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Abstract— This paper addresses robust linear dimensionality
reduction (RLDR) for binary Gaussian hypothesis testing. The
goal is to find a linear map from the high dimensional space
where the data vector lives to a low dimensional space where
the hypothesis test is carried out. The linear map is designed to
maximize the detector performance. This translates into max-
imizing the Kullback-Leibler (KL) distance between the two
projected distributions. In practice, the distribution parameters
are estimated from training data, thus subject to uncertainty.
This is modeled by allowing the distribution parameters to
drift within some confidence regions. We address the case
where only the mean values of the Gaussian distributions,
m0 and m1, are uncertain with confidence ellipsoids defined
by the corresponding covariance matrices, S0 and S1. Under
this setup, we find the linear map that maximizes the KL
distance for the worst case drift of the mean values. We solve
the problem globally for the case of linear mapping to one
dimension, reducing it to a grid search over a finite interval.
Our solution shows superior performance compared to robust
linear discriminant analysis techniques recently proposed in
the literature. In addition, we use our RLDR solution as a
building block to derive a sensor selection algorithm for robust
event detection, in the context of sensor networks. Our sensor
selection algorithm shows quasi-optimal performance: worst-
case KL distance for suboptimal sensor selection is at most
15% smaller than worst-case KL distance for the optimal sensor
selection obtained by exhaustive search.

I. INTRODUCTION

In this paper, we study linear dimensionality reduction
(LDR) for classification purposes. In the classification setup,
one wants to project two given distributions to a lower
dimensional space, so that the projected distributions are
separated as much as possible, in a certain sense. One of
the most often used LDR classification techniques is linear
discriminant analysis (LDA) [1]. Its main advantage is small
computational cost. However, it results in the Bayes optimal
classifier only for the case of equal covariance matrices of
the two Gaussian distributions. Moreover, its performance
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degrades when the mean values of the two distributions are
close.

To overcome this problem, the authors in [12], [3] try
to find the linear map that maximizes the Kullback-Leibler
(KL) distance between the two projected distributions. This
paper also uses the KL distance as optimality criterion. The
motivation for choosing KL distance comes from Stein’s
lemma which states that the probability of false alarm in
asymptotic regime (i.e., when the number of i.i.d. samples
goes to infinity) goes exponentially fast to zero, with rate
proportional to the KL distance between the two distribu-
tions. Alternative related choices of optimality criteria for
LDR that have been studied are the Chernoff distance and the
J-divergence [14], [15], [13]. For more details on Chernoff
distance and J-divergence see [4]. An advantage of using
KL and Chernoff distance or J-divergence over LDA is
that they are able to distinguish between distributions with
equal means (and different covariances). However, finding
the linear projection that maximizes any of the mentioned
distances is in general a hard nonconvex problem. In our
previous work [3], we solve the problem of maximizing KL
distance globally for the case of LDR to one dimension and
in full generality.

In practice, the distribution parameters are estimated from
training data. Thus, in general, there is a discrepancy between
the parameters used by the classifier (obtained from training
data) and the parameters of the distributions underlying the
data samples to be classified. The goal is to design a linear
map to a low dimensional space so that the resulting classifier
works well for all possible distribution parameter mismatches
within an uncertainty set. This leads to the formulation of a
robust linear dimensionality reduction (RLDR) problem. To
address this problem we follow a worst case analysis: we
find the linear map that maximizes the KL distance between
the projected distributions for the worst case of parameter
drifts. We address the case when only means of the two
distributions may drift. Related work to this paper is [8].
This reference also addresses LDR problem in the presence
of parameter uncertainties, but the Fisher criterion, i.e., LDA
is used as a cost function. As in this paper, a worst case
approach in [8] is followed, but it is assumed that both means
and covariances are uncertain, belonging to arbitrary convex
sets. We refer to method proposed in [8] as robust linear
discriminant analysis (RLDA).

Contributions. Maximizing worst case KL distance re-
sults in a max-min optimization problem that is in general
nonconvex and difficult to solve. In this paper, we address
the case where only the means of the distributions may drift.



The confidence set for the mean mi is an ellipsoid, with
the orientation defined by the covariance matrix Si, i = 0,1.
We solve this problem globally for the case when data are
projected to a one-dimensional space (p = 1), reducing it to
a grid search over a finite interval. We compare performance
of our method with RLDA, proposed in [8]. Simulation
examples (section IV-A) show that the classifier based on
our proposed methodology outperforms the classifier based
on RLDA for the case when the mean vectors of the two
distributions are close. For the case of more distinct mean
vectors, the performance of the two methods is comparable.
For the problem of maximizing worst case KL distance
when the projected space dimension is p > 1, an incremental
greedy approach that capitalizes on the p = 1 method is
proposed.

