 E, i 6= j; and Wii = 1 �

P
j 6=i Wij (See [1]

for details.) The latter weight choice requires only local
knowledge at each agent, namely, the neighbors’ degrees.
We proceed with two application examples of problem (1)
that we later study numerically in Section V.

Example 1: Acoustic source localization in sensor
networks. Consider an acoustic source placed at an unknown
location ✓ 2 R2. Each sensor (agents) i in a sensor network
measures the received signal energy:

yi =
A

k✓ � rik�
+ ⇣i. (3)

Here ri 2 R2 is agent i’s location, known to agent i,
A > 0 and � > 0 are constants known to all agents,
and ⇣i is zero-mean additive noise. The goal is for each
agent to estimate the source’s position ✓; see, e.g., [8]. A
straightforward approach is to find the nonlinear least squares
estimate ✓ = x? by minimizing the following cost function
(of the variable x):

minimize
PN

i=1

⇣
yi � A

kx�rik�

⌘2
. (4)

Problem (4) is nonconvex and hence difficult; still, it is
possible to efficiently obtain a good estimator b✓ based on
the data yi, i = 1, ..., N , by solving the following convex

problem:

minimize
PN

i=1 dist
2
(x,Ci) , (5)

where Ci is the disk

Ci =

(
x 2 R2

: kx� rik 
✓
A

yi

◆1/�
)
,

and dist(x,C) = infy2C kx�yk is the distance from x to the
set C. In words, (5) finds a point b✓ that has the minimal total
squared distance from disks Ci, i = 1, ..., N. Formulation (5)
is a variation on the formulation in [8]. Problem (5) fits our
framework (1) with fi(x) = dist

2
(x,Ci) .

Example 2: linear classifier based on l2–regularized
logistic loss. Training data is distributed across agents in
the network; each agent has Ns data samples, {aij , bij}Ns

j=1,
where aij 2 Rm is a feature vector and bij 2 {�1,+1} is
the class label of the vector aij , e.g., [9]. For the purpose
of future feature vector classifications, each agent wants to
learn the linear classifier a 7! sign

�
a>x0

+ x00�, i.e., to
determine a vector x0 2 Rm and a scalar x00 2 R, based on
all agents’ data samples, that makes the best classification
in a certain sense. Specifically, we seek x0 2 Rm and
x00 2 R that minimize a convex surrogate loss with respect



to x = ((x0
)

>, x00
)

>:

minimize
PN

i=1

PNs

j=1 �
�
�bij(a

>
ijx

0
+ x00

)

�
+ �R(x0

)

.
(6)

Here �(z) = log(1 + e�z
) is the logistic loss func-

tion, � > 0 is a parameter, and R(x0
) = kx0k2 is

the l2-regularization. Problem (6) fits (1), with fi(x) :=PNs

j=1 �
�
�bij(a

>
ijx

0
+ x00

)

�
+

�
NR(x0

).

III. DISTRIBUTED NESTEROV GRADIENT METHOD

Subsection III-A gives preliminaries on the centralized
Nesterov gradient. Then, Subsection III-B presents our dis-
tributed Nesterov gradient method.

A. Fast centralized Nesterov gradient

Consider a convex differentiable function � : Rd ! R that
has Lipschitz continuous gradient with constant L. The goal
is to find z? 2 Rd

= argminz2Rd�(z). (We assume that
such a z? exists.) The fast centralized gradient method [6]
updates the solution estimate z(k) and an auxiliary variable
w(k) as follows:

z(k) = w(k � 1)� ↵r�(w(k � 1)) (7)
w(k) = z(k) + �k�1 (z(k)� z(k � 1)) , (8)

for k = 1, 2, ... and z(0) = w(0) 2 Rd. The constant
step size ↵  1/L and �k = k/(k + 3), for k = 0, 1, ...
Compared with the standard gradient method z(k) = z(k �
1) � ↵r�(z(k � 1)), the Nesterov gradient introduces an
auxiliary variable w(k) and an inexpensive update (8). But,
at the same time, it significantly increases the convergence
rate (in the cost function optimality gap), from O(1/k) to
O(1/k2) [6].

