
Abstract

The thesis addresses the problem of space-time codebook design for communication

in multiple-input multiple-output (MIMO) wireless systems. The realistic and challeng-

ing non-coherent setup (channel state information is absent at the receiver) is considered.

A generalized likelihood ratio test (GLRT)-like detector is assumed at the receiver and

contrary to most existing approaches, an arbitrary correlation structure is allowed for

the additive Gaussian observation noise. A theoretical analysis of the probability of er-

ror is derived, for both the high and low signal-to-noise ratio (SNR) regimes. This leads

to a codebook design criterion which shows that optimal codebooks correspond to op-

timal packings in a Cartesian product of projective spaces. The actual construction of

the codebooks involves solving a high-dimensional, nonlinear, nonsmooth optimization

problem which is tackled here in two phases: a convex semi-definite programming (SDP)

relaxation furnishes an initial point which is then refined by an iterative subgradient-like

geodesic descent algorithm exploiting the Riemannian geometry imposed by the power

constraints on the space-time codewords. New codebooks are obtained by this method

and their performance is shown to outperform previous state-of-art solutions. In fact,

for some particular configurations, these new constellations attain the Rankin bound and

are therefore provably optimal. The thesis also contains new theoretical results on the

capacity (mutual information) of multiple-antenna wireless links in the low SNR regime.

The impact of channel and noise correlation on the mutual information is obtained for

the on-off and Gaussian signaling. The main conclusion is that mutual information is

maximized when both the transmit and receive antennas are fully correlated.

Keywords: Multiple-input multiple-output (MIMO) systems, non-coherent communica-

tions, space-time constellations, Grassmannian packings, equiangular tight frame (ETF),

channel capacity.
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Resumo

A tese aborda o problema do desenho de códigos espaço-temporais para sistemas de

comunicação Multiple-Input Multiple-Output (MIMO) sem fios. Considera-se o contexto

realista e desafiante da recepção não-coerente (realização do canal é desconhecida no re-

ceptor). O detector conhecido como Generalized Likelihood Ratio Test (GLRT) é imple-

mentado no receptor e, ao contrário da maioria das abordagens actuais, permite-se uma

estrutura de correlação arbitrária para o rúıdo Gaussiano de observação. Apresenta-se

uma análise teórica para a probabilidade de erro do detector, em ambos os regimes as-

simptóticos de relação sinal-rúıdo (SNR) alta e baixa. Essa análise conduz a um critério

de optimalidade para desenho de códigos e permite uma re-interpretação geométrica como

um problema de empacotamento óptimo num producto Cartesiano de espaço projectivos.

A construção dos códigos implica a resolução de um problema de optimização não-linear,

não-diferenciável e de dimensão elevada que foi atacado aqui em duas fases. A primeira

fase explora uma relaxação convexa do problema original para obter uma estimativa ini-

cial. A segunda fase, refina essa estimativa através de um algoritmo iterativo de descida de

gradiente ao longo de geodésicas: explora-se assim a geometria Riemmaniana imposta pela

restrições de potência sobre os códigos espaço-temporais. Mostra-se que o desempenho dos

novos códigos obtidos por este método excede o das soluções previamente conhecidas. De

facto, para algumas configurações particulares, estas novas constelações realizam o limiar

de Rankin e são por isso garantidamente óptimas. Esta tese também contém novos resul-

tados teóricos sobre a capacidade (informação mútua) de ligações sem-fios com múltiplas

antenas no regime de baixa SNR. O impacto de correlação do canal e do rúıdo sobre a

informação mútua é obtido para as sinalizações on-off e Gaussiana. A conclusão principal

é que a informação mútua é maximizada quando ambas as antenas do transmissor e re-

ceptor estão totalmente correlacionadas.
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Chapter 1

Introduction

The demand for mobile communications systems with high data rates and improved link

quality for a variety of applications has dramatically increased in recent years. Although

the benefits of using multi-antenna receivers have been known for a long time, the di-

versity and rate gains attainable using multiple antennas at both transmit and receive

sides have been understood only recently. Winters [1] was among the first to prove that

multiple-input multiple-output (MIMO) systems can provide a capacity increase. Paulraj

and Kailath [2] demonstrated that the capacity of cellular code-division multiple access

(CDMA) systems equipped with multiple antennas at both transmit and receive sides can

increase considerably with respect to single-input single output (SISO) systems. Then

Telatar [3] proved the fundamental results on the capacity of flat-fading MIMO channels.

These results were independently derived and extended with practical considerations by

Foschini et al. [4]. The main finding of these information theoretic analyzes was that at

high signal-to-noise ratio (SNR) the capacity of multiple antenna channels increases lin-

early with the smaller of the number of transmit and receive antennas. This has led to

a great deal of research on space-time codes (STC) to exploit both spatial and temporal

diversity to maximize channel capacity. The key development of the STC was originally

revealed in [5] in the form of trellis codes, which required a multidimensional Viterbi al-

gorithm at the receiver for decoding. These codes, called space-time trellis codes (STTC),

provide a diversity gain equal to the number of transmit antennas in addition to a coding

gain that depends on the complexity of the code (i.e., number of states in the trellis) with-

out any loss in bandwidth efficiency. When the number of antennas is fixed, the decoding

1



2 Introduction

complexity of STTC (measured by the number of trellis states at the decoder) increases

exponentially as a function of the diversity level and transmission rate. In addressing

the issue of decoding complexity, Alamouti [6] discovered a remarkable space-time block

coding scheme for transmission with two antennas. This scheme supports maximum like-

lihood (ML) detection based on linear processing and scalar detection at the receiver. The

very simple structure and linear processing of the Alamouti construction makes it a very

attractive scheme that is currently part of wideband CDMA and CDMA-2000 standards.

Tarokh et al. [7], by using orthogonal designs to create analogs of the Alamouti codes

for more that two transmit antennas, laid down the theory of the space-time block codes

(STBC). Their aim was also ML decoding with only linear processing at the receiver,

and this is the function of the orthogonal structure. As the number of transmit antennas

increases, the data rate available with orthogonal designs becomes unattractive. Hence

the recent focus on nonorthogonal linear codes designs such as linear dispersion codes

(LDC) [8] and the Golden code [9]. Bell labs layered space-time (BLAST) codes [4] can be

regarded as a special class of STBC where streams of independent data are transmitted

over different antennas, thus maximizing the average data rate over the MIMO system.

There are various layered space-time architectures depending upon whether error control

coding is used or not and by the way modulated symbols are assigned to the transmit

antennas. Such architectures include the vertical [10], horizontal [11], diagonal [11] and

threaded layered space-time architectures [12]. In order to perform symbol detection, the

receiver must unmix he channel, in one of several possible ways. The complexity of ML

decoding can be high when many antennas or higher order modulations are used. En-

hanced variants of this like sphere decoding [13] have been proposed. Another popular

decoding strategy proposed along vertical BLAST is known as nulling and canceling which

resembles the successive interference cancelation (SIC) proposed for multiuser detection

in CDMA receivers [14]. While there are several receiver architectures that can support

the full degrees of freedom of the channel, nulling and canceling in combination with min-

imum mean-square error (MMSE) estimation achieves capacity. See, e.g., [15, Chapter 8]

for more details.
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Since publication, space-time coding has quickly received recognition by academia, in-

dustry and governments. In the last few years, a large number of books and papers on

space-time coding have been published worldwide. A detailed overview of some fundamen-

tal techniques, along with a survey of core contributions to the field and the generalizations

to frequency-selective fading channels, can be found in [16, 17, 18, 19, 20, 21, 22].

The decoding of STC requires knowledge of the channel at the receiver. In slowly

fading scenarios, when the fading channel coefficients remain approximately constant for

many symbol intervals, channel stability enables the receiver to be trained (by sending

training or pilot symbols or sequences) in order to acquire the channel state information

(CSI). This is usually referred to as coherent detection. However, in fast fading scenarios,

fading coefficients change into new, almost independent values before being learned by the

receiver through training signals. Using multiple antennas at the transmitter increases

the number of parameter to be estimated at the receiver which makes this problem more

serious. This makes the non-coherent detection mode, where the receiver detects the

transmitted symbols without having information about the realization of the channel, an

attractive option for these fast fading scenarios.

In this thesis, we deal exclusively with non-coherent communication. In the sequel, a

summary of the state-of-the-art in the non-coherent MIMO communications is provided.
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1.1 Non-Coherent MIMO Communications

Previous work. The capacity of non-coherent multiple antenna systems was studied

in [23, 24]. Under the additive white observation Gaussian noise and Rayleigh channel

assumptions, it has been shown that the signal matrix that achieves capacity can be

written as S = ΦV , where Φ is an T × T isotropically distributed unitary matrix, and V

is an independent T ×M real, nonnegative, diagonal matrix1 with M and T denoting the

number of transmit antennas and the length of the coherence interval, respectively; also,

it has been proven that at high SNR, or when T is much bigger than M , capacity can be

achieved by using a constellation of unitary matrices as codebooks. Furthermore, in [25]

has been shown that, under the assumption of equal-energy codewords and high SNR,

scaled unitary codebooks optimize the union bound (UB) on the error probability. Hence,

at high SNR unitary constellations are optimal from both the capacity and symbol error

probability viewpoints. Optimal unitary constellations correspond to optimal packings in

Grassmann manifolds [26]. In [27, 28], a systematic method for designing unitary space-

time constellations was presented. In [29], Sloane’s algorithms [30] for producing sphere

packings in real Grassmannian space have been extended to complex Grassmannian space.

For a small number of transmit antennas, by using chordal distance as the design criterion,

the corresponding constellations improve on the bit error rate (BER) when compared with

the unitary space-time constellations presented in [27]. In [31] the problem of designing

signal constellations for the multiple antenna non-coherent Rayleigh fading channel has

been examined. The asymptotic UB on the probability of error has been considered,

which, consequently, gave rise to a different notion of distance on the Grassmann manifold.

By doing this, a method of iteratively designing signals, called successive updates, has

been introduced. The signals obtained therein are, in contrast to [27, 29], guaranteed

to achieve the full diversity order of the channel. In [32] a family of space-time codes

suited for non-coherent MIMO systems was presented. These codes use all the degrees

of freedom of the system, and they are constructed as codes on the Grassmann manifold

1In calling the oblong matrix V diagonal, it means that only the elements along its main diagonal may

be nonzero.
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by the exponential map. Recently, in [33, 34] some sub-optimal simplified decodings for

the class of unitary space-time codes obtained via the exponential map were presented.

In [37], the authors considered non-coherent communication over a frequency-flat MIMO

Rayleigh block-fading channel. Using a subspace perturbation analysis, an appropriate

metric for the distance between Grassmannian constellation points is determined, and a

greedy technique for designing constellations that resemble the isotropic distribution is

then proposed. The inherent geometric structure of these constellations is used to develop

a novel suboptimum detector. The performance of this detector is comparable to that

of the ML detector, but it requires less computational effort. An interested reader is

referred to, e.g., [18, Chapter 10], for a summary of the most quoted propositions in the

non-coherent MIMO literature.

Low SNR MIMO systems have recently attracted attention of scientific community.

One of the reasons stems from the fact that in the third-generation mobile data systems

almost 40% of geographical locations experience receiver SNR levels below 0 dB while

only less than 10% display levels above 10 dB. High SNR requirement, besides its low

power efficiency, cannot always be satisfied due to the power limitations in the mobile

device. Also, recent technological advances have led to the emergence of small, low-power,

and possibly mobile devices which, when deployed in large numbers, have the ability to

form an intelligent (sensor) network which can monitor large areas, detect the presence or

absence of targets, etc. This motivates the analysis and construction of communication

schemes which can cope with the low SNR regime. See [38, 39, 40] for a more thorough

discussion of this topic.