In addition, we consider an application of RLDR to sensor
selection for event detection. A subset of p out of n sensors
is to be chosen to report their measurements to a fusion
node. After receiving the selected measurements, the fusion
node conducts the hypothesis test. The goal is to choose the
subset of p sensors that yields the best detector performance
in the presence of allowed distribution parameter drifts.
Mathematically, the sensor selection problem is a LDR
problem where the linear map has a special structure: the
matrix that defines the linear map has 0/1 entries with a
unique 1 entry per row. Again, as a selection criterion, we
choose the KL distance between the distributions of the
selected measurement. The optimal subset can be found by a
combinatorial search, but this is infeasible for large n and p.
Thus, we propose a sensor selection algorithm that gives a
suboptimal solution. The algorithm is based on 1) relaxation
of the zero-one selection matrix to the Stiefel space([16]);
2) solving the LDR problem to find the suboptimal Stiefel
matrix; 3) projecting back the resulting Stiefel matrix to the
zero-one selection matrices set. In section VI-C we tested
the performance of our sensor selection algorithm against
the optimal solution obtained by search over all possible
sensor selections for cases when exhaustive search is feasible
(up to n = 30, p = 4). Our solution shows near optimal
performance with significant reductions in computational
cost. For example, for case n = 30, p = 3, an exhaustive
search takes more than 3 hours, while our algorithm produces
solution only 2.3% below optimum in less than 15 seconds
(or 0.1% of the time needed by the optimal one) on a 1.7
GHz personal computer.

Paper organization. The rest of the paper is organized
as follows. In section II we introduce the dimensionality
reduction problem when the distribution parameters are
known. In section III we consider the case where they are
uncertain. We formulate the robust linear dimensionality
reduction as an optimization problem. In sections IV and V,
we present our solution algorithm. In section VI we discuss
one application to sensor selection and detail our sensor
selection algorithm. In section VI-C simulation results are
presented and section VII summarizes the work presented in
this paper. An appendix contains the proofs of some lemmas.

II. LINEAR DIMENSIONALITY REDUCTION: KNOWN
DISTRIBUTIONS

We consider a binary Gaussian hypothesis test. Let

x = (x1,x2, . . . ,xn)> ∈ Rn

be the vector of all features, where xi denotes the ith feature.
It is assumed that the data vector x ∈ Rn was generated by
one of two known Gaussian distributions. Accordingly, we
face the hypothesis test

H0 : x∼N (m0,S0)
H1 : x∼N (m1,S1)

,

where N (mi,Si) denotes the Gaussian distribution with
mean mi and covariance matrix Si, i = 0,1. Hypothesis Hi
corresponds to the class i (i = 0,1).

Linear dimensionality reduction. Since the hypothesis
test in high dimensional space might be computationally
too expensive, we linearly map the data x ∈ Rn to a lower
dimensional space Rp:

y = E>x.

This induces the hypothesis test in the lower dimension
space Rp:

H0 : y∼N (E>m0,E>S0E)
H1 : y∼N (E>m1,E>S1E)

.

The detector operates in the lower dimension space Rp.
We are interested in finding the linear map E : Rn 7→ Rp

which gives the detector the best possible performance. We
choose the linear map E that maximizes the Kullback-Leibler
distance between the two projected Gaussian distributions.

Stein’s lemma. Motivation for the choice of Kullback-
Leibler distance comes from the Stein’s lemma, a fundamen-
tal result from detection theory. Stein’s lemma [11] states
that the probability of false alarm exponentially goes to zero
in asymptotic regime with the exponential rate proportional
to the Kullback-Leibler distance between the two tested
distributions, if the Neyman-Pearson detector is used. Indeed,
if PFA(k) denotes the probability of false alarm when k i.i.d.
samples are processed, then

lim
k→∞

logPFA(k)
k

=−DKL(p1‖p0)

where

DKL(p1‖p0) =
∫

p1(x) log
(

p1(x)
p0(x)

)
dx

denotes the Kullback-Leibler distance between the distribu-
tions p0 and p1. Thus, more dissimilar distributions lead to
lower probabilities of false alarm in the asymptotic regime.

