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Abstract—The paper considers distributed learning in large-
scale games via fictitious-play type algorithms. Given a preas-
signed communication graph structure for information exchange
among the players, this paper studies a distributed implementa-
tion of the Empirical Centroid Fictitious Play (ECFP) algorithm
that is well-suited to large-scale games in terms of complexity and
memory requirements. It is shown that the distributed algorithm
converges to an equilibrium set denoted as the mean-centric
equilibria (MCE) for a reasonably large class of games.

I. INTRODUCTION

This paper is concerned with learning equilibria in large

games via repeated play type learning algorithms. In par-

ticular, our interest is in algorithms that are practical for

implementation in large games in terms of computation and

communication requirements.

Fictitious Play (FP) is one of the most well-studied and pro-

totypical repeated play learning algorithms [1]–[3]. Intuitively

speaking, in FP players form a naive belief that opponents

are using time-invariant strategies, and choose their next-stage

action as a myopic best response to this belief. Though FP does

not enable players to learn an equilibrium in all games [4]–[6],

it has been proven to converge to equilibrium in certain large-

scale games of interest, including potential games [7]–[9].

Learning in FP generally takes place in the sense that the

empirical distribution of players’ action histories converges to

Nash equilibrium (NE) with respect to the (naive) belief to

which each player has been best responding—this form of

learning is known as convergence in empirical distribution, or

convergence in beliefs.

Though FP has theoretically promising learning results,

the practical demands of the algorithm (intense computation

and communication requirements) can make it difficult to

implement in large games.

Empirical Centroid Fictitious Play (ECFP) [10], [11] has

been proposed as an adaptation of FP that is more practical for

large-scale implementation. In ECFP it is assumed that players

have knowledge of only the centroid of all players’ empirical

history distributions (as opposed to FP, where players are

assumed capable of tracking the empirical history distribution

of all individual opponents). In the spirit of FP, ECFP may be

intuitively interpreted as an algorithm in which players form

a naive belief about the strategies of opponents—based, in
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this case, on the player’s knowledge of the centroid empirical

history distribution—and choose their next-stage action as a

best response to this belief.

ECFP has been shown to enable players to learn a NE in

terms of the (less traditional) notion of learning—convergence

in average empirical distribution [10], [11] (see Section II-C).

In order to study learning properties of ECFP in terms of the

more traditional notion of learning—convergence in empirical

distribution, or convergence in beliefs—the concept of mean-

centric equilibrium (MCE) was introduced [12]. Analogous to

the notion of learning considered in FP, it has been shown that

in ECFP players learn a MCE in the sense that the empirical

distribution of players’ action histories converges to MCE with

respect to the (naive) belief to which the player has been best

responding.

ECFP, by itself addresses only the computational issues of

FP in large games. In order to address the demanding com-

munication requirements, the distributed-information learning

framework has been proposed [10]. In this framework, players

engaged in repeated play are assumed to be equipped with a

preassigned communication graph. Players are permitted to

communicate with a subset of local neighboring players once

per iteration of the repeated play.

The main contribution of the present work is to study

learning properties of ECFP in the distributed-information

setting; in particular, we show that previous (centralized)

results regarding convergence in beliefs to the set of MCE

[12] can be extended to the distributed-information setting.

The remainder of the paper is orgainzed as follows. In

Section II, the notation to be used in the subsequent de-

velopment is introduced, and the concepts of repeated-play

learning and classical FP are presented. Section III presents

the (centralized) ECFP algorithm. Section IV presents the

distributed-information framework. Section V presents the

distributed-information implementation of ECFP and presents

the formal convergence results for the same. Finally, Section

VI concludes the paper.

II. PRELIMINARIES

A. Game Theoretic Setup

A normal form game is given by the triple Γ =
(N, (Yi)i∈N , (ui(·))i∈N ), where N = {1, . . . , n} represents

the set of players, Yi—a finite set of cardinality mi—denotes

the action space of player i and ui(·) :
∏n

i=1 Yi → R

represents the utility function of player i.
The set of mixed strategies for player i is given by Δi =

{p ∈ R
mi :

∑mi

k=1 p(k) = 1, p(k) ≥ 0 ∀k = 1, . . . ,mi},

the mi-simplex. A mixed strategy pi ∈ Δi may be thought

of as a probability distribution from which player i samples



to choose an action. The set of joint mixed strategies is given

by Δn =
∏n

i=1Δi. A joint mixed strategy is represented by

the n-tuple (p1, p2, . . . , pn), where pi ∈ Δi represents the

marginal strategy of player i, and it is implicity assumed that

players’ strategies are independent.