Low SNR MIMO systems when CSI is available at the receiver have been treated in [38].

The interplay of rate, bandwidth, and power is analyzed in the region of energy per bit

close to its minimum value. The scenario where no CSI is available at the receiver has

been considered in [41]. It has been shown that the optimal signaling at low SNR achieves

the same capacity as the known channel case for single transmit antenna systems. Verdu,

in [42], has shown that knowledge of the first and second derivatives of capacity at low SNR

give us insight on bandwidth and energy efficiency for signal transmission. More precisely,
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these quantities tell us how spectral efficiency grows with energy-per-bit. In [43], a for-

mula for the second-order expansion of the input-output mutual information at low SNR

is obtained, whereas in [44] the capacity and the reliability function as the peak constraint

tends to zero are considered for a discrete-time memoryless channel with peak constrained

inputs. Similar results to [43, 44] have been obtained in [45] under weaker assumptions on

the input signals. In the same work, Rao and Hassibi have demonstrated that the on-off

signaling presented in [41] generalizes to the multi-antenna setting and attains the known

channel capacity. The tradeoff between communication rate and average probability of

decoding error using a framework of error-exponent theory has been investigated in [46].

It is argued that the advantage of having multiple antennas is best realized when the

fading is fully correlated, i.e., a performance gain of MN and a peakiness gain of M 2NT

can be achieved where M , N and T represent the number of transmit, receive antennas,

and the length of the coherence interval, respectively. The symbol error probability point

of view for the analysis of low SNR non-coherent independent and identically distributed

(iid) Rayleigh channel is more recent, although, Hochwald, et al. [27] had reported that in

the low SNR and Rayleigh fading channel it seems one should employ only one transmit

antenna. Borran et al. [39], under the assumption of equally probable codewords, pre-

sented a technique that uses Kullback-Liebler divergence between the probability density

functions induced at the receiver by distinct transmitted codewords as a design criterion

for codebook design. In low SNR condition, their constellation points occupy multiple

level (signal points lie in concentric spheres) with a point usually in the origin. The codes

thereby constructed were shown to perform better than some existing non-coherent code-

book constructions in low SNR, namely [27]. Srinivasan, et al. [47], considered the case of

single transmit antenna in the low SNR regime. Using the information theoretic results

over the low SNR non-coherent iid Rayleigh fading channel under an average power con-

straint (c.f. [45, 46]), they allow for codewords with unequal priors in a code and optimize

over prior probabilities to achieve better performance. This results in constellations that

assume a point in the origin with probability 1
2 , with the probabilities of the points lying

in the sphere being equal. In [48], the correlated Rayleigh fading model was studied and it
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was shown that at any SNR, any single antenna performs better when used with suitable

precoding in a MIMO correlated Rayleigh fading than in a single-input multiple output

SIMO channel. Consequently, code designs that exploit the correlations in the transmit

antennas in the MIMO case to provide gains over the corresponding SIMO case in the low

SNR regime were presented.

In the sequel, the motivation for the research presented in this thesis is discussed.

Motivation. The techniques aforementioned can not be readily extended to the more

realistic and challenging scenario, where the Gaussian observation noise has an arbitrary

correlation structure. The assumption of spatio-temporal Gaussian observation noise is

common, as there are at least two reasons for making it. First, it yields mathematical

expressions that are relatively easy to deal with. Second, in some scenarios it can be

justified via the central limit theorem. Although customary, the assumption of spatio-

temporal white Gaussian observation noise is clearly an approximation. In general, in

realistic scenarios, the noise term might have very rich correlation structure, e.g, see

pp. 554 in [15], pp. 100 in [18], pp. 10, 159, 171 in [19] and [38]. The generalization to

arbitrary noise covariance matrices encompasses many scenarios of interest as special cases:

spatially colored or not jointly with temporally colored or not observation noise, multiuser

environment, etc. Intuitively, unitary space-time constellations are not the optimal ones

for this scenario.

1.2 Thesis Outline and Contributions

The thesis is divided into 4 chapters. We summarize the content of each chapter, besides

the current one which gives the motivation and outline of this dissertation. For each

chapter, we also refer the publications (conference and journal papers) that it has given

rise.

In more detail, the outline of this thesis is as follows.
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1.2.1 Chapter 2

In Chapter 2, the problem of space-time codebook design for non-coherent communications

in multiple-antenna wireless systems and high SNR regime is addressed. In this work, we

look for a more practical code design criterion based on error probability, rather than

capacity analysis. The calculus of the exact expression for the average error probability

for the general non-coherent systems seems not to be tractable. Instead, we consider

pairwise error probability (PEP) in high SNR regime, and use it to find a code design

criterion (a merit function) for an arbitrarily given noise correlation structure.

Contribution. Our contributions in this area are summarized in the following:

1. The main contribution of this chapter is a new technique that systematically designs

space-time codebooks for non-coherent multiple-antenna communication systems.

In contrast with other approaches, the channel matrix is modeled as an unknown

deterministic parameter at both the receiver and the transmitter, and the Gaussian

observation noise is allowed to have an arbitrary correlation structure, known by the

transmitter and the receiver. In general correlated noise environments, computer

simulations show that the space-time codes obtained with our method significantly

outperform those already known which were constructed for spatio-temporally white

noise case. We recall that codebook constructions for arbitrary noise correlation

structures were not previously available and this demonstrates the interest of the

codebook design methodology introduced herein.

2. For the special case of spatio-temporal white observation noise, our codebooks re-

cover the previously known unitary structure, namely the codes in [27] (in fact, our

codes are marginally better). Also, for this specific scenario and M = 1 we show that

the problem of finding good codes coincides with the very well known packing prob-

lem in the complex projective space. We compare our best configurations against

the codes in [28] and the Rankin bound. We manage to improve the best known

results and in some cases actually provide optimal packings in complex projective

spaces which attain the Rankin upper bound.
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3. Theoretical analysis leading to an upper bound on PEP in the high SNR scenario

for the Gaussian observation noise with an arbitrary correlation structure.

Publications. The results of this work have been published in

M. Beko, J. Xavier and V. Barroso, “Codebook design for non-coherent communication

in multiple-antenna systems,” in Proc. of IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), Toulouse, France, 2006.

as well in the form of a journal paper in

M. Beko, J. Xavier and V. Barroso, “Non-coherent Communication in Multiple-Antenna

Systems: Receiver design and Codebook construction,” IEEE Transactions on Signal

Processing , vol. 55, no. 12, pp. 5703 - 5715, Dec. 2007.

1.2.2 Chapter 3

In Chapter 3, we study the non-coherent MIMO channel in the low SNR regime from the

capacity and PEP viewpoints. The novel aspect is that we allow the Gaussian observation

noise to have an arbitrary correlation structure, albeit known to the transmitter and the

receiver.

Contribution. In the following, we summarize our contributions in this area:

1. The spatially correlated non-coherent MIMO block Rayleigh fading channel is an-

alyzed. This extends the approach in [45] as we take into account both channel

and noise correlation. The impact of channel and noise correlation on the mutual

information is obtained for the on-off and Gaussian signaling. The main conclusion

is that mutual information is maximized when both the transmit and receive anten-

nas are fully correlated. This shows that MIMO systems can actually be beneficial

in the low SNR regime. We also argue that the on-off signaling is optimal for this

multi-antenna setting.

2. Contrary to most approaches for the low SNR regime, the channel matrix is as-

sumed deterministic, i.e., no stochastic model is attached to it. A low SNR analysis
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of the PEP for the GLRT receiver is introduced, and a codebook design criterion

which takes into account the information about noise correlation is obtained. For the

special case of single transmit antenna and spatio-temporal white Gaussian noise,

it is shown that the problem of finding good codes corresponds to the very well

known packing problem in the complex projective space [28]. New space-time con-

stellations for some particular wireless scenarios are constructed. We argue that

one should construct codebooks for just one transmit antenna that match the noise

statistics. Computer simulations show that these new codebooks are also of interest

for Bayesian receivers which decode constellations with non-uniform priors.

Publications. The material contained in this chapter has been published in

M. Beko, J. Xavier and V. Barroso, “Codebook design for the non-coherent GLRT

receiver and low SNR MIMO block fading channel,” in Proc. of IEEE Workshop on Signal

Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2006.

M. Beko, J. Xavier and V. Barroso, “Capacity and error probability analysis of non-

coherent MIMO systems in the low SNR regime,” in Proc. of IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, HI USA, 2007.

In addition, a journal paper extending the previous results was submitted as

M. Beko, J. Xavier and V. Barroso, “Further results on the capacity and error prob-

ability analysis of non-coherent MIMO systems in the low SNR regime,” accepted for

publication in IEEE Transactions on Signal Processing.

1.2.3 Chapter 4

This chapter concludes the thesis summarizing the main obtained results and enumerating

the future lines of work.



Chapter 2

Receiver Design and Codebook

Construction in the High SNR

Regime

2.1 Chapter Summary

The chapter is organized as follows. In section 2.2, we introduce the data model and formu-

late the problem addressed in this chapter. We describe the structure of our non-coherent

receiver and discuss the selection of the codebook design criterion. In section 2.3, before

addressing the codebook design problem we draw some conclusions about the design crite-

rion defined in section 2.2. In section 2.4, we propose a new algorithm that systematically

designs non-coherent space-time constellations for an arbitrarily given noise covariance

matrix and any M , N , K and T , respectively, number of transmitter antennas, number

of receiver antennas, size of codebook, and channel coherence interval. In section 2.5,

we present codebook constructions for several important special cases and compare their

performance with state-of-art solutions. Section 2.6 presents the main conclusions of this

chapter.

2.2 Problem Formulation

Data model and assumptions. The communication system comprises M transmit

and N receive antennas and we assume a block flat fading channel model with coherence

interval T . That is, we assume that the fading coefficients remain constant during blocks

of T consecutive symbol intervals, and change into new, independent values at the end

11
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of each block. It is an accurate representation of many time-division multiple-access

(TDMA), frequency-hoping, or block-interleaved systems. See, e.g., [27] for more details.

In complex base band notation we have the model

Y = XHH + E, (2.1)

where X is the T ×M matrix of transmitted symbols (the matrix X is called hereafter

a space-time codeword), Y is the T × N matrix of received symbols, HH is the M × N

matrix of channel coefficients (the operator H is used for the sake of convenience), and

E is the T × N matrix of zero-mean additive observation noise. In Y , time indexes the

rows and space (receive antennas) indexes the columns. We shall work under the following

assumptions:

A1. (Channel matrix) The matrix H is not known at the receiver neither at the

transmitter, and no stochastic model is assumed for it;

A2. (Transmit power constraint) The codeword X is chosen from a finite codebook

C = {X1, X2, . . . , XK} known to the receiver, where K is the size of the codebook.

We impose the power constraint tr(XH
k Xk) = 1 for each codeword. Furthermore,

we assume that T ≥ M and each codeword is of full rank, i.e., rank(X) = M ;

A3. (Noise distribution) The observation noise at the receiver is zero mean and obeys

circular complex Gaussian statistics, that is, vec(E) ∼ CN (0,Υ). The noise covari-

ance matrix Υ = E[vec(E)vec(E)H ] is known at the transmitter and at the receiver

(vec(E) stacks all columns of the matrix E on the top of each other, from left to

right).

