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Abstract—We study the large deviations performance of
consensus+innovations distributed detection over random
networks, where each sensor, at each time k, weight
averages its decision variable with its neighbors decision
variables (consensus), and accounts for its new obser-
vation (innovation). Sensor observations are independent
identically distributed (i.i.d.) both in time and space, but
have generic (non Gaussian) distributions. The underlying
network is random, described by a sequence of i.i.d.
stochastic, symmetric weight matrices W (k); we measure
the corresponding speed of consensus by | log r|, where r
is the second largest eigenvalue of the second moment of
W (k). We show that distributed detection exhibits a phase
transition behavior with respect to | log r|: when | log r|
is above a threshold, distributed detection is equivalent to
the optimal centralized detector, i.e., has the error exponent
equal to the Chernoff information. We explicitly quantify
the optimality threshold for | log r| as a function of the
log-moment generating function Λ0(·) of a sensor’s log-
likelihood ratio. When below the threshold, we analytically
find the achievable error exponent as a function of r and
Λ0(·). Finally, we illustrate by an example the dependence
of the optimality threshold on the type of the sensor
observations distribution.

I. INTRODUCTION

We study the large deviations performance (error ex-
ponent) of consensus+innovations distributed detection
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over random networks, when sensors have generic, non-
Gaussian observations. With consensus+innovations dis-
tributed detection, each sensor i, at each time k, updates
its decision variable two-fold: 1) by weight averaging
its decision variable with the neighbors decision vari-
ables (consensus); and 2) by accounting for its new
observation (innovation.) The network is random; its
connectivity is described by a sequence of independent
identically distributed (i.i.d.) stochastic, symmetric ma-
trices {W (k)}. We measure the speed of consensus by
r := λ2

(
E
[
W 2(k)

])
, where λ2 denotes the second

largest eigenvalue.1 The sensors’ observations are i.i.d.,
both in time and space.

We show that the consensus+innovations distributed
detector exhibits a phase transition behavior with respect
to r: when | log r| is above a threshold, the distributed
detector achieves the optimal (centralized) error expo-
nent. We explicitly quantify the optimality threshold as a
function of the log-moment generating function (LMGF)
Λ0 of a sensor’s log-likelihood ratio. We also quantify
what is the fraction of the optimal error exponent the
distributed detector can achieve, when below the thresh-
old.

We show that the error exponent and the optimality
threshold of the consensus+innovations detector depends
on the probability distribution of the sensors’ observa-
tions. This contrasts with the centralized (fusion–based)
detector2 where the error exponent is equal for two dif-
ferent types of distributions of the sensors’ observations,
provided that the two corresponding per sensor Chernoff
informations are equal.

Our analysis assumes that the LMGF Λ0(λ) is finite
on λ ∈ R, which is satisfied in a wide range of problems,
including the binary simple hypothesis problem, when
the sensor noise satisfies a mild technical condition
(detailed in Section II); other examples are discussed
in the journal version of this paper [1].
Brief review of the literature. Distributed detection
has been extensively studied in the context of parallel

1The quantity r is always in [0, 1]; the smallest r, the faster
consensus.

2In the centralized detection, all sensors, at all times, transmit their
observations to a fusion node.



fusion architectures, e.g., [2], [3], [4], [5], [6], consensus-
based detection, e.g., [7], [8], and, more recently, con-
sensus+innovations type distributed detection, e.g., [9],
[10], [11], [12], [13], [14].

Different variants of consensus+innovations dis-
tributed detection algorithms have been proposed; we
consider here running consensus, the variant in [12].
Reference [12] also considers the asymptotic optimality
of the running consensus distributed detector, but in a
very different framework than the framework of this
paper and the framework in [15]; see [15] for a comment
on these differences.

We contrast this paper with our prior work in [15]
and [9]. Here the network is random, while in [9] it is
deterministic, time varying, where the union of networks
over a finite time window is connected. With respect
to [15], we consider here generic distributions (with
finite LMGF on R,) while in [15] the sensor observations
are Gaussian. Further, reference [15] allows for spatially
correlated observations, while here the observations are
spatially independent.

The remainder of the paper is organized as follows.
Section II gives preliminaries on the centralized de-
tector. Section III presents the consensus+innovations
distributed detector. Section IV presents our main re-
sults on the asymptotic performance of the distributed
detector. Section V illustrates our results with Gaussian
and Laplace distributions. Finally, Section VI concludes
the paper.