A pure strategy is a degenerate mixed strategy which places

probability one on a single action in Yi. We denote the set

of pure strategies by Ai = {e1, e2, . . . emi} where mi is the

number of actions available to player i, and ej is the jth

canonical vector in R
mi . The set of joint pure strategies is

given by An =
∏n

i=1 Ai.

The mixed utility function for player i is given by the

function Ui(·) : Δn → R, such that,

Ui(p1, . . . , pn) :=
∑
y∈Y

ui(y)p1(y1) . . . pn(yn). (1)

Note that Ui(·) may be interpreted as the expected value of

ui(y) given that the players’ mixed strategies are statistically

independent. For convenience the notation Ui(p) will often be

written as Ui(pi, p−i), where pi ∈ Δi is the mixed strategy

for player i, and p−i indicates the joint mixed strategy for all

players other than i.
The set of Nash equilibria of Γ is given by

NE := {p ∈ Δn : Ui(p) ≥ Ui(gi, p−i) ∀gi ∈ Δi, ∀i}, (2)

and the subset of consensus equilibria is given by

C := {p ∈ NE : p1 = p2 = · · · = pn}. (3)

The distance of a distribution p ∈ Δn from a set S ⊂ Δn

is given by d(p, S) = inf{‖p− p′‖ : p′ ∈ S}. Throughout the

paper ‖ · ‖ denotes the standard L2 Euclidean norm.

B. Repeated Play Learning

In a repeated-play learning algorithm, players repeatedly

face off in a fixed game Γ. An algorithm designer’s objective

is to design the behavior rules of individual players in such

a way as to ensure that the players eventually learn a Nash

equilibrium of Γ through the repeated interaction.

Let {ai(t)}∞t=1 be a sequence of actions for player i, where

ai(t) ∈ Ai. Let {a(t)}∞t=1 be the associated sequence of joint
actions a(t) = (a1(t), . . . , an(t)) ∈ An. Note that ai(t) ∈
R

mi .

Let qi(t) be the normalized histogram (empirical distribu-

tion) of the actions of player i up to time t, i.e., qi(t) :=
1
t

∑t
s=1 ai(s). Similarly, let q(t) := 1

t

∑t
s=1 a(s) be the joint

empirical distribution corresponding to the joint actions of the

players up to time t.
In what follows, we often make the following assumption:

A. 1. All players use the same strategy space.

Under this assumption, let q̄(t) := (q1(t) + q2(t) +
· · · + qn(t))/n. Note that q̄(t) ∈ R

m, where m denotes

the cardinality of the action spaces (assumed identical) of

the individual players. We refer to q̄(t) as the empirical

centroid distribution, or the average empirical distribution. Let

q̄n(t) := (q̄(t), q̄(t), . . . , q̄(t)) ∈ Δn denote the mixed strategy

where all players use the empirical average as their individual

strategy. Finally, let the set of mean-centric equilibria of Γ be

given by

MCE := {p ∈ Δn : Ui(pi, p̄−i) ≥ Ui(p
′
i, p̄−i), ∀p′i ∈ Δi, ∀i},

(4)

where p̄−i := (p̄, . . . , p̄) ∈ ∏
j �=iΔj and p̄ := 1/n

∑
j∈N pj

are well defined under A.1.

C. Notions of Learning

Let E be some equilibrium set. We say a repeated play

learning algorithm leads players to learn equilibria E in

terms of convergence in average empirical distribution if

d(q̄n(t), E)→ 0 as t → ∞ [10]. This is the manner in which

players in ECFP learn consensus equilibria C, see (3) (see

also Section III).

We say a repeated play learning algorithm leads players

to learn equilibria E in terms of convergence in empirical
distribution or convergence in beliefs if d(q(t), E) → 0 as

t → ∞ [2], [3]. This is the manner in which classical FP

leads players to learn elements of NE, see (2) (see also Section

II-D), and the manner in which ECFP leads players to learn

elements of MCE, see (4) (see also Section III).

D. Classical FP

Suppose players are engaged in repeated play; a sequence

of actions {a(t)}t≥1 is called a fictitious play process if for

all i ∈ N and t ≥ 2,1

ai(t+ 1) ∈ arg max
αi∈Ai

Ui(αi, q−i(t)).