Inspired by Stein’s lemma, we propose to search for
the linear map E which yields the largest KL distance
between the induced p-dimensional distributions. That is, we
formulate the following optimization problem

maximize f (E;m0,m1,S0,S1)
subject to E>E = Ip

(1)



where Ip denotes the p× p identity matrix and

f (E;m0,m1,S0,S1) :=

DKL

(
N (E>m1,E>S1E),N (E>m0,E>S0E)

)
.

(2)

It can be shown that

f (E;m0,m1,S0,S1) =
1
2

{
tr
(
(E>S0E)

−1
(E>S1E)

)
+

(m1−m0)>E(E>S0E)
−1

E>(m1−m0)−

log
det
(
E>S1E

)
det(E>S0E)

− p

}
.

(3)

Note that the constraint in (1) forces the matrix E ∈Rn×p

to have orthonormal columns. That is, E is a Stiefel matrix.
This entails no loss of generality. Indeed, it is straightforward
to check from (3) that the invariance equation

f (EA;m0,m1,S0,S1) = f (E;m0,m1,S0,S1)

holds for all nonsingular A ∈ Rp×p. This means that f
depends on E only through its range space, and we can
restrict attention to Stiefel matrices.

This problem has already been addressed in [3]. This
reference solved the problem globally for case p = 1 reducing
it to a grid search over an interval and proposed suboptimal
greedy approach for case p > 1.

III. LINEAR DIMENSIONALITY REDUCTION: UNCERTAIN
DISTRIBUTIONS

In the previous section II, the parameters (mi,Si) of the
Gaussian distributions were assumed known. In practice,
these parameters are often estimated from training data and
are affected by some uncertainty. That is, the distribution
parameters may drift from nominal values within some
prescribed regions of confidence. To obtain the optimal
projection map E : Rn 7→Rp, we maximize the projected KL
distance for the worst outcome of the allowed distribution
parameters, i.e.,

maximize min(m̃0,m̃1,S̃0,S̃1)∈U f (E; m̃0, m̃1, S̃0, S̃1)
subject to E>E = Ip

(4)

where U denotes the uncertainty regions of the parameters
of the distributions.

In this paper, we restrict attention to the case where only
the mean values are uncertain. More precisely, we consider

U =
{
(m̃0, m̃1, S̃0, S̃1) : m̃i ∈ E

(
mi,ki S−1

i
)

and

S̃i = Si for i = 0,1
} (5)

where the notation E (a,A) (A is positive definite) denotes
the ellipsoid

E (a,A) = {x ∈ Rn : (x−a)>A(x−a)≤ 1}.

In other words set (5) means that, for the ith Gaussian
distribution N

(
m̃i, S̃i

)
, we have S̃i = Si (with Si known) but

the mean value m̃i is uncertain and belongs to the confidence
ellipsoid E (mi,kiSi), where mi, ki are known. Note that mi
can be interpreted as the nominal value of m̃i and ki > 0

controls how “large” is the uncertainty region (if ki = +∞,
there would be no uncertainty: m̃i = mi). Note that the
orientations of the uncertainty ellipsoids are not generic, i.e.,
they are induced by the covariance matrices S0 and S1. This is
motivated by the following fact: if the means are estimated as
sample means (the minimum variance unbiased estimate for
Gaussian distributions), then the covariance of the estimate
of the ith mean is equal to 1

N Si, where N is the number of
iid samples used. Therefore, it is natural to assume that the
confidence region for mi is given by (5), where the scaling
constants k0 and k1 are proportional to the number of samples
used.

Thus, the optimization problem that we address is the
following:

maximize minm̃0∈E (m0,k0S−1
0 ), m̃1∈E (m1,k1S−1

1 ) f (·)
subject to E>E = Ip

(6)

where f (·) = f (E; m̃0, m̃1,S0,S1). In the sequel, we refer
to (6) as the robust linear dimensionality reduction (RLDR)
problem.

IV. RLDR: SOLUTION FOR THE CASE p = 1
For the case of dimensionality reduction to one dimension,

i.e., p = 1, we provide an algorithm that gives a global
solution to problem (6). This is achieved through series
of problem reformulations. Note that, for the case p = 1,
problem (6) is

maximize min
δ0∈E (0,k0S−1

0 ), δ1∈E (0,k1S−1
1 ) h(·)

subject to e>e = 1
(7)

where
h(·) = h(e;δ0,δ1,m0,m1,S0,S1) =

1
2

{
e>S1e
e>S0e

+
((m1 +δ1−m0−δ0)>e)2

e>S0e
− log

e>S1e
e>S0e

−1}.