Remark that in assumption A3, we let the data model depart from the customary

assumption of spatio-temporal white Gaussian observation noise. Also, note that one

cannot perform “pre-whitening” in order to revert the colored case (Υ 6= ITN ) into the

spatio-temporal white noise case (Υ = ITN ). To see this, let’s consider two systems where

system 1 is described by

Y 1 = X1H
H + E1, (2.2)
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with e1 = vec(E1) ∼ CN (0,Υ), and system 2 is given by

Y 2 = X2H
H + E2, (2.3)

with e2 = vec(E2) ∼ CN (0, ITN ). The systems (2.2) and (2.3) are equivalent to

y1 = vec(Y 1) = (IN ⊗X1) vec(HH) + e1, (2.4)

y2 = vec(Y 2) = (IN ⊗X2) vec(HH) + e2 (2.5)

respectively (the symbol⊗ denotes the Kronecker product). After pre-whitening, from (2.4)

we get

ỹ1 = Υ− 1

2 y1 = Υ− 1

2 (IN ⊗X1) vec(HH) + ẽ1 (2.6)

with ẽ1 = Υ− 1

2 e1 ∼ CN (0, ITN ). From (2.5) and (2.6) we deduce that the systems 1

and 2 are not equivalent, i.e., the unitary constellations (which are optimal for spatio-

temporally white noise at high SNR) cannot be employed by performing suitable pre-

whitening because it breaks down the structure of the constellation. A more detailed

discussion on this point can be found in subsection 2.2.1 .

Receiver. According to the system model (2.1) and the assumptions above mentioned,

the conditional probability density function (pdf) of the received vector y = vec(Y ), given

the transmitted matrix X and the unknown realization of the channel g = vec
(
HH

)
, is

given by

p(y|X, g) =
exp{−||y − (IN ⊗X)g||2

Υ
−1}

πTNdet(Υ)
,

where the notation ||z||2A = zHAz was used.

Since no stochastic model is attached to the channel propagation matrix, the receiver

faces a multiple hypothesis testing problem with the channel H as a deterministic nuisance

parameter. We assume a generalized likelihood ratio test (GLRT) receiver which decides

the index k of the codeword as the index k̂ such that

k̂ = argmax p(y|Xk, ĝk)
k = 1, 2, . . . , K

= argmin
∥∥∥y − X̃kĝk

∥∥∥
2

Υ
−1

k = 1, 2, . . . , K
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where

X̃k = IN ⊗Xk and ĝk = (X H
k X k)

−1X H
k Υ− 1

2 y (2.7)

with X k = Υ− 1

2 X̃k denoting the whitened version of X̃k . The GLRT [49, 50, 51] is

composed of a bank of K parallel processors where the k -th processor assumes the presence

of the k -th codeword and computes the likelihood of the observation, after replacing the

channel by its ML estimate. The GLRT detector chooses the codeword associated with

the processor exhibiting the largest likelihood of the observation. We note that the GLRT

performs sub-optimally when compared with the ML receiver, as the latter can exploit

the knowledge of channel statistics’. However, since assumption A1 is in force, the GLRT

yields an attractive (implementable) solution in the present setup. Note also that, for the

special case of unitary constellations, i.e., XH
k Xk = 1

M IM for all k, spatio-temporal white

Gaussian noise and iid Rayleigh fading, it is readily shown that the two receivers coincide.

Due to the respective expression for the ML estimate of the channel, equation (2.7), we

note that since each codeword of the codebook has full rank (assumption A2), the channel

estimate is well defined.

Codebook design criterion. In this chapter, our goal is to design a codebook C =

{X1, X2, . . . , XK} of size K for the current setup. A codebook C is a point in the space

M = {(X1, . . . , XK) : tr(XH
k Xk) = 1}.

Note that the spaceM can be viewed as multi-dimensional torus, i.e, the Cartesian product

of K unit-spheres :

M = S
2TM−1 × · · · × S

2TM−1 (K times)

and each codeword Xk belongs to C
T×M . The symbol S

n−1 denotes the unit sphere in

R
n. First, we must adopt a merit function f : M→ R which gauges the quality of each

constellation C. The average error probability for a specific C would be the natural choice,

but the theoretical analysis seems to be intractable. Instead, as usual [24]- [27], we rely on

a PEP study to construct our merit function. For the special case of unitary codebooks

(XH
k Xk = 1

M IM ), spatio-temporal white Gaussian noise (Υ = ITN ) and iid Rayleigh
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fading, the exact expression and Chernoff upper bound for the PEP have been derived in

[24]. However, the calculus of these expressions for the general case, i.e, arbitrary matrix

constellations C and noise correlation matrix Υ, seems to be burdensome. As in [24]- [27],

in this chapter, we focus on the high SNR regime. Namely, we resort to the asymptotic

expression of the PEP in the high SNR regime, for arbitrary C and Υ. To start the

PEP analysis, we consider a codebook with only two codewords, i.e., C = {X1, X2}. Let

PXi→Xj
be the probability of the GLRT receiver deciding X j when X i is sent. It can be

shown (see Appendix A) that at sufficiently high SNR we have the approximation

PXi→Xj
≈ Q

(
1√
2

√
gH Lijg

)
, (2.8)

with

Lij = X H
i Π⊥

j X i and Π⊥
j = ITN −X j

(
X H

j X j

)−1
X H

j

where Q(x) =
∫ +∞
x

1√
2π

e−
t2

2 dt is the Q-function and Π⊥
j is the orthogonal projector onto

the orthogonal complement of the column space of X j .

Equation (2.8) shows that the probability of misdetecting X i for Xj , depends on the

channel realization g = vec
(
HH

)
and on the relative geometry of the codewords X i and

X j . We can decouple the action of g and Lij as follows: using the inequality

gHLijg ≥ λmin(Lij) ||g||2,

which is an equality when M = 1 and Υ = INT , and the fact that Q(·) is monotonically

non-increasing, we have the upper bound on the PEP for high SNR

PXi→Xj
≤ Q

(
1√
2
||g||

√
λmin(Lij)

)
. (2.9)

We cannot control the power of the channel g = vec(HH), but we can design codebooks

aiming at maximizing λmin(Lij). We see that, if M = 1 and Υ = INT , the bound in (2.9)

is attained for arbitrary C.

Geometrical interpretation. This latter objective has a clear geometric interpretation.

Define V = Π⊥
j X i. Then Π⊥

j X i is the orthogonal projection of X i onto the orthogonal

complement of span {X j} (the span of Xj : TN × MN is the linear subspace in CTN

spanned by its MN columns, or, equivalently, the range of the matrix X j), see figure 2.1.
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Figure 2.1: Geometrical interpretation of Π⊥
j X i.

Now, note that

Lij = V HV = (Π⊥
j X i)

H(Π⊥
j X i)

is the corresponding Gram matrix and

√
det(V HV ) =

√
λmin(V

HV ) · . . . · λmax(V
HV ) ≥ λmin(V

HV )
MN

2 .

Hence, by maximizing λmin(V
HV ), we are increasing a lower bound on

√
det
(
V HV

)

which is proportional to the volume of the parallelepiped spanned by the columns of the

Π⊥
j X i. That is, we are trying to place X i in the orthogonal complement of span {X j}.

Problem formulation. Following a worst-case approach, we are led from (2.9) to define

the codebook merit function

f : M→ R and C = {X1, . . . , XK} 7→ f(C)

as

f(C) = min{fij(C) : 1 ≤ i 6= j ≤ K} (2.10)
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where fij(C) = λmin(Lij(C)). Constructing an optimal codebook C = {X1, X2, ..., XK}

amounts to solving the optimization problem

C∗ = arg max
C ∈ M

f(C). (2.11)

The problem defined in (2.11) is a high-dimensional, non-linear and non-smooth optimiza-

tion problem. As an example, for a codebook of size K = 256 the number of fij functions

is K(K − 1) = 65280. Also, for T = 8 and M = 2, there are 2KTM = 8192 real variables

to optimize.

The problem in (2.11) is a non-smooth optimization problem because the objective

function f , as the pointwise minimum of several fij ’s, is in general not smooth at points

where the minimum is attained by several f ′ijs. In our case, each fij is not even smooth,

due to the λmin operator. For an illustrative example, consider φ : R → R,

φ(t) = λmin

([
t 0
0 −t

])
.

Although the matrix involved is a smooth function of its entries, φ(t) = −|t| is not smooth

everywhere. Moreover, note that we have

f(X1, X2, . . . , XK) = f(X1e
iθ1 , X2e

iθ2 , . . . , XKeiθK )

for any θk ∈ R and k = 1, . . . , K. This means that f depends on each Xk (‖Xk‖ = 1)

only through the line spanned by it (i.e., {λXk : λ ∈ C}).

2.2.1 A Note on Pre-Whitening

It may not be immediately obvious why the “pre-whitening” device cannot be employed

here. After all, this is a common trick in signal processing for generalizing solutions

formulated for white noise to the colored noise setup. However, since it cannot be done in

our situation, in the sequel, we try to provide more detailed explanations.

(i) As pointed out, “pre-whitening” cannot be performed as it changes the constella-

tion’s structure. Essentially, this summarizes our argument in equations (2.2)-(2.6). We

will now furnish another viewpoint on this matter.
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When one asks if “pre-whitening” can be performed, one is asking if the solution to

the white noise case can be “transported” to the colored case. That is, one is asking if

the codebook construction problem for the colored case has an equivalent reformulation

in the white noise setup. Of course, if this were true, then it would be sufficient to have a

tool to construct codebooks for the white noise case, say, our tool solving the optimization

problem stated in equation (2.11) for the white noise case. We argue that, in our situation,

we cannot find such an equivalent reformulation.

To demonstrate our claim, consider the special case M = 1 (single transmit antenna),

N = 1 (single receive antenna) and T ≥ 2. As mentioned above, suppose that a tool is

available to solve problem (2.11) for the white noise case Υ = IT . Denoting codebooks

by

C = [x1 x2 · · · xK ] : T ×K

(each xk is a codeword) this means precisely that we have a tool to solve the optimization

problem (for any chosen T and K)

P1 : max

diag
(
CHC

)
= 1T

fIT
(C)

where 1T = (1, 1, . . . , 1)T (T times), diag(A) extracts the diagonal of matrix A and, for

any positive-definite T × T matrix Σ, we use the notation

fΣ(C) = min
{

xH
i Σ−1xi − xH

i Σ−1xj

(
xH

j Σ−1xj

)−1
xH

j Σ−1xi : i 6= j
}

.

Now, solving the codebook construction problem (2.11) for a general noise correlation

matrix Υ corresponds to solving the optimization problem

P2 : max

diag
(
CHC

)
= 1T

fΥ(C).

We now try reformulate problem P2 into the format P1. We start by noticing that we

have the identity

fΥ(C) = fIT

(
Υ−1/2C

)
.
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Thus, problem P2 is equivalent, through the change-of-variables D = Υ−1/2C (“pre-

whitening”), to the problem

P3 : max

diag
(
DHΥC

)
= 1T

fIT
(D).

The solution of problem P3 cannot be extracted from the one in problem P1. Note

that both problems have the same objective function but, whereas problem P1 searches

the codewords over a unit-sphere, problem P3 searches them over an ellipsoid. This is a

different problem.

Just as a side remark, note that a similar phenomenon (problems became inequivalent

as a unit-sphere constraint is changed to an ellipsoidal one) occurs when one tries to

project a point x0 ∈ R
n onto a sphere or onto an ellipsoid, i.e.,

Pa : min
xT x = 1

1

2
‖x− x0‖2 Pb : min

xT Ax = 1

1

2
‖x− x0‖2

where A : n×n is positive-definite. It is well known that problem Pb cannot be reformu-

lated as problem Pa: it is known that Pb does not admit a closed-form solution, whereas

Pa does (radial projection).