B. Distributed Nesterov gradient algorithm

We now present our distributed algorithm to solve (1).
The algorithm generates the sequence (xi(k), yi(k)), k =

0, 1, 2, ..., at each agent i, where xi(k) is agent i’s solution
estimate and yi(k) is an auxiliary variable (Compare with
z(k) and w(k) with the centralized Nesterov gradient (7)–
(8).) Given the initialization xi(0) = yi(0), for all i, k =

1, 2, ..., our distributed Nesterov gradient algorithm at agent
i is:

xi(k) =

X

j2Oi

Wij yj(k � 1)� ↵k�1rfi(yi(k � 1))(9)

yi(k) = xi(k) + �k�1 (xi(k)� xi(k � 1)) . (10)

Here, Wij are the averaging weights (the entries of W ), and
Oi is the neighborhood set of agent i (including i). The step
size ↵k and the sequence �k are:

↵k = c/(k + 1), �k =

k

k + 3

, k = 0, 1, ..., (11)

where c > 0 is a constant. Each agent i, at each iteration
k, sends yi(k � 1) to all neighbors j 2 Oi; receives
yj(k � 1) from all neighbors j 2 Oi; updates xi(k) by
weight-averaging its own yi(k�1) and its neighbors variables
yj(k�1), and performs a negative gradient step with respect
to fi; and updates yi(k) via (10). For notational simplicity,

we assume throughout the initialization xi(0) = yi(0) =

xj(0) = yj(0) = 0 for all i, j.
We now give an intuition behind algorithm (9)–(10) and

relate it with the centralized Nesterov gradient method (7)–
(8). For an exact penalty interpretation of (9)–(10), see [10].
Denote by

x(k) =

1

N

NX

i=1

xi(k) (12)

y(k) =

1

N

NX

i=1

yi(k) (13)

the (hypothetical) global averages of the agents’ estimates.
Using the fact that the matrix W is doubly stochastic, it is
possible to show that (x(k), y(k)) evolve as:

x(k) = y(k � 1)� ↵k�1
1

N

NX

i=1

rfi(yi(k � 1)) (14)

y(k) = x(k) + �k�1 (x(k)� x(k � 1)) . (15)

Thus, (x(k), y(k)) evolve “almost” according to the central-
ized Nesterov gradient with step-size ↵k�1/N to minimize
f =

PN
i=1 fi, except that the exact gradient rf(y(k�1)) =PN

i=1 rfi(y(k � 1)) is replaced by the inexact versionPN
i=1 rfi(yi(k � 1)). The “amount” of inexactness is con-

trolled by how close the yi(k�1)’s are to the y(k�1). This
insight gives us a hint on how to analyze convergence of (9)–
(10): 1) establish convergence of the inexact centralized
Nesterov gradient (14)–(15); and 2) establish the estimate
of kyi(k)� y(k)k.

IV. CONVERGENCE RATE RESULTS

We now present the O(log k/k) convergence rate result for
algorithm (9)–(10) under: 1) Assumptions 1, 2, and 4; and
2) Assumptions 1, 3, and 4. For the proof under the first set
of Assumptions, we refer to [1]; the proof under the second
set of Assumptions will be pursued in a companion paper.

Theorem 1 Consider algorithm (9)–(10) with the step-size
↵k = c/(k+1), and c  1/(2L). Let Assumptions 1 and 4;
and either Assumption 2 or Assumption 3 hold. Then, at any
agent i1:

1

N
(f(xi(k))� f?

) = O

✓
log k

k

◆
. (16)

Under the first set of Assumptions (1, 2 and 4), an explicit
expression for a constant C in the rate (16)2 can be found
in [1]. We now present how C depends on the number of
agents N and the network topology. Formally, suppose that
we have a sequence of N⇥N weight matrices {W (N)}N�1,
with W (N) positive definite and µ(N) := kW (N) � Jk < 1,
for all N, and J =

1
N 11> with 1 the N ⇥ 1 vector of unit

entries.
1Although unnecessary, we normalize the cost optimality gap by N as is

typical in the literature, e.g., [5]
2By a rate constant C, we refer to a quantity C 2 [0,1) independent

of k that fulfills the following condition: 1

N (f(xi(k))� f

?
)  C log k

k ,
8i, 8k.