(8)

We start with Lemma 1 which shows that problem (7) is
equivalent to (9).

Lemma 1: Suppose v? solves

maximize v>Sv− log(v>Sv)+ξ (v)
subject to v>v = 1

(9)

where S := S−1/2
0 S1S−1/2

0 ,

ξ (v) =

{(√
v>mm>v− 1√

k1

√
v>Sv− 1√

k0

)+
}2

, (10)

m := S−1/2
0 (m1−m0) and, for x ∈R, x+ := max{0,x}. Then,

e? := S−1/2
0 v?/‖S−1/2

0 v?‖ solves (7).
Proof: See the appendix.

We now focus on the optimization problem (9). Note that
the objective function in (9) depends on the vector v only
through the quadratic forms v>mm>v and v>Sv. Thus, we
can reformulate (9) as

maximize ψ(x,y)
subject to (x,y) ∈R

(11)



where

ψ(x,y) = x− logx+

{(
√

y− 1√
k1

√
x− 1√

k0

)+
}2

and

R =
{

(x,y) ∈ R2 : x = v>Sv, y = v>mm>v,

for some v ∈ Rn, v>v = 1
}

.
(12)

For n ≥ 3, the set R ⊂ R2 is compact and convex, see [7].
Note that, since ψ is continuous and R is compact, there is a
global maximizer. The next lemma asserts that the boundary
of R contains a global maximizer.

Lemma 2: The boundary ∂R of the set R contains a
global maximizer of (11).

Proof: See the appendix.
The boundary of R is a closed curve in R2. Our strategy

consists in circulating along ∂R to spot a global maximizer.
More precisely, we will sample ∂R with a finite set of
points and pick the best point. To implement this strategy,
we borrow the following theorem from [6].

Theorem 3 ([6]): Let n≥ 3 and let A,B be n×n symmet-
ric matrices. Let

R(A,B) =
{
(x,y) ∈ R2 : x = v>Av, y = v>Bv,

for some v ∈ Rn, v>v = 1
}

.

For t ∈ [0,2π], let C(t) = Acos t + Bsin t and let λmin(t) be
the minimal eigenvalue of the matrix C(t) and umin(t) an
associated unit norm eigenvector. Suppose that λmin(t) is a
simple eigenvalue of C(t) for all t ∈ [0,2π]. Then, the set
R(A,B) is strictly convex and its boundary is given by

∂R(A,B) = {(x(t),y(t)) : t ∈ [0,2π],

x(t) = umin(t)>Aumin(t), y(t) = umin(t)>Bumin(t)
}

.
(13)

Parametrization of ∂R. Theorem 3 assumes that λmin(t)
is simple for all t. However, a parametrization of the bound-
ary when this condition is not satisfied is readily available.
Applied to our set R in (12), this leads to the following
procedure:

1) generate the points

(xk,yk) = (u>k Suk,u>k mm>uk), k = 1,2, . . . ,K,

where uk denotes an unit-norm eigenvector correspond-
ing to the minimal eigenvalue of

Ck = Scos((k−1)2π/K)+mm> sin((k−1)2π/K) .

Here, K is the user-defined grid size and
{(xk,yk) : k = 1, . . . ,K} is an initial sample of ∂R;

2) if the distance between two consecutive points (xk,yk)
and (xk+1,yk+1) is greater than a prescribed threshold,
interpolate the line segment which connects them, i.e.,
consider(

x( j)
k ,y( j)

k

)
= (1− j/J)(xk,yk)+ j/J (xk+1,yk+1) ,

j = 0,1, . . . ,J.

Finally, our sample of ∂R is ∂̂R = {(xk,yk)}∪
{

x( j)
k ,y( j)

k

}
.

Solution to problem (9). A solution v? of (9) can be found
as follows. Let

(x?,y?) ∈ arg max
(x,y)∈∂̂R

ψ(x,y).

That is, (x?,y?) denotes the best point in ∂̂R. If (x?,y?) ∈
{(xk,yk)}, say (x?,y?) = (xk? ,yk?), then we can take v?

as an unit-norm eigenvector associated with the minimal
eigenvalue of Ck? . Otherwise, (x?,y?)∈

{
(x( j)

k ,y( j)
k )
}

and we
need to solve the system of 3 quadratics

v>Sv = x?

v>mm>v = y?

v>v = 1
(14)

with respect to v. Any solution can be taken as v?. It can be
shown that (14) can be mapped into a convex problem.