The above argument used our tool but this is not restrictive: the key-point here is

that “pre-whitening” the data model changes the power constraints (which constitute an

important part of the problem formulation) and therefore changes the structure of the

optimal constellation.

(ii) To address further this question we reproduce here equations (2.4) and (2.6)

y1 = vec(Y 1) = (IN ⊗X1) vec(HH) + e1

ỹ1 = Υ− 1

2 y1 = Υ− 1

2 (IN ⊗X1) vec(HH) + ẽ1

where y1 corresponds to a colored noise system (e1 ∼ CN(0,Υ)) and ỹ1 represents the

“pre-whitened” system (ẽ1 ∼ CN (0, INT )). We recall that a white noise system corre-

sponds to equation (2.5), i.e.,

y2 = vec(Y 2) = (IN ⊗X2) vec(HH) + e2
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where e2 ∼ CN (0, INT ). We have a solution for model y2 (reference [27]). We want to use

it in the model ỹ1. However, the structure of the model ỹ1 matches the structure of the

model y2 if and only if (iff) the signal Υ−1/2 (IN ⊗X1) can be put in the block-diagonal

format IN ⊗X2. This is possible iff Υ has the special structure

Υ = IN ⊗Σ

(from a physical viewpoint, corresponds to spatially uncorrelated receive antennas). Thus,

for general Υ, we cannot “transport” a solution obtained for the data model y2 to the

data model ỹ1. But, let’s address the special case Υ = IN ⊗Σ. We would have

ỹ1 =
(
IN ⊗

(
Σ− 1

2 X1

))
vec(HH) + ẽ1.

Now, the codebook construction solution provided in [27] for the data model y2 consists

in selecting X2 from unitary constellations. Employing this solution in the data model ỹ1

corresponds to making Σ−1/2X1 unitary. That is, suppose C = {U 1, . . . , UK} (UH
k Uk =

1
M IM ) is an optimal unitary codebook for y2, i.e., the codeword X2 is selected within C.

Then, with respect to the data model ỹ1 one should take Σ−1/2X1 ∈ C, or, equivalently,

the codeword X1 should be taken from

C̃ =
{
Σ1/2U1, . . . ,Σ

1/2UK

}
.

The main problem is here is that the codebook C̃ does not verify the power constraint,

i.e., in general, we will not have

tr
(
UH

k ΣUk

)
= 1 for all k = 1, 2, . . . , K

for generic unitary matrices U k. One (sub-optimal) way around this is to enforce the

power constraint and pass to the codebook

Ĉ =





Σ1/2U1∥∥∥Σ1/2U1

∥∥∥
, . . . ,

Σ1/2UK∥∥∥Σ1/2UK

∥∥∥



 . (2.12)

Another way around is to define the following codebook

C =
{
Σ1/2V 1,ΘΣ1/2V 1, . . . ,Θ

K−1Σ1/2V 1

}
(2.13)
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where the T × M matrix V 1 is such that V H
1 V 1 = 1

M IM and tr(V H
1 ΣV 1) = 1. The

matrix Θ is a T × T diagonal matrix whose diagonal elements are ei2πu1/K ,...,ei2πuT /K

with the coefficients u1,...,uT presented in [27]. Note that Θ is a unitary matrix and that

ΘK = IT . Clearly, the codebook C satisfies the power constraint in the assumption A2.

We emphasize that Ĉ and C were heuristically obtained (do not satisfy an optimal-

ity criterion). Their performance will be assessed by a computer simulation, please see

figures 2.7-2.9 in section 2.5.

(iii) Under the assumption A1, no statistical model is attached to the channel matrix.

Anyhow, we present an analysis for the case when vec(H) ∼ CN (0, IMN ). Due to the

assumption A3, vec(E) ∼ CN (0,Υ) for some Υ � 0. We start by remarking that the

model in (2.1) can be rewritten as

Y H = HXH + EH ,

and hence as

y̆ = Gx̆ + ĕ, (2.14)

where y̆ = vec(Y H), x̆ = vec(XH), ĕ = vec(EH) and G = IT ⊗H. From the perspective

of most communications objectives, the system described in (2.14) is equivalent to the

system

ȳ = Ḡx̆ + ē, (2.15)

where ē ∼ CN (0, ITN ), and

Ḡ = L−1G, (2.16)

where L is a Cholesky factor of Υ; i.e., Υ = LLH . This represents the channel model

in which the first step of the receiver processing is to pre-whiten the noise. It is clear

from (2.16) that the statistics of the elements of Ḡ are different from those of G and,

hence, unitary constellations cannot be employed.
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2.3 Considerations About the New Codebook Merit Func-

tion

Before addressing the codebook design problem (2.10) we draw in this section some con-

clusions about the codebook merit function f in (2.10). In subsection 2.3.1, we show that,

for the special case of spatio-temporally white noise and K = 2, the unitary constellations

are the optimal ones with respect to f . In subsection 2.3.2, we show that, when restricting

attention to unitary codebooks, our codebook design criterion corresponds to a packing

problem in the Grassmannian space with respect to spectral distance, for the white noise

case. In subsection 2.3.3, we argue that the design method proposed in (2.11) guarantees

that the constructed constellation has full diversity when T ≥ 2M .

2.3.1 Optimality of Unitary Codewords for the White Noise Case

Consider a codebook with two codewords C = {X1, X2}. We want to maximize f(C) =

min{λmin(Lij(C)) : i 6= j} subject to tr
(
XH

k Xk

)
= 1. We rewrite Lij(C) as

Lij(C) =
(
X H

i X i

) 1

2
(
IMN −UH

i U jU
H
j U i

) (
X H

i X i

) 1

2 (2.17)

where U i = X i

(
X H

i X i

)− 1

2 , U j = X j

(
X H

j X j

)− 1

2 . That is, U i contains an orthonormal

basis for the subspace spanned by the columns of X i. Notice that UH
j U j = UH

i U i = IMN .

To proceed with the analysis we use an useful fact from the cosine sine (CS) decomposition,

see [52] pp. 199: if U i, U j are TN ×MN matrices with orthonormal columns (T ≥ M),

then there exist MN × MN unitary matrices W 1 and W 2, and a TN × TN unitary

matrix Q with the following properties:

(i) If 2MN ≤ TN (2M ≤ T ), then

QU iW 1 =




IMN

0MN

0(TN−2MN)×MN


 , QU jW 2 =




Cij

Sij

0(TN−2MN)×MN


 (2.18)

where Cij is a diagonal MN × MN matrix with diagonal entries cos α1, . . . , cosαMN ,

0 ≤α1≤. . .≤αMN≤ π
2 , and S2

ij + C2
ij = IMN . Now, using (2.18) we can write

W H
2 UH

j QHQU iW 1 = W H
2 UH

j U iW 1 = Cij ⇒ UH
j U i = W 2CijW

H
1 , (2.19)
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so αi for i = 1, . . . , MN are the principal angles between the subspaces spanned by U i

and U j . Due to Ostrowski’s theorem pp. 224, 225 in [53], and equations (2.17) and (2.19),

it is not difficult to see that the following inequality holds

λmin (Lij) ≥ λmin

(
X H

i X i

)
λmin

(
S2

ij

)
. (2.20)

Clearly, from (2.20), we deduce that in order to minimize an upper bound on PEP in high

SNR regime, one should simultaneously increase λmin

(
X H

i X i

)
and λmin

(
S2

ij

)
. Unfortu-

nately, the right-hand side of the inequality (2.20) does not offer much insight into the form

of the optimal codebook for the case of arbitrary noise covariance matrix Υ (even for the

case K = 2). One of the reasons originates from the fact that pairwise error probabilities

are not symmetric for this general case. Hence, in the following, we treat the specific case

of spatio-temporal white Gaussian observation noise to find out what conclusions can we

draw about the form of the optimal codebook.

Special case (spatio-temporal white noise): Υ = ITN , 2M ≤ T . Remark that

using (2.7), (2.9), and for Υ = ITN , we have

Lij = IN ⊗
(
XH

i Xi −XH
i Xj

(
XH

j Xj

)−1
XH

j Xi

)
.

Hence,

λmin(Lij) = λmin

(
XH

i Xi −XH
i Xj

(
XH

j Xj

)−1
XH

j Xi

)
. (2.21)

From (2.21), an immediate conclusion is that the code design criterion in (2.11) does

not depend on the number of receive antennas N . Because T ≥ 2M (in particular T ≥

M), using a thin singular value decomposition (SVD), we can write X i = V iDiW i and

Xj = V jDjW j where V i and V j are T ×M unitary (orthonormal) matrices, W i and

W j are M × M unitary matrices, and Di, Dj are M × M real nonnegative diagonal

matrices. It is not difficult to see that

λmin(Lij) = λmin

(
D2

i −DiV
H
i V jV

H
j V iDi

)
. (2.22)

As we can see from (2.22), the matrices W i and W j do not appear in the expression.

This implies that any optimal constellation can be described in the form X i = V iDi.
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We now show that for two symbol constellations (K = 2) the unitary constellations are

optimal in the sense of maximizing the codebook merit function defined in (2.10). Toward

this end, note that for X1 = V 1D1 and X2 = V 2D2

f (X1, X2) = min{f12 (X1, X2) , f21 (X1, X2)} ≤ f12 (X1, X2) = λmin(L12), (2.23)

where V 1 and V 2 are T ×M unitary (orthonormal) matrices, and D1, D2 are M ×M

real nonnegative diagonal matrices. Since V 1, V 2 are T ×M matrices with orthonormal

columns and 2M ≤ T , as before, we know that there exist M ×M unitary matrices W1

and W2, and a T × T unitary matrix Q with the following properties [52]:

QV 1W1 =




IM

0M

0(T−2M)×M


 , QV 2W2 =




C12

S12

0(T−2M)×M


 (2.24)

where C12 is a diagonal M × M matrix with diagonal entries cos β1, cos β2,. . .,cosβM ,

0 ≤β1≤. . .≤βM≤ π
2 , and S2

12 + C2
12 = IM . Substituting (2.24) in (2.23) yields

λmin(L12) = λmin

(
D1W1S

2
12W1

HD1

)

= λmin

(
S12W1

HD2
1W1S12

)
≤ λmin

(
D2

1

)
λmax

(
S2

12

)
(2.25)

where (2.25) is valid due to Ostrowski’s theorem. Since λmin

(
D2

1

)
≤ 1

M tr(XH
1 X1) = 1

M ,

and also using (2.23) and (2.25) we have the upper bound on the codebook merit function

for K = 2:

f (X1, X2) ≤
1

M
. (2.26)

Since we want to maximize the codebook merit function, from (2.23) and (2.26) we

can list some of the conditions for it to happen:

1. The constellation of unitary matrices is optimal, i.e., D1 = D2 = 1√
M

IM and

XH
1 X1 = XH

2 X2 = 1
M IM .

2. We want V 1 and V 2 to be separated as much as possible. The optimal scenario is

when β1 = π
2 , the case when codewords X1 and X2 are mutually orthogonal, i.e.,

XH
2 X1 = 0.
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In this case, the inequality sign in (2.26) can be replaced with an equality sign. Thus,

we showed that for the special case of spatio-temporally white noise and K = 2 the unitary

constellations are the optimal ones with respect to our codebook design criterion f . We

recall that the unitary structure was also shown to be optimal in [23, 24, 25] from both

the capacity and asymptotic UB on the probability of error minimization viewpoints.