Throughout, we denote by: Zij the entry in the i-th
row and j-th column of a matrix Z; zi the i-th entry
of a vector z; |a| the modulus of a scalar a; 1 the
N × 1 vector with unit entries; J the N × N ideal
consensus matrix J := 1

N 11>; ‖·‖ = ‖·‖2 the Euclidean
(respectively, spectral) norm of its vector (respectively,
matrix) argument; λi(·) the i-th largest eigenvalue; E [·]
and P (·) the expected value and probability, respectively.

II. CENTRALIZED DETECTION

This section reviews the centralized log-likelihood
ratio detector and its error exponent; the section also
introduces the LMGF of a sensors log-likelihood ratio
and reviews its relevant properties.

A. Log-likelihood ratio test

Consider the centralized (fusion-based) binary de-
tection, where N sensors, at each time t, send their
observations Yi(t) to a fusion node. Nature can be in one
of two states: H1 – event occurring and H0 – event not
occurring. The sensors’ observations are independent and
identically distributed (i.i.d.) both in time and in space,
with distribution µl under hypothesis Hl, l = 0, 1, i.e.,

for i = 1, . . . , N and t = 1, 2, . . .:

Yi(t) ∼
{
µ1, H1

µ0, H0.
(1)

Here µ1 and µ0 are mutually absolutely continuous,
distinguishable measures. The prior probability of hy-
pothesis H1 is π1 = P(H1) ∈ (0, 1), and π0 = P(H0) =
1− π1.

The log-likelihood ratio of the sensor i at time t,
denoted by Li(t), is given by

Li(t) = log
dµ1

dµ0
(Yi(t)) ,

where dµ1

dµ0
(·) is the Radon-Nikodym derivative of µ1

with respect to µ0. The log-likelihood ratio for the vector
Y (t) := (Y1(t), . . . , YN (t)) of all sensors’ observations
is given by:

N∑
i=1

Li(t). (2)

Thus, the centralized log-likelihood ratio test for the
observation interval of size k and based on all sensors’
observations takes the form:

D(k) :=

k∑
t=1

N∑
i=1

Li(t)
H1

≷
H0

γk, (3)

where γk is a chosen threshold.

B. Log-moment generating function (LMGF)

The error exponent for the optimal centralized detector
can be expressed in terms of the LMGF of a sensor’s log-
likelihood ratio, e.g., [16]. We now introduce the LMGF
and its relevant properties. Denote by Λ0 the LMGF for
the log-likelihood ratio under hypothesis H0:

Λ0(λ) = logE
[
eλL1(1)|H0

]
. (4)

Also, define

Λ1(λ) = logE
[
e−λL1(1)|H1

]
.

It can be shown [16] that Λ0 is convex and Λ1(λ) =
Λ0(1− λ), for λ ∈ R.

Throughout the paper, we assume that Λ0(λ) < +∞,
∀λ ∈ R. The latter condition holds, if, e.g., Yi(t) =
m+ni(t), under H1, and ni(t), under H0, where m ∈ R
is a constant signal, and ni(t) is a zero-mean additive
noise with density f(·), supported on R, that satisfies a
mild technical condition. We give a complete, formal
account for the condition on f(·) in the companion
journal paper [1]. Examples of f(·) that yield finite
Λ0 include the following. Let f(y) = c e−g(y), where
c > 0 is a constant. Then, Λ0 is finite on R if g(y) is a
polynomial in y of arbitrary finite degree; or g(y) = yθ,
θ ∈ (0, 1) or g(y) = c log y, c ∈ [2,+∞). The last



case covers power laws with decay coefficient greater or
equal two.

C. Error exponent

Denote by Pe(k) the (Bayes) error probability of the
optimal centralized detector and the observation interval
of size k. When k grows unbounded, the probability
of error with the optimal centralized detector decays
exponentially fast to zero. The rate of the decay (the
error exponent) is given by the Chernoff lemma [17]
and equals the Chernoff information between the two
joint distributions of all N sensors’ observations under
H1 and H0.

It can be shown that, under spatially and temporally
i.i.d. sensors’ observations (conditioned on either hy-
pothesis,) the error exponent for the optimal centralized
detector is given by:

lim
k→∞

−1

k
logPe(k) = NCind, (5)

where Cind := maxλ∈[0,1] {−Λ0(λ)} is the per sensor
Chernoff information.