A. Simulation example
We will present now simulation results on the performance

of our RLDR method. The performance of our method is
compared with RLDA in [8]. The classifier that is used is
the Maximum Likelihood detector (MLD). The data samples
to be classified are generated from two Gaussian distributions
N (m0,S0) and N (m1,S1). However, the MLD uses m̃0
and m̃1. We want to assess the classifier performance when
m̃0, m̃1 drift inside the confidence regions defined by (5). To
this end, we generate 3000 pairs of points (m̃0, m̃1) from
the confidence region (5); for each of them we estimate
probability of false alarm (PFA). To estimate PFA we generate
10000 data samples from N (m0,S0) and conduct 10000
single-sample hypothesis tests. We calculate PFA as a ratio
between the number of test instances when hypothesis 1 is
chosen and total number of tests performed (10000). The
data sample dimension is n = 10 and the parameters (m0,S0),
(m1,S1) are generated randomly. Constants k0 and k1 that
define the size of confidence regions (5) are chosen such
that the highest uncertainty in m0(m1) is equal to 20% of the
norm of the vector m0−m1. Figure 1 presents histograms
for PFA for RLDA and RLDR.

The pair of histograms on the right is obtained for the case
when the norm ‖m1−m0‖ is large in comparison to the one
of matrices S0 and S1. We see that for this case both RLDA
and RLDR perform well (mean value is around 0.012 and
variance is very small). This result was expected, since the
more the two distributions are apart from each other in terms
of mean vectors, the easier it is to discriminate between them.
The pair of histograms at the top is obtained for the case
when the norm ‖m1−m0‖ is small. In this case the projector
obtained by RLDA results in very poor detector performance.
This result is predicted by the theory: in the limit case
when m0 = m1 LDA is not able to discern between the two
distributions. On the other hand, Kullback -Leibler distance
takes into account the orientation of the distributions. This
explains why our KL-based RLDR projector results in a
significantly better detector performance for the case when
the norm ‖m1−m0‖ is small.
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Fig. 1. Probability of false alarm

V. RLDR: SUBOPTIMAL SOLUTION FOR THE CASE p > 1

Optimization problem (6) for the case p > 1 seems to
be very difficult to solve globally. Here, we propose a
greedy, yet suboptimal, approach. Our method consists of
constructing the columns of the matrix E =

[
e1 · · · ep

]
one by one (in the order e1, e2, . . . ). We construct the jth
column by solving (7) with the constraint that the column
e j must be orthogonal to the previously determined columns
e1, ...,e j−1, i.e., we solve

maximize min
δ0∈E (0,k0S−1

0 ), δ1∈E (0,k1S−1
1 ) h(·)

subject to e>e = 1
e>ei = 0, i = 1, . . . , j−1.

(15)

where h(·) = h(e;δ0,δ1,m0,m1,S0,S1). Let U ( j) ∈
Rn×(n− j+1) be a matrix with orthonormal columns which
spans the orthogonal complement of span

{
e1, . . . ,e j−1

}
.

The restrictions in (15) mean that e = U ( j)e( j) for some
unit-norm e( j) ∈Rn− j+1. Problem (15) therefore corresponds
to

maximize min
δ0∈E (0,k0S−1

0 ),δ1∈E (0,k1S−1
1 ) h(·)

subject to e( j)>e( j) = 1.
(16)

where h(·) = h(U ( j)e( j);δ0,δ1,m0,m1,S0,S1). In the ap-
pendix, we show that (16) is equivalent to

maximize min
γ0∈E

(
0,k0

(
S( j)

0

)−1
)

, γ1∈E
(

0,k1

(
S( j)

1

)−1
) h(·)

subject to e( j)>e( j) = 1
(17)

where h(·) = h(e( j);γ0,γ1,m
( j)
0 ,m( j)

1 ,S( j)
0 ,S( j)

1 ), m( j)
i =

U ( j)>mi and S( j)
i = U ( j)>SiU ( j), i = 0,1. That is, (17)

is simply an instance of (7) in the reduced dimensional
space Rn− j+1, for which we have developed a global
solution. Algorithm 1 outlines the overall approach.