(ii) For M ≤ T < 2M , then

QU iW 1 =




ITN−MN 0(TN−MN)×(2MN−TN)

0(2MN−TN)×(TN−MN) I2MN−TN

0TN−MN 0(TN−MN)×(2MN−TN)




QU jV 1 =




Cij 0(TN−MN)×(2MN−TN)

0(2MN−TN)×(TN−MN) I2MN−TN

Sij 0(TN−MN)×(2MN−TN)




where Cij is a diagonal (TN −MN)× (TN −MN) matrix with diagonal entries cos α1,

cos α2,. . .,cosαTN−MN , 0 ≤ α1 ≤ . . . ≤ αTN−MN ≤ π
2 , and S2

ij + C2
ij = ITN−MN .

Repeating the analysis which has performed previously (for the case 2M ≤ T ) leads

to

Lij =
(
X H

i X i

) 1

2 W 1

[
S2

ij 0(TN−MN)×(2MN−TN)

0(2MN−TN)×(TN−MN) 02MN−TN

]
W H

1

(
X H

i X i

) 1

2 .

(2.27)

Given that T < 2M , we see that the lower right block of zeros in the middle matrix in

the right-hand side of (2.27) is non-void. Thus, λmin(Lij) = 0 and plugging this in (2.9)

yields the upper-bound PXi→Xj
≤ Q(0) = 0.5 which holds irrespective of the choice of

codewords. Thus, we cannot extract a guideline for codebook construction in this case.

This motivates the following assumption.

A4. (Length of channel coherence) In this work, the length of the coherence

interval T is at least as twice as large as the number of transmit antennas M : T ≥ 2M .

The preceding assumption is not surprising since, for the special case Υ = ITN ,

Rayleigh fading and in high SNR scenario, it is known that the length of the coherence

interval has to be necessarily at least as twice as large as the number of transmit antennas

(2M ≤ T ) to achieve full order of diversity MN [25], but also, from the capacity viewpoint
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it is found that there is no point in using more than T
2 transmit antenna when one wants

to maximize the number of degrees of freedom [26].

2.3.2 Codebook Design as a Grassmannian Packing

It is instructive to compare our codebook construction criterion with the one proposed

in [24, 27] defined as

C∗ = arg min
C ∈ N

max
1 ≤ i 6= j ≤ K

tr
(
XH

i XjX
H
j Xi

)
(2.28)

where the constraint space is the set of unitary codebooks

N =

{
(X1, . . . , XK) : XH

k Xk =
1

M
IM

}
.

It is readily seen that (2.28) is equivalent to

C∗ = arg min
C ∈ N

max
1 ≤ i 6= j ≤ K

cos2 θij,1 + · · ·+ cos2 θij,M (2.29)

where 0 ≤ θij,1 ≤ · · · ≤ θij,M ≤ π/2 denote the principal angles between X i and Xj . In

order to compare our approach with the one proposed in [24, 27], we must temporarily

adopt the signal model assumptions in [24, 27], i.e., we consider white noise (Υ = INT )

and also unitary codebooks. In this setup, our codebook construction criterion in (2.11),

simplifies to

C∗ = arg min
C ∈ N

max
1 ≤ i 6= j ≤ K

cos2 θij,1. (2.30)

It is clear that both criterions in (2.29) and (2.30) aim at building codebooks by

reducing the pairwise “spatial crosstalk” between distinct codewords. The distinction lies

in how this crosstalk is measured: the strategy in (2.29) looks at the average of the principal

angles and corresponds to the Grassmannian chordal distance [27], whereas our criterion

in (2.30) considers the worst-case and leads to the Grassmannian spectral distance [28]. We

recall that, as defined in [28], the squared spectral distance of two linear subspaces of the

same dimension, say Li,Lj ⊂ C
n, is given by sin2 θij,1 where θij,1 is the minimal principal

angle between Li and Lj . It can be computed as follows: if the matrices U i, U j contain in

their columns an orthonormal basis for Li,Lj , respectively, then sin2 θij,1 = 1− σ2
ij where
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σij is the maximal singular value of UH
i U j . Given this definition, it follows that sin2 θij,1

corresponds to the squared spectral distance between the codewords X i and Xj (more

precisely, between their respective range spaces). Please refer to [28] and [54] for more

details on packing problems in Grassmannian space. The reader is referred to [55] for

a more in depth discussion on the geometry of complex Grassmann manifolds regarding

distance, cut and conjugate locus, etc.

We note that, for this particular scenario, the criterion presented in (2.28) is easier

to deal with mathematically. Also, from (2.30) we see that, for M = 1, the problem of

finding good codes coincides with the very well known packing problem in the complex

projective space [28].

2.3.3 Maximal Diversity Analysis

The method proposed in (2.10) and (2.11) is a numerical method as, for example, the ones

of [27] and [29]. A very interesting theoretical point is whether the method guarantees the

maximal diversity. Remark that the aforementioned references were not able to guarantee

the maximal diversity to their codes. In the following, we provide an analysis of this topic.

We will assume uncorrelated Rayleigh fading channel, i.e., hij
iid∼ CN

(
0, σ2

)
. In this

case,

SNR =
E
[∥∥XkH

H
∥∥2
]

E
[
‖E‖2

] =
Nσ2

tr(Υ)
.

For a two point constellation (K = 2), the probability of error is given by

Pe = 0.5 E[PX1→X2
+ PX2→X1

]

= 0.5 E

[
Q
(

1√
2

√
gH L12g

)
+Q

(
1√
2

√
gH L21g

)]
(2.31)

where the expectations are over the channel g = vec
(
HH

)
. Note that g ∼ CN

(
0, σ2IMN

)
.
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We proceed as

Pe ≤ 0.5 E

[
exp{−1

4
gH L12g}

]
+ 0.5 E

[
exp{−1

4
gH L21g}

]
(2.32)

= 0.5

(
1

det(IMN + σ2

4 L12)
+

1

det(IMN + σ2

4 L21)

)
(2.33)

≤ 0.5


 1
(
1 + σ2

4 λmin(L12)
)MN

+
1

(
1 + σ2

4 λmin(L21)
)MN


 (2.34)

≤ SNR−MN

(
4N

tr(Υ)f12

)MN

(2.35)

where f12 = min{λmin(L12), λmin(L21)}. The inequality (2.32) is the Chernoff upper bound

Q(x) ≤ e−x2/2

applied to (2.31), see section 2.1.5 in [56]. The equation (2.33) is due to the following

formula: if z∼CN (µ, K) and L = LH � 0, then

E[exp{−zHLz}] =
exp{−µHL(I + KL)−1µ}

det(I + KL)
,

see equation (5.59), page 194 in [21]. Inequality (2.34) is obtained by using the fact that,

for an n× n Hermitian matrix L = LH � 0, we have

det (In + L) ≥ (1 + λmin (L))n .

Now, if the range space of the codeworks X1 and X2 do not share a line then both

L12 and L21 are positive-definite, i.e.,

λmin (L12) > 0 λmin (L21) > 0.

Thus, at high SNR (channel power σ2 → +∞), we have

1 +
σ2

4
λmin (Lij) ≈

σ2

4
λmin (Lij).

Note the importance of having λmin (Lij) > 0 in the above approximation. From this, it

is straightforward to attain (2.35).
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This line of reasoning is readily extended to the UB:

Pe ≤ UB =
1

K

K∑

i=1

K∑

j = 1
j 6= i

PXi→Xj

≤ 1

K

K∑

i=1

K∑

j = 1
j 6= i

SNR−MN

(
4N

tr(Υ)λmin (Lij)

)MN

≤ (K − 1)SNR−MN

(
4N

tr(Υ)f

)MN

where

f = min {λmin (Lij : i 6= j)} .

What all this analysis shows is that, as long as we have a codebook C = {X1, . . . , XK}

which makes the matrices Lij (i 6= j) definite-positive (for which T ≥ 2M is necessary,

see subsection 2.3.1), then full-diversity is secured. But, what our design method tries to

achieve is exactly the maximization of

min {λmin (Lij : i 6= j)} ,

see equations (2.10) and (2.11). Although we are not able to furnish a theoretical proof

that our algorithm actually guarantees full diversity for any combination of T , K, M , N

and Υ, in all simulations presented afterwards the condition f > 0 is fulfilled.

2.4 Codebook Construction

We propose a two-phase methodology to tackle the optimization problem in (2.11). In

phase one, we start by solving a convex semi-definite programming (SDP) relaxation to

obtain a rough estimate of the optimal codebook. Phase two refines it through a geodesic

descent optimization algorithm (GDA) which efficiently exploits the Riemannian geometry

of the constraints. Suppose a codebook of size K is desired. In table 2.1, page 30 we give

the strategy that has shown to be effective.

The algorithm presented in table 2.1 is of the greedy type. We now explain Steps (3)
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input: M, N, T, K, Υ

step 1) Choose the first codeword (randomly generated, etc);

step 2) Set k = 2;

step 3) Perform SDP relaxation to obtain k-th codeword;

step 4) Set k = k + 1;

step 5) if k ≤ K, return to Step 3);

step 6) Run the geodesic descent algorithm (GDA) to obtain the

final codebook;

output: The matrix X =
[
vec(X1) . . . vec(XK)

]

Table 2.1: Codebook Design Algorithm

and (6), respectively, in more detail.

Phase 1: SDP relaxation. This phase constructs a sub-optimal codebook C∗ =

{X∗
1, ..., X

∗
K}. The codebook is constructed incrementally. We start assuming that we

are in a possession of a suboptimal codebook of size k − 1, while we are interested in a

suboptimal codebook of size k, where k = 2, 3, ..., K. We obtain a suboptimal codebook

of size k by retaining the first k− 1 codewords. Hence, we solve the optimization problem

in the sequel consecutively K − 1 times. There are several strategies for choosing the first

codeword X∗
1, e.g, randomly generated, filling columns of the matrix with eigenvectors

associated to the smallest eigenvalues of the noise covariance matrix, etc. Addition of a

new codeword consists in solving a SDP. Let C∗k−1 = {X∗
1, ..., X

∗
k−1} be the codebook at

the k − 1th stage. The new codeword is found by solving

X∗
k = arg max

tr(XH
k Xk) = 1

f(X∗
1, . . . , X

∗
k−1, Xk)

= arg max

tr(XH
k Xk) = 1

min
1≤m≤ k−1

{λmin(Lmk), λmin(Lkm)}.

(2.36)

We can show that the optimization problem defined in (2.36) is equivalent to

(X∗
k, vec(Xk

∗), t∗) = arg max t (2.37)
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with the following constraints

LMIAm
(Xk, vec(Xk), t) � 0, m = 1, ..., k − 1

LMIBm
(Xk, vec(Xk), t) � 0, m = 1, ..., k − 1

tr(Xk) = 1, Xk = vec(Xk)vecH(Xk) (2.38)

where the abbreviations LMIAm
(Xk, vec(Xk), t) and LMIBm

(Xk, vec(Xk), t) denote lin-

ear (actually, affine) matrix inequalities in the variables Xk, vec(Xk), and t of type A and

B, respectively, for m = 1, ..., k − 1. The proof and the meaning of the LMI’s of type A

and B are given in Appendix B.

Due to the rank condition in (2.38) (note that the equations Xk = vec(Xk)vecH(Xk)

and tr(Xk) = 1 imply that rank (Xk) = 1), the design of the codewords, once again, trans-

lates into a difficult nonlinear optimization problem. However, relaxing this restriction

as

Xk � vec(Xk)vecH(Xk) (2.39)

and rewriting (2.39) as

[
Xk vec(Xk)

vecH(Xk) 1

]
� 0

the optimization problem in (2.37) becomes

(X∗
k, vec(Xk

∗), t∗) = arg max t (2.40)

with the constraints

LMIAm
(Xk, vec(Xk), t) � 0, m = 1, ..., k − 1

LMIBm
(Xk, vec(Xk), t) � 0, m = 1, ..., k − 1

tr(Xk) = 1,

[
Xk vec(Xk)

vecH(Xk) 1

]
� 0.