Theorem 2 Consider algorithm (9)–(10) under Assump-
tions 1, 2, and 4. Further, suppose that ↵k =

1�µ(N)
k+1 ,

k = 0, 1, ..., and that �1(W
(N)

) = ⌦(1).3 Then, the constant
C in the convergence rate (16) is O

⇣
1

(1�µ(N))1+⇠

⌘
, with

⇠ > 0 arbitrarily small.

Note that, to implement the step-size rule in Theorem 2, each
agent i needs to know beforehand the quantity µ(N); see [1]
for comments on how such knowledge can be obtained. From
Theorem 2, we can derive how C = C(N) depends on the
number of agents for some commonly used network models.
For example, for the weight choice below Assumption 4, we
have that C = C(N) = O(N2+⇠

) (with ⇠ > 0 arbitrarily
small) for a chain network, and C = C(N) = O(1), for
expander graphs [5].

V. SIMULATION EXAMPLES

This Section illustrates the performance of our distributed
Nesterov gradient algorithm (9)–(10) on two simulation
examples: acoustic source localization and learning a linear
classifier based on l2-regularized logistic loss. Both examples
demonstrate that algorithm (9)–(10) converges much faster
than the standard distributed gradient method in [4].

Example 1: Acoustic source localization in sensor
networks. The simulation setup is as follows. Each agent
i acquires a single data sample yi according to model (3).
The coefficients A = 1 and � = 2; the true source’s position
is (0.2, 0.2)>; and the measurement noise ⇣i is zero mean,
Gaussian, i.i.d. across sensors, with the standard deviation
0.5. In case that the measurement yi is negative (due to
adding a large negative noise ⇣i, we set yi = 0.

The network has N = 70 agents (sensors) and 299 links
and is modeled as a geometric graph. Sensors are deployed
uniformly randomly on a unit square, and the sensor pairs
whose distance is less than a radius are connected by an
(undirected) edge.

Figure 2 plots the relative error averaged across agents⇣
=

1
N f?

PN
i=1(f(xi)� f?

)

⌘
, f? 6= 0, versus the iteration

number k in a log10 � log10 scale. We compare our algo-
rithm (9)–(10) with the algorithm in [4]. With (9)–(10) ,
we set the step-size ↵k = 1/(k + 1); with [4], we set
↵k = 1/[(k + 1)

⌧
], with ⌧ 2 {1/10, 1/3, 1/2, 1}. We can

see that our method converges much faster in k than the
algorithm in [4] for any of the considered step-size choices
(choices of ⌧ ). For example, for the target average relative
error of 0.001, our algorithm takes about 500 iterations,
while [4] requires about 14, 000 iterations. At the same time,
both algorithms have the same communication cost per k
and a similar computational cost per k. Also, from Figure 2,
the rate of convergence (the slope of the log-log plot) is
approximately 1/k2 with our method (9)–(10), while the
best rate with [4] (among all considered choices of ⌧ ) is
for ⌧ = 1/2 and is slightly worse than 1/k.

Example 2: linear classifier based on l2–regularized
logistic loss. The simulation setup is as follows. Each agent i

3This condition is satisfied, e.g., with the weight example below Assump-
tion 4.

has one data sample aij := ai. We generate ai independently
over i; each entry is drawn from the standard normal distri-
bution. We generate the “true” vector x?

= (x?
1
>, x?

0)
> by

drawing its entries independently from the standard normal
distribution. The class labels are generated as

bi = sign

⇣
x?

1
>ai + x?

0 + ✏i

⌘
,

where the ✏i’s are drawn independently from a normal
distribution with zero mean and variance 3. The network is
again a geometric network with N = 20 agents and 67 links.

Figure 3 plots the relative error averaged across agents⇣
=

1
N f?

PN
i=1(f(xi)� f?

)

⌘
, f? 6= 0, versus the iteration

number k (in a log10 � log10 scale) for our algorithm (9)–
(10) and the algorithm in [4]. The step-sizes are chosen as
in Example 1. We can see again that (9)–(10) converges
faster than the method in [4]. For example, for the preci-
sion of 0.001, algorithm (9)–(10) takes about 80 iterations,
while [4] requires about 1, 100 iterations.