Algorithm 1 Greedy algorithm
1: for j = 1 to p do
2: Compute U ( j) ∈Rn×(n− j+1) (U (1) := In), an orthonor-

mal basis for the orthogonal complement of the j−1
dimensional subspace span

{
e1,e2, . . . ,e j−1

}
3: Compute the projected means and covariances m( j)

i =
U ( j)>mi, S( j)

i = U ( j)>SiU ( j) for i = 0,1
4: Let e( j) ∈ Rn− j+1 denote a solution of (17)
5: Compute the jth column of E as e j = U ( j)e( j)

6: end for

VI. APPLICATION: ROBUST SENSOR SELECTION

A. Problem formulation

We now consider the sensor selection problem for event
detection in wireless sensor networks (WSN). In WSNs,
sensor nodes have a limited energy budget. Thus, a minimal
number of sensors should be kept in active mode at any
given time, in order to prolong the network lifetime. For
a certain query, i.e., the task of determining whether an
event occurred or not, we wish to minimize the number of
reporting sensors without compromising performance. Based
on the sensor readings the fusion node will decide whether
the event has occurred or not. For a particular query, once we
fix the number of reporting sensors, we want to choose the
subset of them that will result in the best possible detection
performance.

We wish to remark that WSNs are usually deployed to
perform several detection and estimation tasks, i.e., a WSN
will be required to answer several different queries. Since
optimal sensor selection is query-dependent, during WSN
operation time, occurrence of different events will be tested
and thus different subsets of sensors will be activated over
time. This provides motivation for selecting sensors rather
than deploying only a subset of them in the first place. When
one of the selected sensors for a given detection task cannot
operate anymore (due to some failure, or the battery has
ran out), one could re-select a subset of p out of the n− 1
remaining ones by using the algorithm we propose below. Of
course, other sensor replacement strategies can be envisaged.
As this falls outside the focus of this paper, a more in-depth
analysis is left to future work.

As in section III, we assume that the means of the two
Gaussian distributions may drift within their regions of con-
fidence, given by (5). Mathematically, the sensor selection
problem can be formulated as follows:

maximize minm̃0∈E (m0,k0S−1
0 ), m̃1∈E (m1,k1S−1

1 ) f (·)
subject to E>E = 1

Ei j ∈ {0,1}
(18)

where f (·) = f (E; m̃0, m̃1,S0,S1) is given by (3).

B. Sensor selection algorithm

The optimization problem (18) is combinatorial and solv-
ing it by searching over all

(n
p

)
combinations of sensors is



intractable for sufficiently large n and p. We propose a sub-
optimal approach. It consists of three phases, which we will
detail below.

Phase 1: relaxation. We first find a Stiefel matrix using
algorithm 1. Denote the result by Ê.

Phase 2: projection. We find a selection matrix Ẽ with
range space closest to the range space of matrix Ê. This
corresponds to solving:

Ẽ = argmin
∥∥∥EE>− ÊÊ>

∥∥∥
subject to Ei j ∈ {0,1}

E>E = Ip

. (19)

It can be shown that the solution of (19) is obtained as
follows: if ( j1, j2, . . . , jp) denote the indices of the largest
entries of the diagonal of the projector ÊÊ>, then Ẽ =[

e j1 e j2 · · · e jp

]
where e j stands for the jth column of the

identity matrix In.
Phase 3: local refinement. Finally, we polish the result by

performing a local optimization in the neighborhood of the
matrix Ẽ. We start by computing mean vectors m?

0 and m?
1

that correspond to the closest distributions in the full space
Rn by solving the convex optimization problem:

minimize 1
2

{
tr
(
S−1

0 S1
)
+(m̃1− m̃0)>S−1

0 (m̃1− m̃0)−
log det(S1)

det(S0) − p
}

subject to (m̃0, m̃1) ∈Um

.

(20)
Then, for the choice of parameters m?

0, m?
1, S0, S1, we

evaluate the KL distance for the selection matrices in the
neighborhood of Ẽ. This local search consists of p steps.
In the i-th step (i = 1,2, . . . , p) all columns of the current
selection matrix are fixed except the i-th one, which is viewed
as an optimization variable. The i-th column is swept through
all possible choices, i.e., through the canonical vectors that
are different from the remaining p− 1 columns. After the
i-th column is circulated through all possible choices, it is
frozen to the choice that gives maximal KL distance between
the projected distributions. The procedure is repeated for all
p columns.