The rank 1 relaxation is usually known as the Shor relaxation [57]. The optimization

problem in (2.40) is a convex one in the variables Xk, vec(Xk) and t. Remark that for

K = 256, M = 2, N = 2, T = 8 and in the last passage through the loop, i.e., for k = K,
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the output variable Xk is of dimension 16 × 16 (does not depend on N and K) and the

number of linear matrix inequality constraints that needs to be defined is of order K.

To solve the optimization problem in (2.40) we used the Self-Dual-Minimization package

SeDuMi 1.1 [58]. Once the problem defined in (2.40) is solved we need to extract the kth

codeword from the output variable Xk. Toward this end, we adopt a technique similar

to [62]. The technique consists in generating independent realizations of random vectors

that follow a Gaussian distribution with zero mean and covariance matrix Xk, i.e., zl
iid∼

CN (0, Xk) , for l = 1, 2, ..., L, where L is a parameter to be chosen (in all simulations

herein presented we assumed L = 1000). After forcing norm 1, i.e., vl = zl/||zl|| for

l = 1, 2, ..., L, we choose the k − th codeword, X∗
k = ivec(vl∗) where

l∗ = arg max
l = 1, 2, ..., L

f(X∗
1, X

∗
2, ..., X

∗
k−1, ivec(vl)). (2.41)

The operation “ivec” operates as an inverse of “vec” (reshapes the TM -dimensional vector

into a T ×M matrix). Note that X∗
k is a valid codeword because tr(X∗H

k X∗
k) = 1. We

are clearly dealing with a suboptimal solution for a codebook.

Phase 2: Geodesic Descent Algorithm. Problem (2.11) requires the optimization of

a non-smooth function over the smooth manifold M (Cartesian product of K spheres).

After phase 1, i.e., having solved the optimization problem (2.40) consecutively K − 1

times, for k = 2,3,..,K, we are now in possession of a suboptimal codebook of size K.

To refine it we resort to an iterative algorithm, which we call GDA (geodesic descent

algorithm). In table 2.2 we explain the GDA in more detail.

Let Ck be the kth iterate (the initialization C0 is furnished by phase 1). Note that the

power constraint tr(XH
i Xi) = 1, for i = 1, 2, ..., K, can be equivalently written as

xT
i xi = 1,

where

xi =

[
<{vec(X i)}
= {vec(X i)}

]
∈ R

2TM ,

and <{·} and ={·} denote the real and imaginary part of a complex quantity, respectively.

In step 3 each xi, i = 1, ..., K is used to construct the vector x. In step 4 we identify the
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input: The matrix X =
[
vec(X1) . . . vec(XK)

]

step 1) Determine the value of the merit function, cost =
f(X1, X2, ..., XK);

step 2) Initialize ε = 10−5;

step 3) Construct the vector x =




x1
...

xK


 =




<{vec(X1)}
= {vec(X1)}

...

<{vec(XK)}
= {vec(XK)}



;

step 4) Determine z, the number of combinations (X i, Xj),
1 ≤ i 6= j ≤ K, such that fij(C) = λmin(Lij(C)) falls

into the interval [cost, cost + ε], i.e. fij attains the

minimum. These combinations (X i, Xj) are called the

active ones;

step 5) Determine the gradient, ∇fiaja(x), for every active

combination (X ia , Xja), 1 ≤ ia 6= ja ≤ K, a = 1, 2, ..., z;

step 6) Construct the gradient matrix

G =



∇T fi1j1(x)

...

∇T fizjz(x)




z×2KTM

;

step 7) Construct the matrix

H =




xT
1 0 · · · 0
0 xT

2 · · · 0
...

...
...

...

0 · · · · · · xT
K




K×2KTM

;

step 8) Solve the linear program

(d∗, s∗) = arg max
Gd ≥ s1z×1

Hd = 0K×1

−12KTM×1 ≤ d ≤ +12KTM×1

s;

step 9) If s ≤ 0 , Go to Step (16);

step 10) Initialize β = 0.9, c = 0, cmax = 400 and t = 1;
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step 11) Construct the geodesic

γ(t) =




x1(t)
...

xK(t)


 =




x1 cos(||d1||t) + d1

||d1|| sin(||d1||t)
...

xK cos(||dK ||t) + dK

||dK || sin(||dK ||t)


 ;

step 12) Determine temporary value of the merit function,

tempcost = f(X1(t), X2(t), ..., XK(t)), where X i(t) =
ivec (xi(t)(1 : TM) + jxi(t)(TM + 1 : 2TM)) for i = 1, 2, .., K;

step 13) If tempcost > cost, then cost = tempcost, xi = xi(t) for

i=1,2,..,K. Return to Step (3);

step 14) Increment c, update t = βc;

step 15) If c ≤ cmax, Return to Step (12);

step 16) Return the matrix X =
[
vec(X1) . . . vec(XK)

]
, where

Xi = ivec (xi(1 : TM) + jxi(TM + 1 : 2TM)) for i = 1, 2, .., K;

output: The matrix X =
[
vec(X1) . . . vec(XK)

]

Table 2.2: GDA Algorithm

index set A of “active” constraint pairs (i, j), i.e., A = {(i, j) : fij(Ck) ≤ f(Ck)+ε} where ε

is arbitrary small (in all simulations herein presented we have chosen ε = 10−5). In step 8

we check if there is an ascent direction d simultaneously for all functions fij with (i, j) ∈ A.

We know that if it exists d such that ∇T fiaja(x) d > 0, for 1 ≤ ia 6= ja ≤ K, a = 1, 2, ..., z,

we can try to improve our cost function locally. In order to solve the optimization problem

in step 8 we need to determine the gradient ∇fiaja . In Appendix C, we give its respective

expression. This ascent direction d is searched within TCk
M, the tangent space to M

at Ck, and consists in solving a linear program. To ensure that d belongs to TCk
M, the

constraint Hd = 0K×1 (equivalently, xT
i di = 0 for i=1, 2, ..., K) in step 8 is introduced.

The constraint −12KTM×1 ≤ d ≤ +12KTM×1 bounds the solution of the linear program

in step 8. If there is no such ascent direction, the algorithm stops. Otherwise, we perform

an Armijo search for f(C) along the geodesic which emanates from Ck in the direction d,

see figure 2.2. This Armijo search determines Ck+1 and we repeat the loop. From the

expression for the geodesic in step 11, it is easy to see that we travel along the surface of
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the sphere S2TM−1, i.e., xi(t)
T xi(t) = 1 for every i=1,2,...,K.

PSfrag replacements

Ck

γk(t)

Ck+1

dk

M

Figure 2.2: Phase 2: optimizes a non-smooth function on a manifold

A geodesic is nothing but the generalization of a straight line in Euclidean space

to a curved surface [63]. In loose terms, GDA resembles a sub-gradient method and

consequently, the algorithm usually converges slowly near local minimizers (sublinearly).

Note however that this is not a serious drawback since codebooks can be generated off-line.

It is important to notice that other non-geodesic based approaches are also of interest in

this setup. See, e.g., [64] for more details.

The parameter ε in step 2 controls the complexity of the optimization problem in step

8. A too small ε implies slow convergence of the algorithm, whereas a big ε increases the

complexity of the linear program (by increasing z, the number of active functions fij). For

a codebook of size K = 256, and T = 8, M = 2, the gradient matrix G can be of size

10000×8000 (remark that zmax = K(K−1) = 65280). Although the matrix G is a sparse

matrix, it is preferable to impose it to be of moderate size too. The choice of ε made in

step 2 controls that.

Remark: The utility of the step 3 (SDP) in table 2.1 for large K is an open issue. Based

on numerical experiments, we have found it quite useful for small and moderate sized

codebooks. For example, for the real case, M = 1 and T = 2, the step 3 provides us the

optimal codebook for K = 2p where p = 1, 2, .... In this case there is no need to use step 6
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of the algorithm. In all simulations herein presented the procedure presented in table 2.1

has been implemented.

2.5 Results

We have constructed codes for three special categories of noise covariance matrices Υ. In

all simulations we assumed a Rayleigh fading model for the channel matrix, i.e., hij
iid∼

CN
(
0, σ2

)
.

First category: spatio-temporal white observation noise

In the first category the spatio-temporal white observation noise case is considered,

i.e., Υ = E[vec(E) vec(E)H ]= INT . First, we compare our codes with the codes presented

in [27]. We considered scenarios with coherence interval T = 8, M = 1, 2 and 3 transmit

antennas, N = 1 receive antennas and a codebook with K = 256 codewords. Let

dist =
1

K

K∑

k=1

√√√√tr

((
XH

k Xk −
1

M
IM

)2
)

denote the average distance of our codebooks from the constellation of unitary matrices.

For M = 2, T = 8 and K = 256, the average distance obtained was dist = 1.6 ·10−3, while

for M = 3, T = 8 and K = 256, the average distance was dist = 1.3·10−2. As expected (see

subsection 2.3.1), the algorithm converged to constellations of almost unitary matrices. In

figures 2.3–2.5, we show the symbol error rate (SER) versus

SNR = E
[∥∥XkH

H
∥∥2
]
/E
[
‖E‖2

]
= Nσ2/tr(Υ).

The solid-plus and dashed-circle curves represent performances of codes constructed by

our method, and unitary codes respectively. As we can see, our codebook constructions

replicate the performance of [27] for these particular cases, with just marginal improve-

ments. Note that, for unitary constellations, iid Rayleigh fading and white spatio-temporal

observation noise, the GLRT and the Bayesian receiver in [27] coincide (the Bayesian re-

ceiver takes into account the statistics of the channel). This, in conjunction with the fact

that our codebook is almost unitary, explains the comparable performance of the two ap-

proaches. For M = 1, in tables 2.3-2.5 we compare our results with [28] for T = 2, 3, . . . , 6.
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We manage to improve the best known results and in some cases actually provide optimal

packings, i.e., equiangular tight frames (ETFs), which attain the Rankin upper bound

(equivalently, the Welch lower bound [65]). For the sake of completeness a comparison

with unitary codes found in [32] is also performed. Figure 2.6 shows the result of the

experiment for T = 4, M = 2, N = 2 and K = 256. We observe that our codes show

almost no improvement over the constructions presented in [32].

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

Figure 2.3: Category 1 - spatio-temporally white observation noise: T = 8, M = 3, N = 1,
K = 256, Υ = INT . Plus-solid curve:our codes; circle-dashed curve:unitary codes.

Second category: spatially white-temporally colored observation noise

The second category corresponds to spatially white-temporally colored observation

noise, i.e., Υ = IN ⊗ Σ(ρ) where the vector ρ : T × 1 is the first column of an Hermitian

Toeplitz matrix Σ(ρ). To the best of our knowledge, we are not aware of any work

that treats the problem of codebook constructions in the presence of spatially white-

temporally colored observation noise. Hence, we compare our codes designed (adapted) to

this specific scenario with unitary codes [27]. The goal here is to demonstrate the increase

of performance obtained by matching the codebook construction to the noise statistics.