III. DISTRIBUTED DETECTION:
CONSENSUS+INNOVATIONS

We now consider distributed detection when sensors
cooperate through a randomly varying network. Specif-
ically, we consider the running consensus distributed
detection, proposed in [12]. At each time k, each sensor
i improves its decision variable, call it xi(k), in two
ways: 1) by incorporating its new observation at time
k; and 2) by exchanging the decision variable (with
incorporated new observation) locally with its neighbors
and computing the weighted average of its own and the
neighbors’ variables.

More precisely, the update of xi(k) is as follows:

xi(k)=
∑

j∈Oi(k)

Wij(k)

(
k − 1

k
xj(k − 1) +

1

k
Lj(k)

)

k = 1, 2, ..., xi(0) = 0. (6)

Here Oi(k) is the (random) neighborhood of sensor i
at time k (including i), and Wij(k) are the (random)
averaging weights. The local sensor i’s decision test at
time k is given by:

xi(k)
H1

≷
H0

0, (7)

i.e., H1 (respectively, H0) is decided when xi(k) ≥ 0
(respectively, xi(k) < 0).

Let x(k) = (x1(k), x2(k), ..., xN (k))> and L(k) =
(L1(k), ..., LN (k))>. Also, collect the averaging weights
Wij(k) in N×N matrix W (k), where, clearly, Wij(k) =

0 if the sensors i and j do not communicate at time step
k. The algorithm (6) in matrix form becomes:

x(k) = W (k)

(
k − 1

k
x(k − 1) +

1

k
L(k)

)
k = 1, 2, ..., x(0) = 0. (8)

We allow the averaging matrices {W (k)}∞k=1 to be
an i.i.d. sequence, each W (k) to be symmetric and
stochastic (row-sums are equal to 1 and the entries are
nonnegative,) with probability one and W (t) and Y (k)
to be mutually independent over all times k and t.

IV. MAIN RESULT

In this section, we analyze the performance of the
consensus+innovations distributed detector in terms of
the detection error exponent, when the size k of the
observation interval tends to +∞. Denote by Pe,i(k)
the error probability at sensor i, with algorithm (6). We
have the following result on the error exponent, proof of
which is left for the companion journal paper [1].

Theorem 1 Consider the distributed detector in (6). Sup-
pose that the sensors’ observations are spatially and
temporally i.i.d., conditioned on either hypothesis and
that the LMGF Λ0 is finite on R. Then, at each sensor
i, the error exponent is bounded from below as follows:

lim inf
k→∞

−1

k
logPe,i(k) ≥{

NCind, if | log r| ≥ thr (Λ0, N)
−max {B0, B1} , otherwise

,

where

thr (Λ0, N) = max{Λ0(Nλ?)−NΛ0(λ?), (9)
Λ0(1−N(1− λ?))−NΛ0(λ?)};

λ? is the minimizer of Λ0 over R; λ?0 = 1 − λ?1 = λ?;
λSWl ≥ 0 is the zero of the function3

∆l(λ) := Λl(Nλ)− | log r| −NΛl(λ), l = 0, 1;

and

Bl =

{
Λl(Nλ

SW
l )− | log r|, if

λ?l
N < λSWl ≤ λ?l

Λl(λ
?
l )− | log r|, if λSWl ≤ λ?l

N

.

Moreover, if | log r| ≥ thr (Λ0, N), the distributed
detector (6) is asymptotically optimal at each sensor i.

Theorem 1 says that when the speed of consensus
| log r| is above a threshold, the distributed detector in
(6) is asymptotically equivalent to the optimal central-
ized detector; when below the threshold, Theorem 1
says what distributed detector (at least) can achieve.

3It can shown that, if | log r| < thr (Λ0, N), there exists a unique
zero of the function ∆l(λ) on R.



Theorem 1 establishes that to achieve a desired level
of detection performance there is a minimum level of
connectivity, say | log r?|, above which the distributed
detection performance cannot improve. Theorem 1 is
valuable in the practical design of a sensor network, as
it says how much connectivity (resources) one needs to
achieve asymptotically optimal detection.

Equation (9) says that the sensor observations distri-
bution (through the LMGF) plays a role in determining
the distributed detector performance. We illustrate and
explain by an example the effect of the distribution on
the distributed detector performance in the next Section.