C. Simulation results

We provide simulation results on the performance of the
proposed sensor selection algorithm. To test our algorithm,
we compare the values of the worst-case KL distance for the
subset of sensors obtained by our algorithm with the worst-
case KL distance of the optimal subset of sensors (i.e., the
one that solves (18)), obtained by exhaustive search. Due
to the complexity of the optimal algorithm, we perform the
comparison over a small number of sensors. It is important to
clarify that our algorithm is capable of handling larger prob-
lems. We randomly generated parameters for two Gaussian
distributions for cases n = 10, 11, 12, 13, 14, 20, 30 and for
each of them we ran our algorithm for p = 1, 2, 3, 4 (with the
exception of n = 30, p = 4). The results are shown in Table 1.
It can be seen that the values of KL distance match in most
cases. For p = 1,2,3 the suboptimal value differs from the

TABLE I
KL DISTANCES FOR OPTIMAL AND SUBOPTIMAL SELECTION

KL distance p = 1 p = 2 p = 3 p = 4

SUBOPT
n

10 69.2481 86.7304 171.9278 243.5756
11 37.4097 69.2920 92.2846 110.8385
12 38.3409 89.8811 110.4657 129.9147
13 15.5787 31.6767 46.2754 60.1648
14 36.1556 76.4347 107.9220 124.5990
20 50.3118 91.6304 135.4058 168.5743
30 73.2230 122.1518 153.6667

OPTIMAL
n

10 69.2481 86.7304 171.9278 284.6790
11 37.4097 69.2920 92.9244 115.4617
12 38.3409 89.8811 110.4657 129.9147
13 15.5787 31.6767 46.2754 61.5073
14 36.1556 76.4347 107.9220 127.3992
20 50.3118 91.6304 135.4058 168.5743
30 73.2230 122.1518 155.7737

optimal value in only one entry (n = 30, p = 3) for less than
3%; for p = 4 the suboptimal value differs from the optimal
value less than 15%. Computational time of our algorithm
is significantly shorter than the one of the exhaustive search,
which requires a long time even for small n and p (as in Table
1). For example, in case n = 30/ p = 3, exhaustive search
(
(30

3

)
= 4060 combinations) takes more than 3 hours, while

our algorithm produces solution in less than 15 seconds on
a 1.7 GHz personal computer, with savings of about 99.9%
in computation. For n = 50/ p = 10 the optimal solution is
infeasible (

(50
10

)
≈ 1010 combinations) while our algorithm

takes about 1.5 minutes to find a solution.

VII. CONCLUSION

In this paper, we considered robust linear dimensionality
reduction for hypothesis testing. This translates in finding
the linear map that maximizes the Kullback-Leibler distance
between the projected Gaussian distributions for the worst
case drift of the distribution parameters within the uncer-
tainty set. The resulting optimization problem is difficult to
solve with full generality. We solve the problem globally
for the case p = 1 when only the distribution means are
uncertain. We reduced the problem to a grid search over
an finite interval. Simulations show that our p = 1 solution
is superior to the robust LDA method for the case of
small differences between the two distribution means. When
applied to a sensor selection problem, our algorithm shows
good performance: the suboptimal values of KL distance
were always above 85% of the optimal (maximal) values.

APPENDIX

Proof of Lemma 1. To simplify notation within this proof
we write h(e;δ0,δ1) instead of h(e;δ0,δ1,m0,m1,S0,S1).



Note that h(e;δ0,δ1) depends on the vector e only through
its direction. Therefore, we can change the sphere constraint
e>e = 1 in (7) to the ellipsoid constraint e>S0e = 1. With
this ellipsoid constraint in force, the function h simplifies
significantly. We further change variables as v := S1/2

0 e, thus
arriving at the equivalent problem

maximize min
δ0∈E (0,k0S−1

0 ), δ1∈E (0,k1S−1
1 ) g(v;δ0,δ1)

subject to v>v = 1
(21)

where

g(v;δ0,δ1) =
1
2

{
v>Sv+((m1 +δ1−m0−δ0)>S−1/2

0 v)2

− logv>Sv−1
}

and S := S−1/2
0 S1S−1/2

0 . If v? solves (21), then e? =
S−1/2

0 v?/‖S−1/2
0 v?‖ solves (7).

In (21), the optimization variable is v and the objective
function is

φ(v) = min
δ0∈E (0,k0S−1

0 ), δ1∈E (0,k1S−1
1 )

g(v;δ0,δ1),

that is,

φ(v) =
1
2

{
v>Sv− logv>Sv−1

}
+

1
2

ξ (v) (22)

where

ξ (v) :=

min
δ0∈E (0,k0S−1

0 ), δ1∈E (0,k1S−1
1 )

((m1 +δ1−m0−δ0)>S−1/2
0 v)2.