In figures 2.7–2.9 the solid curves represent the performance of codes constructed by our

method, while the dashed curves represent the performance of unitary codes. In either
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PACKING RADII (DEGREES)

T K MB JAT Rankin

2 3 60 60 60

2 4 54.74 54.74 54.74

2 5 45.00 45.00 52.24

2 6 45.00 45.00 50.77

2 7 38.93 38.93 49.80

2 8 37.43 37.41 49.11

2 9 35.26 − 48.59

2 10 33.07 − 48.19

2 11 31.72 − 47.87

2 12 31.72 − 47.61

2 13 28.24 − 47.39

2 14 27.83 − 47.21

2 15 26.67 − 47.05

2 16 25.97 − 46.91

3 4 70.53 70.53 70.53

3 5 64.26 64.00 65.91

3 6 63.43 63.43 63.43

3 7 61.87 61.87 61.87

3 8 60.00 60.00 60.79

3 9 60.00 60.00 60.00

3 10 54.74 54.73 59.39

3 11 54.74 54.73 58.91

3 12 54.74 54.73 58.52

3 13 51.38 51.32 58.19

3 14 50.36 50.13 57.92

3 15 49.80 49.53 57.69

3 16 49.61 49.53 57.49

3 17 49.13 49.10 57.31

3 18 48.12 48.07 57.16

Table 2.3: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best con-
figurations (MB) of K points in P

T−1(C) against the Tropp codes (JAT) and Rankin
bound [28]. The packing radius of an ensemble is measured as the acute angle between
the closest pair of lines. Minus sign symbol (-) means that no packing is available for
specific pair (T, K).
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PACKING RADII (DEGREES)

T K MB JAT Rankin

4 5 75.52 75.52 75.52

4 6 70.89 70.88 71.57

4 7 69.29 69.29 69.30

4 8 67.79 67.78 67.79

4 9 66.31 66.21 66.72

4 10 65.74 65.71 65.91

4 11 64.79 64.64 65.27

4 12 64.68 64.24 64.76

4 13 64.34 64.34 64.34

4 14 63.43 63.43 63.99

4 15 63.43 63.43 63.69

4 16 63.43 63.43 63.43

5 6 78.46 78.46 78.46

5 7 74.55 74.52 75.04

5 8 72.83 72.81 72.98

5 9 71.33 71.24 71.57

5 10 70.53 70.51 70.53

5 11 69.73 69.71 69.73

5 12 69.04 68.89 69.10

5 13 68.38 68.19 68.58

5 14 67.92 67.66 68.15

5 15 67.48 67.37 67.79

5 16 67.08 66.68 67.48

5 17 66.82 66.53 67.21

5 18 66.57 65.87 66.98

5 19 66.57 65.75 66.77

5 20 66.42 65.77 66.59

5 21 66.42 65.83 66.42

5 22 65.91 65.87 66.27

5 23 65.91 65.90 66.14

5 24 65.91 65.91 66.02

5 25 65.91 65.91 65.91

Table 2.4: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best con-
figurations (MB) of K points in P

T−1(C) against the Tropp codes (JAT) and Rankin
bound [28]. The packing radius of an ensemble is measured as the acute angle between
the closest pair of lines.
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Figure 2.4: Category 1 - spatio-temporally white observation noise: T = 8, M = 2, N = 1,
K = 256, Υ = INT . Plus-solid curve: our codes; circle-dashed curve: unitary codes.

case, the plus sign indicates that the GLRT receiver is implemented. The square sign

indicates that the Bayesian receiver is implemented. Figure 2.7 plots the result of the

experiment for T = 8, M = 2, N = 1, K = 67 and ρ = [ 1; 0.85; 0.6; 0.35; 0.1;

zeros(3,1) ]. It can be seen that for SER = 10−3, our codes demonstrate a gain of 3 dB

when compared with the unitary codes. Figure 2.8 plots the result of the experiment for

T = 8, M = 2, N = 1, K = 256 and ρ =[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. For SER = 10−3

our codes demonstrate gain of 2 dB when compared with unitary codes. Figure 2.9 plots

the result of the experiment for T = 8, M = 2, N = 1, K = 32 and ρ =[ 1; 0.8; 0.5;

0.15; zeros(4,1) ]. For SER = 10−3, our codes demonstrate gain of 3 dB when compared

with the unitary codes. In figures 2.7- 2.9, the dotted curve represents the performance of

the codes obtained by the heuristic codebook Ĉ defined in (2.12), and dash-dotted curve

represents the performance of the codes obtained by the heuristic codebook C defined

in (2.13). As can be seen, this leads to a degradation of performance, even with respect

to plain unitary codebooks (dashed curves).

We have also performed a comparison with unitary codes found in [32]. Figure 2.10

shows the result of the experiment for T = 4, M = 2, N = 2, K = 256 and ρ =[ 1;
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Figure 2.5: Category 1 - spatio-temporally white observation noise: T = 8, M = 1, N = 1,
K = 256, Υ = INT . Plus-solid curve: our codes; circle-dashed curve: unitary codes.

0.8 ; 0.6; 0.1 ]. We see that for SER = 10−3 our codes demonstrate a gain of 2 dB when

compared with the unitary codes.

Third category: E = s αT + Etemp

In the third category, we considered the case where the noise matrix is of the form E =

s αT + Etemp. This models an interfering source s (with known covariance matrix Υs)

where the complex vector α is the known channel attenuation between each receive antenna

and the interfering source. The matrix Etemp has a noise covariance matrix belonging

to the second category. Thus, the noise covariance matrix is given by Υ = ααH ⊗Υs +

IN ⊗ Σ(ρ). As for the second category, we compare our codes adapted to this particular

scenario with unitary codes. In figures 2.11–2.12 the solid curves represent performance

of codes constructed by our method, while the dashed curves represent performance of

unitary codes [27]. Figure 2.11 plots the result of the experiment for T = 8, M = 2,

N = 2, K = 32, s =[1; 0.7; 0.4; 0.15; zeros(4,1)], ρ = [1; 0.8; 0.5; 0.15; zeros(4,1)] and

α = [-1.146 + 1.189i;1.191- 0.038i]. For SER = 10−3, once again our codes demonstrate

a gain of more than 2 dB gain when compared with the unitary codes. Figure 2.12 plots

the result of the experiment for T = 8, M = 2, N = 2, K = 67, ρ =[1; 0.7; 0.4; 0.15;
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Figure 2.6: Category 1 - spatio-temporally white observation noise: T = 4, M = 2, N = 2,
K = 256,Υ = INT . Plus-solid curve: our codes; circle-dashed curve: unitary codes found
in [32]. The codes use GLRT receiver.

zeros(4,1)], s = [1; 0.8; 0.5; 0.15; zeros(4,1)] and α = [ -0.4534 + 0.0072i; 0.4869 +

1.9728i]. For SER = 10−3, our codes demonstrate a gain of more than 1.5 dB gain when

compared with the unitary codes.

As a final remark, in the sequel, we offer a possible, intuitive explanation for the

obtained results.

It is a known fact that correlation in noise is beneficial to overall system performance.

Hence, even if one could employ unitary constellations, we strongly believe that it should

not be done since, by doing it, we would “revert” to the white noise case and possible gain

that originates from the fact that the noise is correlated would be lost. We believe that

the solution is in somehow finding the way which, when constructing codebooks, explicitly

takes into account the information about the noise correlation.

2.6 Conclusions

We addressed the problem of codebook construction for non-coherent communication in

multiple-antenna wireless systems. In contrast with other related approaches, the Gaussian

observation noise may have an arbitrary correlation structure. The non-coherent receiver
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PACKING RADII (DEGREES)

T K MB Rankin

6 7 80.41 80.41

6 8 77.06 77.40

6 9 75.52 75.52

6 10 74.20 74.21

6 11 73.22 73.22

6 12 72.45 72.45

6 13 71.82 71.83

6 14 71.31 71.32

6 15 70.87 70.89

6 16 70.53 70.53

6 17 70.10 70.21

6 18 69.73 69.94

6 19 69.40 69.70

Table 2.5: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best con-
figurations (MB) of K points in P

T−1(C) against Rankin bound [28]. The packing radius
of an ensemble is measured as the acute angle between the closest pair of lines.

operates according to the GLRT principle. A methodology for designing space-time code-

books for this non-coherent setup, taking the probability of error of the detector in the

high SNR regime as the code design criterion, is proposed. We have presented a two-phase

greedy approach to solve the resulting high-dimensional, nonlinear and non-smooth opti-

mization problem. The first phase solves a convex SDP relaxation to obtain a suboptimal

codebook. The second phase refines it through a geodesic descent optimization algorithm

which efficiently exploits the Riemannian geometry of the constraints. Computer simu-

lations show that our codebooks are marginally better than state-of-art known solutions

for the special case of spatio-temporal white Gaussian observation noise but significantly

outperform them in the correlated noise environments. This shows the relevance of the

codebook construction tool proposed herein.
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Figure 2.7: Category 2 - spatially white - temporally colored: T = 8, M = 2, N = 1,
K = 67, ρ =[ 1; 0.85; 0.6; 0.35; 0.1; zeros(3,1) ]. Solid curves: our codes; dashed curves:
unitary codes; dotted curve: codes obtained by the heuristic (2.12); dash-dotted curve:
codes obtained by the heuristic (2.13); plus signed curves: GLRT receiver; square signed
curves: Bayesian receiver.
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Figure 2.8: Category 2 - spatially white - temporally colored: T = 8, M = 2, N = 1,
K = 256, ρ =[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. Solid curves: our codes; dashed curves:
unitary codes; dotted curve: codes obtained by the heuristic (2.12); dash-dotted curve:
codes obtained by the heuristic (2.13); plus signed curves: GLRT receiver; square signed
curves: Bayesian receiver.
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Figure 2.9: Category 2 - spatially white - temporally colored: T = 8, M = 2, N = 1,
K = 32, ρ =[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. Solid curves: our codes; dashed curves:
unitary codes; dotted curve: codes obtained by the heuristic (2.12); dash-dotted curve:
codes obtained by the heuristic (2.13); plus signed curves: GLRT receiver; square signed
curves: Bayesian receiver.
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Figure 2.10: Category 2 - spatially white - temporally colored: T = 4, M = 2, N = 2,
K = 256, ρ =[ 1; 0.8 ; 0.6; 0.1 ]. Solid curves: our codes; dashed curves: unitary codes
found in [32]; plus signed curves: GLRT receiver; square signed curves: Bayesian receiver.
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Figure 2.11: Category 3: T = 8, M = 2, N = 2, K = 32. Solid curves: our codes; dashed
curves: unitary codes; plus signed curves: GLRT receiver; square signed curves: Bayesian
receiver.

−6 −4 −2 0 2 4 6
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

Figure 2.12: Category 3: T = 8, M = 2, N = 2, K = 67. Solid curves: our codes; dashed
curves: unitary codes; plus signed curves: GLRT receiver; square signed curves: Bayesian
receiver.



Chapter 3

Capacity and Error Probability

Analysis of Non-Coherent MIMO

Systems in the Low SNR Regime

3.1 Chapter Summary

The chapter is organized as follows. In section 3.2, the spatially correlated non-coherent

MIMO block Rayleigh fading channel is analyzed. The impact of channel and noise cor-

relation on the mutual information is obtained for the on-off and Gaussian signaling. In

section 3.3, contrary to most approaches for the low SNR regime, a low SNR analysis of the

PEP for the GLRT receiver is introduced, and a codebook design criterion which takes

into account the information about noise correlation is obtained. New space-time con-

stellations for some particular wireless scenarios are constructed. Computer simulations

show that these new codebooks are also of interest for Bayesian receivers which decode

constellations with non-uniform priors. Section 3.4 contains the main conclusions of this

chapter.