1 2 3 4

-6

-5

-4

-3

-2

-1

0

1

iteraion number, k [ log
10

 ]

av
g.

 re
la

tiv
e 

er
or

 [ 
lo

g 
10

 ]

 

 

dis. Nesterov
dis. grad., 

k
=1/(k+1)1/2

dis. grad., 
k
=1/(k+1)1/3

dis. grad., 
k
=1/(k+1)1/10

dis. grad., 
k
=1/(k+1)

Fig. 2. Example 1: Acoustic source localization in sensor networks.
Relative error averaged across agents: 1

N f?

PN
i=1

(f(xi)� f

?
), f? 6= 0,

versus iteration number k in a log

10

� log

10

scale for: 1) algorithm (9)–
(10) with step size ↵k = 1/(k + 1); and 2) algorithm in [4] with ↵k =

1/(k + 1)

⌧ , ⌧ 2 {1/10, 1/3, 1/2, 1}.

VI. CONCLUSION

We considered distributed optimization in networks where
N agents minimize the sum of their individual convex costs.
We proposed a distributed gradient-like algorithm based on
the (centralized) Nesterov gradient method. We showed that
the proposed algorithm converges at rate O(log k/k) when
the cost functions are convex, with Lipschitz continuous
gradient, and satisfy either the bounded gradients assumption
or a certain linear growth assumption. We presented two
simulation examples, namely acoustic source localization
and learning a linear classifier based on the l2-regularized
logistic loss. Simulations corroborate the communication and
computational gains of our algorithm when compared with
standard distributed gradient methods.



0 1 2 3

-6

-5

-4

-3

-2

-1

0

iteration number, k [ log
10

 ]

av
g.

 re
la

tiv
e 

er
ro

r [
 lo

g  1
0 ]

 

 

dis. grad, 
k
=1/(k+1)

dis. Nesterov
dis. grad, 

k
=1/(k+1)1/2

dis. grad, 
k
=1/(k+1)1/3

dis. grad, 
k
=1/(k+1)1/10

Fig. 3. Example 2: linear classifier based on l

2

–regularized logistic loss.
Relative error averaged across agents: 1

N f?

PN
i=1

(f(xi)� f

?
), f? 6= 0,

versus iteration number k in a log

10

� log

10

scale for: 1) algorithm (9)–
(10) with step size ↵k = 1/(k + 1); and 2) algorithm in [4] with ↵k =

1/(k + 1)

⌧ , ⌧ 2 {1/10, 1/3, 1/2, 1}.

REFERENCES

[1] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Fast
distributed gradient methods,” November 2011, available at:
http://arxiv.org/pdf/1112.2972.pdf.

[2] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” in IPSN 2004, 3rd International Symposium on Information

Processing in Sensor Networks, Berkeley, California, USA, April 2004,
pp. 20 – 27.

[3] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE

Trans. Autom. Contr., vol. 31, no. 9, pp. 803–812, Sep. 1986.
[4] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-

agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, January 2009.

[5] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for
distributed optimization: Convergence and network scaling,” IEEE

Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606, March
2012.

[6] Y. E. Nesterov, “A method for solving the convex programming
problem with convergence rate O(1/k

2

),” Soviet Math. Doklady,
vol. 27, no. 2, pp. 372–376, 1983, translated from Russian by A. Rosa.

[7] L. Vandenberghe, “Optimization methods for large-scale systems,”
2010, Lecture Notes, available at: http://www.ee.ucla.edu/ vandenbe/
ee236c.html.

[8] A. O. Hero and D. Blatt, “Sensor network source localization via pro-
jection onto convex sets (POCS),” in ICASSP ’05, IEEE International

Conference on Acoustics, Speech, and Signal Processing, Philadelphia,
PA, March 2005, pp. 2663–2668.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,

Michael Jordan, Editor in Chief, vol. 3, no. 1, pp. 1–122, 2011.
[10] D. Jakovetic, J. M. F. Moura, and J. Xavier, “Distributed Nesterov-

like gradient algorithms,” in to appear in proc. CDC’12, 51

st

IEEE

Conference on Decision and Control, Maui, Hawaii, December 2012.