Intuitively speaking, this describes a process where player

i forms a belief that opponents are playing according to

statistically independent time-invariant mixed strategies, and

chooses a next-stage action as a best response to this belief.

In particular, each player i chooses a next-stage action that

is a best response given the belief that q−i(t) accurately

represents the mixed strategy of opponents, where q−i =
(q1(t), . . . , qi−1(t), qi+1(t), . . . , qn(t)) ∈

∏
j �=iΔj .

The following fundamental result states that players engaged

in a FP process learn a NE if the underlying game Γ is a

potential game.

Theorem 1. Let Γ be a potential game, and let {a(t)}t≥1 be
an FP process on Γ. Then players learn a NE of Γ in the
sense that d(q(t), NE)→ 0 as t → ∞.

Note that the learning occurs in the form of convergence

in empirical distribution. This form of learning is often also

referred to as convergence in beliefs, since each player’s

empirical distribution qi(t) converges to equilibrium (per (2))

with respect to the belief that opponents are playing the mixed

strategy given by q−i(t). This will be analogous to the manner

in which players engaged in ECFP learn a MCE, as discussed

in the following section.

1In all repeated play learning algorithms discussed in this paper, the action
a(1) may be chosen arbitrarily.



III. EMPIRICAL CENTROID FICTITIOUS PLAY

In ECFP, introduced in [10], [11], it is assumed that player i
has knowledge of the empirical centroid q̄(t), but does not have

knowledge of any player’s individual empirical distribution.

Such an assumption may be practical in large-scale games

where it is difficult to track the empirical distribution of all

individual players. The ECFP algorithm may be intuitively

understood as follows. Players form a belief that the centroid

q̄(t) accurately represents the mixed strategy in use by each

opponent. Each player chooses their next-stage action as a best

response according to this belief.

Formally, we say a sequence of action {a(t)}t≥1, a(t) ∈
Δn, is an ECFP process if, for t ≥ 2

ai(t) ∈ arg max
αi∈Ai

Ui(αi, q̄−i(t)), (5)

where q̄−i(t) = (q̄(t), . . . , q̄(t)) ∈ ∏
j �=iΔj is an (n−1)-tuple

containing repeated copies of the centroid q̄(t). In [10], the

ECFP algorithm was studied under the following assumption:

A. 2. The players’ utility functions are identical and permu-
tation invariant. That is, for any i, j ∈ N , ui(y) = uj(y), and
u([y′]i, [y′′]j , y−(i,j)) = u([y′′]i, [y′]j , y−(i,j)), where, for any
player k ∈ N , the notation [y′]i indicates the action y′ ∈ Yk

being played by player k, and y−(i,j) denotes the set of actions
being played by all players other than i and j.

It was shown that players in an ECFP process learn a Nash

consensus equilibrium in the sense that the process converges

to the set of consensus equilibria C in terms of convergence

in average empirical distribution. The result is summarized in

the following theorem.

Theorem 2. Let {a(t)}t≥1 be an ECFP process such that
A.1-A.2 hold. Then d(q̄n(t), C)→ 0 as t → ∞.

While the above result does provide a useful characteriza-

tion of a form of learning in ECFP, it does not characterize

the asymptotic behavior of q(t), as is the case in the typical

repeated play learning—i.e., convergence in empirical distri-

bution (see Section II-C).

The behavior of ECFP in terms of convergence in empirical

distribution was studied in [12]. In studying this form of

convergence, assumption A.2 can be relaxed in favor of the

following weaker assumption.

A. 3. The players’ utility functions can be decomposed as
ui(y) = fi(yi) + φ(y) where fi(yi) depends only on the
action of player i and φ(y) is a permutation-invariant function,
identical for all players.

The following Theorem (cf. [12], Theorem 2) studies learn-

ing in ECFP in terms of convergence in empirical distribution.

Theorem 3. Let {a(t)}t≥1 be an ECFP process such that
assumptions A.1 and A.3 hold. Then d(q(t),MCE) → 0 as
t → ∞.

To understand the relative significance of this form of

learning, recall that in ECFP players choose their next-stage

action as a best response given the belief that q̄−i(t) accu-

rately represents the mixed strategies in use by opponents.