V. AN EXAMPLE: GAUSSIAN VERSUS LAPLACE
DISTRIBUTION

This section illustrates Theorem 1 with the Gaussian
and Laplace distributions.

Gaussian distribution. Consider detection of a signal
in additive Gaussian noise; Yi(t) has the following
density:

fG(y) =


1√

2πσG
e
− (y−mG)2

2σ2
G , H1

1√
2πσG

e
− y2

2σ2
G , H0.

(10)

It can be shown that, for this case, the LMGF equals
Λ0,G(λ) = −λ(1−λ)2

m2
G

σ2
G

, and attains the minimum at
λ? = 0.5. The per sensor Chernoff information equals:

Cind,G =
m2

G

8σ2
G

.

Now, applying Theorem 1, it is easy to get the sufficient
condition for optimality of the detector (6) (at each
sensor):

| log r| ≥ N(N − 1)Cind,G. (11)

Laplace distribution. Consider now the case when
the sensors’ observations have Laplace distribution; the
density of Yi(t) is:

fL(y) =

 1
2bL

e
− |y−mL|

bL , H1

1
2bL

e
− |y|bL , H0.

(12)

The LMGF in this case equals: Λ0,L(λ) =

log
(

1−λ
1−2λe

−λmL
bL − λ

1−2λe
−(1−λ)mL

bL

)
, and it attains

its minimum at λ? = 0.5. The per sensor Chernoff
information is

Cind,L =
mL

2bL
− log

(
1 +

mL

2bL

)
.

Applying again Theorem 1, the optimality condition for

detector (6) becomes:

| log r| ≥ log

(
2−N
2− 2N

e
−N2

mL
bL

− N

2− 2N
e
−(1−N2 )

mL
bL

)
− N log

(
1 +

mL

2bL

)
+N

mL

2bL
.

We now compare through a numerical example the
Gaussian and the Laplace distribution under equal under-
lying networks (equal r) and equal per sensor Chernoff
informations Cind,L = Cind,G = Cind. The latter
condition ensures that the two corresponding centralized
detectors have equal error exponents (= NCind). We
consider a network with N = 50 sensors, Cind =
Cind,L = Cind,G = 0.0014, bL = 0.0373, mL =
0.004, and m2

G/σ
2
G = 0.011 = 8Cind. We calcu-

late the optimality thresholds for r in (9); they equal
rG = 0.9667 (| log rG| = 3.4009), for the Gaussian
case, and rL = 0.8613 (| log rL| = 1.9752), for the
Laplace case. We can see that the optimality thresholds
for the Gaussian and Laplace cases are different. Also,
the Laplace distribution requires less connectivity (re-
quires smaller | log r|) to achieve asymptotic optimality
than the Gaussian distribution4. Further, for the range
| log r| ∈ [ | log rL|, | log rG| ), the distributed detector
with Laplace sensors is asymptotically optimal, while
the distributed detector with same network infrastructure
(equal r), equal per sensor Chernoff information, but
Gaussian sensors may not be optimal.

VI. CONCLUSION

We analyzed the large deviations performance (error
exponent) of consensus+innovations distributed detec-
tion over random networks. The sensors’ observations
have generic (non-Gaussian) distribution, i.i.d. both over
time and space, with finite LMGF Λ0 of a sensor’s log-
likelihood ratio. We showed that the distributed detector
exhibits phase transition behavior with respect to the
speed of consensus, measured by | log r|, where r =
λ2
(
E
[
W 2(k)

])
. When | log r| is above the threshold,

the distributed detector has the same error exponent
as the optimal centralized detector. We determined the
optimality threshold as a function of Λ0. When | log r|
is below the threshold, we quantified the achievable
performance of the distributed detector. We demonstrated
that the optimality threshold depends on the sensor
observations’ distribution. We illustrated this dependence
by comparing Gaussian and Laplace distributions.

4We showed in [15] that, for the Gaussian case (10), the threshold
in (11) is exact for a certain type of W (k), for the so-termed switching
fusion type. That is, | log r| that is ε less than N(N − 1)Cind =
3.4009 yields the error exponent strictly less than NCind. On the
other hand, the Laplace distribution needs at most | log rL| = 1.9752
connectivity, strictly less than for the Gaussian case.
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