(23)

It can be shown (details omitted) that previous problem
has the closed-form solution

ξ (v) =
{(∣∣∣v>S−1/2

0 (m1−m0)
∣∣∣−∥∥∥∥ 1√

k1
S1/2

1 S−1/2
0 v

∥∥∥∥−∥∥∥∥ 1√
k0

v
∥∥∥∥)+

}2 (24)

where, for x ∈ R, x+ = max{0,x}. We rewrite (24) as

ξ (v) =

{(√
v>mm>v− 1√

k1

√
v>Sv− 1√

k0
‖v‖
)+
}2

.

(25)
where m := S−1/2

0 (m1 − m0). Plugging (25) into (22),
turns (21) into the problem (9). This completes the proof.

Proof of Lemma 2. Let (x0,y0) ∈ R be given and let
Yx0 := {y : (x0,y) ∈R}. Since R is compact and convex,
Yx0 is a finite interval, say Yx0 = [y1,y2]. Note that (x0,y2)
belongs to ∂R. Also, it is straightforward to check that
the function y ∈ Yx0 7→ ψ(x0,y) is non-decreasing with
respect to y (because t ≥ 0 7→ (t+)2 is non-decreasing with
respect to t). Thus, ψ(x0,y0)≤ ψ(x0,y2). In sum, given any
point in R, we can produce another in ∂R with equal or

greater objective ψ . This proves that ∂R contains a global
maximizer.

Proof that (16) is equivalent to (17). It is straightforward
to check that (16) is equivalent to

maximize min
δ0∈E (0,k0S−1

0 ), δ1∈E (0,k1S−1
1 ) h(·)

subject to e( j)>e( j) = 1.
(26)

where h(·) = h
(

e( j);U ( j)>δ0,U ( j)>δ1,m
( j)
0 ,m( j)

1 ,S( j)
0 ,S( j)

1

)
,

m( j)
i = U ( j)>mi and S( j)

i = U ( j)>SiU ( j). The ellipsoid con-
straint on δi in (26) means that

δi ∈Ui =
{

1√
ki

S1/2
i ui : u>i ui ≤ 1

}
.

Thus, if we introduce the variables γi = U ( j)>δi, the opti-
mization problem (26) is converted to

maximize minγ0∈V0, γ1∈V1 h
(

e( j);γ0,γ1,m
( j)
0 ,m( j)

1 ,S( j)
0 ,S( j)

1

)
subject to e( j)>e( j) = 1

(27)
where

Vi =
{

1√
ki

U ( j)>S1/2
i ui : u>i ui ≤ 1

}
.

That is,
Vi =

1√
ki

U ( j)>S1/2
i Bn(0,1) (28)

where Bn(0,1) = {u ∈ Rn : u>u ≤ 1} designates the unit-
norm ball centered at the origin of Rn. Also, for a matrix
A ∈ Rk×l , the symbol ABl(0,1) denotes the set {Au : u ∈
Bl(0,1)} ⊂ Rk.

To conclude the proof, we need to show that Vi =

E
(

0,ki

(
S( j)

i

)−1
)

. Let Si = QiΛiQ>i be an eigenvalue de-

composition of Si where Qi is an n× n orthogonal matrix
(Q>i Qi = In) and Λi is an n×n diagonal matrix with positive
diagonal entries. From (28), we have

Vi =
1√
ki

U ( j)>QiΛ
1/2
i Q>i Bn(0,1)

=
1√
ki

U ( j)>QiΛ
1/2
i Bn(0,1). (29)

Now, let
U ( j)>QiΛ

1/2
i = WΣV> (30)

be a singular-value decomposition where W is an (n− j +
1)× (n− j +1) orthogonal matrix,

Σ =
[
Σ1 0

]
is an (n− j +1)×n matrix with Σ1 containing the singular
values (Σ1 is an (n− j +1)× (n− j +1) matrix) and V is an
n×n orthogonal matrix. Plugging (30) into (29) gives

Vi =
1√
ki

WΣV>Bn(0,1)

=
1√
ki

WΣBn(0,1) (31)

=
1√
ki

WΣ1Bn− j+1(0,1). (32)



On the other hand, we have

E
(

0,ki

(
S( j)

i

)−1
)

=
1√
ki

(
S( j)

i

)1/2
Bn− j+1(0,1)

=
1√
ki

(
U ( j)>SiU ( j)

)1/2
Bn− j+1(0,1)

=
1√
ki

(
WΣ

2
1W>

)1/2
Bn− j+1(0,1)

=
1√
ki

WΣ1W>Bn− j+1(0,1)

=
1√
ki

WΣ1Bn− j+1(0,1). (33)
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