In converging to MCE, a player’s empirical distribution qi(t)
converges to equilibrium (see (4)) with respect to this belief.

This result is comparable with the notion of convergence in

beliefs from classical FP (see Section II-D).

In the above result it is assumed that players have in-

stantaneous access to q̄(t). Such an assumption may not be

feasible in a large-scale setting. In order to study ECFP in an

environment with more realistic assumptions on inter-agent

communication, the following section introduces the notion of

a distributed-information framework.

IV. DISTRIBUTED-INFORMATION FRAMEWORK

In the classical formulation of FP and the centralized formu-

lation of ECFP, it is assumed that players have perfect knowl-

edge of all information necessary to compute a best response.

In the distributed-information framework (introduced in [10]),

we consider a more realistic scenario where players have

limited knowledge about the action histories of opponents, but

may communicate with neighboring players via a preassigned

communication structure. Formally we assume:

A. 4. Players are endowed with a preassigned communication
graph G = (V,E), where the vertices V represent the
players and the edge set E consists of communication links
(bidirectional) between pairs of players than can communicate
directly. The graph G is connected.

A. 5. Players directly observe only their own actions.

A. 6. A player may exchange information with immediate
neighbors, as defined by G, at most once for each iteration or
round of the repeated play.

V. DISTRIBUTED-INFORMATION IMPLEMENTATION OF

ECFP

Due to restrictions on communication and direct observa-

tion, in the distributed-information setting it is not possible for

players to have perfect knowledge of the empirical centroid,

q̄(t). Instead, we suppose that each player forms some estimate

of q̄(t); let q̂i(t) be the estimate that player i maintains of q̄(t).
In general, we will not explicitly specify the manner in which

players form their estimates q̂i(t). For example, players may

form their estimates according to a gossip-type algorithm [13]

or according to a consensus-type algorithm [14]. Rather than

explicitly specifying an information dissemination protocol

used to estimate q̄(t), we impose only the general assumption

that

A. 7. ‖q̂i(t)− q̄(t)‖ = O
(

log(t)
t

)
.

We will show that—regardless of the specifics of the

information-dissemination protocol in use—so long as A.7 is

met, then any distributed implementation of ECFP will achieve

the desired learning result. In Section V we discuss an example

implementation that meets this assumption.

In a distributed ECFP process, players choose a best re-

sponse according to the same basic format of the ECFP best

response rule (5), but use q̂i(t) as a surrogate for q̄(t) in

(5). We say a sequence of actions {a(t)}t≥1 is a distributed



ECFP process if players form their estimates q̂i(t) in a manner

conforming to A.4-A.6 and if the next-stage action is chosen

according to the rule

ai(t+ 1) ∈ arg max
αi∈Ai

Ui(αi, q̂−i(t)), (6)

where, analogous to (5), q̂−i(t) = (q̂i(t), . . . , q̂i(t)) ∈∏
j �=iΔj is the (n − 1) tuple containing repeated copies of

the player’s estimate of q̄(t).

A. Main Result

The following theorem gives the main convergence result

for distributed ECFP. In particular, it states that in distributed

ECFP, players learn a consensus equilibrium in terms of

convergence of the average empirical distribution (a result

known from previous work, [10]), and players learn a MCE

in terms of convergence in empirical distribution (a novel

contribution of this paper).

Theorem 4. Let {a(t)}t≥1 be a distributed ECFP process.
(i) Assume A.1,A.2,A.4-A.7 hold. Then the agents
achieve asymptotic strategy learning in the sense that
d((q̂i(t))

n, C)→ 0 as t → ∞.
(ii) Assume A.1,A.3-A.7 hold. Then the agents
achieve asymptotic strategy learning in the sense that
d(q(t),MCE)→ 0 as t → ∞.

Proof. The proof of (i) follows from [10], Theorem 1, and

A.7. In order to prove (ii), let ā(t) = 1
n

∑n
i=1 ai(t), and let

ān(t) ∈ Δn be the n-tuple (ā(t), . . . , ā(t)). Note that for t ≥ 1

q̄n(t+ 1) = q̄n(t) +
1

t+ 1
(ān(t+ 1)− q̄n(t)) . (7)

Define the Φi to be the multilinear extension of φi and Fi to

be the extension of fi where φi and fi are as defined in A.3,

and the multilinear extensions are formed in the same manner

as (1). Using (7) we write

Φ(q̄n(t+ 1)) = Φ

(
q̄n(t) +

1

t+ 1
(ān(t+ 1)− q̄n(t))

)
.

Applying the multilinearity of Φ(·), we obtain

Φ(q̄n(t+ 1)) = Φ(q̄n(t)) +
1

t+ 1

n∑
i=1

Φ(āi(t+ 1), q̄−i(t))

− 1

t+ 1

n∑
i=1

Φ(q̄i(t), q̄−i(t)) + ζ(t+ 1).

where we have explicitly written the first order terms of the
expansion and collected the remaining terms in ζ(t + 1).
Note that the number of second order terms in the above
expansion is finite and the terms are uniformly bounded since
supp∈Δn |Φ(p)| < ∞. Hence, there exists a positive constant
B (independent of t) large enough such that |ζ(t + 1| ≤
B(t+ 1)−2 for all t. Thus,

Φ(q̄n(t+ 1)) ≥ Φ(q̄n(t)) +
1

t+ 1

n∑
i=1

Φ (āi(t+ 1), q̄−i(t))

− 1

t+ 1

n∑
i=1

Φ(q̄i(t), q̄−i(t))− B

(t+ 1)2
. (8)

The permutation invariance and multilinearity of Φ(·) permits
a rearranging of terms. We use the notation [aj(t)]i to indicate
the action of player j at time t being played by player i.
Observe that,

n∑
i=1

Φ(āi(t+ 1), q̄−i(t)) =

n∑
i=1

Φ

⎛
⎝[

1

n

n∑
j=1

aj(t+ 1)

]
i

, q̄−i(t)

⎞
⎠

=
n∑

i=1

1

n

n∑
j=1

Φ
(
[aj(t+ 1)]i , q̄−i(t)

)

=

n∑
i=1

1

n

n∑
j=1

Φ
(
[aj(t+ 1)]j , q̄−j(t)

)
=

n∑
j=1

Φ (aj(t+ 1), q̄−j(t)) .

By similar reasoning it also holds that
n∑

i=1

Φ(q̄i(t), q̄−i(t)) =

n∑
j=1

Φ(qj(t), q̄−j(t)) . Thus (8) can be expressed as,

Φ (q̄n(t+ 1))− Φ (q̄n(t)) +
B

(t+ 1)2
(9)

≥ 1

t+ 1

n∑
i=1

Φ (ai(t+ 1), q̄−i(t))− 1

t+ 1

n∑
i=1

Φ(qi(t), q̄−i(t)).

Using (7) and the linearity of Fi(·) in Δi, note that

Fi(qi(t+ 1))− Fi(qi(t)) =
1

t+ 1
(Fi(ai(t+ 1))− Fi(qi(t))) .

(10)
Combining (9) and (10) we get,

n∑
i=1

[Fi(qi(t+ 1))− Fi(qi(t))]

+ Φ (q̄n(t+ 1))− Φ (q̄n(t)) +
B

(t+ 1)2

≥ 1

t+ 1

n∑
i=1

Fi(ai(t+ 1)) + Φ (ai(t+ 1), q̄−i(t))

− 1

t+ 1

n∑
i=1

Fi(qi(t)) + Φ(qi(t), q̄−i(t))

=
1

t+ 1

n∑
i=1

[Ui(ai(t+ 1), q̄−i(t))− Ui(qi(t), q̄−i(t))] , (11)

where the equality follows from the definition of ui(·) in A.3.

Under A.1, let Δ be the common mixed strategy space, and

let vmi (·) : Δ→ R,

vmi (f) := max
αi∈Ai

Ui(αi, f−i)− Ui(f
n),

where f−i = (f, . . . , f) is an (n − 1)-tuple and fn =
(f, . . . , f) is an n-tuple, and let

Li(t+ 1) := vmi (q̂i(t))− Ui (ai(t+ 1), q̄−i(t)) .

Substituting Li(t+ 1) into (11) gives
n∑

i=1

[Fi(qi(t+ 1))− Fi(qi(t))] + Φ (q̄n(t+ 1))

− Φ (q̄n(t)) +
B

(t+ 1)2
+

1

t+ 1

n∑
i=1

Li(t+ 1)

≥ 1

t+ 1

n∑
i=1

(vmi (q̂i(t))− Ui (qi(t), q̄−i(t))) =
αt+1

t+ 1
,(12)



where αt+1 :=
∑n

i=1 (v
m
i (q̂i(t))− Ui (qi(t), q̄−i(t))) . Note

that Ui(·) is multilinear and therefore locally Lipschitz con-

tinuous. Assumption A.7 implies that {q̂i(t)}t≥1 is con-

tained in a compact subset of R
m. Therefore, there ex-

ists a positive constant K (independent of t), such that

|Ui(ai(t + 1), q̂−i(t)) − Ui(ai(t + 1), q̄−i(t))| ≤ K‖(ai(t +
1), q̂−i(t)) − (ai(t + 1), q̄−i(t))‖, for all t. By assumption

A.7, ‖q̂−i(t) − q̄−i(t)‖ = O( log t
t ), and hence |Ui(ai(t +

1), q̂−i(t)) − Ui(ai(t + 1), q̄−i(t))| = O( log t
t ). Note that

by definition of a distributed ECFP process (6), ai(t +
1) ∈ argmaxαi∈Ai Ui(αi, q̂−i(t)), (and hence vmi (q̂i(t)) =
Ui(ai(t+ 1), q̂−i(t))) and the preceding is equivalent to

|vmi (q̂−i(t))− Ui(ai(t+ 1), q̄−i(t))| = O(
log t

t
),

or equivalently, Li(t) = O( log t
t ). In particular, note that

supT≥2

∑T
t=2

Li(t)
t < ∞ is bounded above. Summing over

1 ≤ t ≤ T in (12),

n∑
i=1

[Fi(qi(T + 1))− Fi(qi(1))] + Φ(q̄n(T + 1))− Φ(q̄n(1))

+

T∑
t=1

B

(t+ 1)2
+

T∑
t=1

n∑
i=1

Li(t+ 1)

t+ 1
≥

T∑
t=1

αt+1

t+ 1
.

Note that
∑T

t=1
B

(t+1)2 is summable; therefore all terms on

the left hand side are uniformly bounded above for all T ≥ 1,

and it follows that
∑T

t=2
αt

t < B is bounded above by some

B ∈ R, for all T ≥ 2.

Let βt+1 :=
∑n

i=1 [v
m
i (q̄(t))− Ui (qi(t), q̄−i(t))], and note

that, by definition of vmi (·), βt ≥ 0 for all t. By [10] Lemma

4, there holds |vmi (q̂i(t))−vmi (q̄(t))| = O
(

log t
t

)
. Thus, |αt−

βt| = O
(

log t
t

)
, and hence by [10] Lemma 5,

∑T
t=2

βt

t < ∞
converges as T → ∞. By [10] Lemma 3 it follows that

lim
T→∞

β2 + β3 + . . .+ βT

T
= 0.

Subsequently, following reasoning analogous to [10] Lemma

6, we obtain for every ε > 0,

lim
T→∞

#{1 ≤ t ≤ T : q(t) /∈ Mε}
T

= 0.

Following reasoning analogous to [10] Lemma 7, this is

equivalent to

lim
T→∞

#{1≤t≤T :q(t)/∈Bδ(M)}
T = 0, ∀δ > 0.

Finally, following reasoning analogous to [10] Lemma 8, we

obtain d(q(t),MCE)→ 0 as t → ∞.

B. Example Implementation

A detailed example implementation of ECFP in the

distributed-information setting is studied in [10] Section VI.

In the example implementation, players form their estimates

q̂i(t) by means of a dynamic consensus protocol (see [10],

eqns. (11), (12)). It is shown that the example implementation

meets A.7 ([10], Lemma 2), and hence the results of Theorem

4 apply.

VI. CONCLUSIONS

The classical FP learning algorithm is not practical in large

games due to demanding computation and communication

requirements. The ECFP algorithm is an adaptation of FP

that can mitigate computational issues. In order to address

communication problems associated with FP in large games,

a distributed-information setting is considered—a framework

in which interagent communication is restricted a local subset

of neighboring players.

We studied ECFP in a distributed-information setting, and

in particular, we studied learning properties of the algorithm

in terms of the typical notion of learning—convergence in

empirical distribution. It was shown that in the distributed-

information implementation of ECFP, players learn a mean-

centric equilibrium (MCE)—a scalable equilibrium concept

for large games—in terms of convergence in empirical distri-

bution. Future work may include characterizing the efficiency

of the set of MCE, and relaxing assumption A.7 to allow for

arbitrary decay rates.
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