3.2 Random Fading Channel: the Low SNR Mutual Infor-

mation Analysis

Data model and assumptions. We focus on a communication system comprising M

transmit and N receive antennas over a narrowband flat Rayleigh fading channel. We

assume a block fading channel model which is widely used in the MIMO literature [23,

45, 46, 66], with coherence interval T . In complex base band notation we have the system

47
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model

Y = XHH + E, (3.1)

where X is the T ×M matrix of transmitted symbols, Y is the T ×N matrix of received

symbols, HH is the M ×N matrix of channel coefficients, and E is the T ×N matrix of

zero-mean additive observation noise. For for the sake of convenience, let H = HH . We

work under the following assumptions:

B1. (Channel matrix) The popular separable (Kronecker) spatial correlation model [38,

66, 67] is used, i.e., H =
√

ρ
M K

1

2

t Hw

(
KT

r

) 1

2 where Hw is a M × N matrix com-

prised of statistically independent CN (0, 1) entries and the coefficient ρ is the model

parameter proportional to the SNR. We assume that the matrix Hw remains fixed

for the coherence time T after which it changes to a new independent value. The

correlation coefficients between the M (N) transmit (receive) antennas are assem-

bled into an M ×M (N ×N) positive semidefinite Hermitian correlation matrix K t

(KT
r ; the operator T is used for the sake of convenience). The matrix Hw is not

known at the receiver nor at the transmitter, but its distribution is, in addition to

Kt and Kr. This model is appropriate for the scenarios where only the objects sur-

rounding the transmitter and the receiver cause the correlation of the local antenna

elements, while they have no impact on the correlation at the other end of the link.

The model has been found to be satisfactory in certain scenarios [68, 69]. We would

also like to point out that there exist other spatial correlation models that take into

account coupling between transmit and receive sides, see [70] and references therein.

Although these models may characterize realistic channels more accurately for some

scenarios (in these cases, the Kronecker model leads to capacity underestimations),

in this work, we adopt the Kronecker model since we believe that it represents a

good compromise between analytical tractability and validity of the channel. For

a fair comparison of different correlation cases, we assume that tr(K t) = M and

tr(Kr) = N ;

B2. (Transmit power constraint) We impose the power constraint E[tr(XHX)] ≤
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TM ;

B3. (Noise distribution) The noise covariance matrix Υ = E[vec(E) vec(E)H ] is

known at the transmitter and at the receiver. Also, without loss of generality

(w.l.o.g.), we assume tr(Υ) = NT .

Note that in B3, we again let the data model depart from the customary assumption

of spatio-temporal white Gaussian observation noise.

3.2.1 Mutual Information: On-Off Signaling

In [45], it has been demonstrated that the on-off signaling presented in [41], where the

single transmit antenna systems were considered, generalizes to the multi-antenna setting

and attains the ergodic channel capacity for the coherent case. Here, we show that this

is also the case for the correlated Rayleigh fading channel model with arbitrary noise

covariance matrix. Furthermore, we maximize the mutual information with respect to

(w.r.t.) the input signal Xon, Kt and Kr. Hence, we view both Kt and Kr as system

parameters which we can introduce and track. The on-off signaling is defined as: for any

ε > 1 and assuming ρ < 1,

X =

{
Xon ρ−

ε
2 with probability (w.p.) ρε

0T×M w.p. 1− ρε

With an analysis similar to [45], presented in Appendix D, it can be shown that at suffi-

ciently low SNR the mutual information between Y and X up to first order in ρ is given

by

I(Y ; X) =
ρ

M
tr
(
Υ−1

(
Kr ⊗XonKtX

H
on

))
+ o(ρ). (3.2)

Note that for the special case of spatio-temporal white observation noise and uncorrelated

Rayleigh fading channel case, i.e., Υ = ITN , Kt = IM and Kr = IN our result in (3.2)

recovers the finding in [45]. In that case, the maximal mutual information (per channel

use) is equal to

1

T
I(Y ; X) = ρ N + o(ρ).
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Now, we address the maximization of the mutual information w.r.t. Xon, Kt and Kr,

i.e.,

max

tr
(
XonXH

on

)
≤ TM,

Kt ∈ PM , Kr ∈ PN

tr
(
Υ−1

(
Kr ⊗XonKtX

H
on

))
(3.3)

where

Pn = {Q : n× n matrix such that Q � 0 and tr (Q) = n}. (3.4)

In Appendix E we show that the maximum in (3.3) is attained by

X̂on =
√

TM
[
x̂ 0T×(M−1)

]
, K̂r = N ûûH ,

[
K̂t

]
i,i

= Mδi1 (3.5)

where

(û, x̂) = arg max
u ∈ C

N , ||u|| = 1,
x ∈ C

T , ||x|| = 1

(u⊗ x)H Υ−1 (u⊗ x) (3.6)

with δij = 1 for i = j and zero otherwise. The notation [M ]i,i represents the entry of the

matrix M on the position (i, i). Note that K̂t is a diagonal matrix. The optimization

problem in (3.6) always admits a solution (maximization of a continuous function over a

compact set) but, in general, a closed form solution is not available. The exception is the

case when the noise covariance matrix Υ has a Kronecker structure, say Υ = Υ1 ⊗Υ2

for some N ×N matrix Υ1 and T × T matrix Υ2. In that situation, the optimal û (resp.

x̂) can be taken as any unit-norm eigenvector associated with the minimal eigenvalue of

Υ1 (resp. Υ2). For example, in the case of spatially white-temporally colored observation

noise, i.e., Υ = IN ⊗ Σ for some T × T positive definite matrix Σ, the vector x̂ is the

unit-norm eigenvector associated with the minimal eigenvalue of Σ (in other words, we

transmit the codeword in the direction that is least affected by the noise). For the choice

in (3.5), the maximal mutual information (per channel use) is equal to

1

T
I(Y ; X) = ρ N Mλ̂ + o(ρ). (3.7)

where λ̂ = (û⊗ x̂)H Υ−1 (û⊗ x̂).

Remarks. From (3.5) it is clear that both the transmit and receive antennas should be

made as correlated as possible, as both the optimal K t and Kr have rank one. Note
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that in (3.7) the mutual information is proportional to the number of transmit antennas

M . This is in sharp contrast with the case of uncorrelated Rayleigh fading channel model

for which it has been shown that the maximal mutual information is independent of the

number of transmit antennas [45]. Also, since

tr
(
Υ−1

)
=

NT∑

i=1

1/λi ≥
NT∑

i=1

(2− λi) = NT,

where λi’s are the eigenvalues of Υ, we can w.l.o.g. assume that, e.g.,
[
Υ−1

]
1,1
≥ 1 (other-

wise tr
(
Υ−1

)
< NT ). Then, by choosing u1 =

[
1 01×(N−1)

]T
and x1 =

[
1 01×(T−1)

]T

we have

λ̂ ≥ (u1 ⊗ x1)
H Υ−1 (u1 ⊗ x1) =

[
Υ−1

]
1,1
≥ 1.

This result confirms the general principle that correlated noise is beneficial from the ca-

pacity point of view. See, e.g., pp. 100 in [18] for more details. In practice, by changing

the antenna separation one can control the eigenvalues of K t and Kr, but not their eigen-

vectors. See [46, 66, 71, 72], [18, section 6.3.3]. As a consequence, the result presented

herein has to be interpreted as the upper bound on the channel capacity. For guidelines

for optimizing antenna spacing in the case when there is little to no local scattering around

the base station and the mobile is assumed to be in a rich scattering environment, see [72].

For the physical conditions on the antenna spacing under which the Kronecker model is

appropriate, the reader is referred to pp. 98-100 in [71] for more details. Nevertheless,

the previous conclusion holds for the case when we can not manipulate the eigenvectors

of Kr (which are still available to the transmitter through a feedback link): in this case,

from (E.11) we obtain

1

T
I(Y ; X) = ρ N Mλmax

(
F i∗Υ̂

−1
F H

i∗

)
+ o(ρ)

where Υ̂, F i and i∗ are defined in (E.5), (E.5) and (E.8), respectively. It is clear that

λmax

(
F i∗Υ̂

−1
F H

i∗

)
≥ 1 (otherwise tr(Υ−1) < NT ). Thus, correlated noise is beneficial

from the capacity point of view in this case too. A short exercise would show that the

first order term in (3.7) corresponds to that of the capacity when the channel is known

to the receiver and the noise covariance matrix Υ is arbitrary (when Υ = INT , then
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λ̂ = 1, from (3.7) we retrieve the result on pp. 94 in [18] where the coherent correlated

Rayleigh fading channel has been treated). With coherent reception, we know that the

mutual information is maximized if the input vec(X) is circularly symmetric, complex

Gaussian distribution, i.e., vec(X)∼CN (0, P coh) for some covariance matrix P coh with

tr(P coh) ≤ TM such that the power constraint in the assumption B2 is satisfied (note

that we may assume w.l.o.g. that vec(X) is zero-mean). In that case, the channel capacity

is given by

Ehw

[
log2 det

(
ITN +

ρ

M
Υ− 1

2 (L⊗ IT ) P coh

(
LH ⊗ IT

)
Υ− 1

2

)]
(3.8)

where L = K
1

2
r HT

w

(
KT

t

) 1

2 and hw = vec (Hw). It can be readily shown (by maximizing

the first-order expansion of (3.8) w.r.t. P coh, Kt and Kr) that the optimal covariance

matrix P̂ coh is equal to

P̂ coh = vec(X̂on)vecH(X̂on), (3.9)

with X̂on, K̂t and K̂r defined as in (3.5).

3.2.2 Mutual Information: Gaussian Modulation

In this subsection, we compute the low SNR mutual information for the more realistic

and practical case of Gaussian modulation. Let x = vec(X) be a zero-mean random

variable with covariance matrix P that follows a circularly symmetric, complex Gaussian

distribution, i.e., x∼CN (0, P ). Clearly, in order to meet the power constraint in the

assumption B2, tr(P ) ≤ TM . Then, at sufficiently low SNR, the mutual information

between Y and X up to second order in ρ is given by

I(Y ; X) =
ρ2

2M2
tr
(
E[Z2]− (E[Z])2

)
+ o(ρ2) (3.10)

=
ρ2

2M2

M∑

i=1

M∑

j=1

N∑

k=1

N∑

z=1

λkλztr(Υ̂kzP̃ ij)tr(Υ̂zkP̃ ji) + o(ρ2), (3.11)

where

Z = Υ− 1

2

(
Kr ⊗XKtX

H
)
Υ− 1

2 , P̃ =

((
KT

t

) 1

2 ⊗ IT

)
P

((
KT

t

) 1

2 ⊗ IT

)
,

P̃ ij = EiP̃EH
j , Υ̂kz = F kΥ̂

−1
F H

z



3.2 Random Fading Channel: the Low SNR Mutual Information Analysis 53

and λk’s, for k = 1, ..., N , are the eigenvalues of Kr. The matrices Υ̂ and F k, for

k = 1, ..., N , are defined in (E.5), whereas the T ×TM matrix Ei, for i = 1, ..., M , is given

by

Ei = eT
i ⊗ IT , (3.12)

where ei represents the i-th column of the identity matrix IM . The proof is given in

Appendix F. We now address the optimization problem

max
P � 0, tr (P ) ≤ TM,
Kt ∈ PM , Kr ∈ PN

M∑

i=1

M∑

j=1

N∑

k=1

N∑

z=1

λkλztr(Υ̂kzP̃ ij)tr(Υ̂zkP̃ ji). (3.13)

It can be shown that the maximum of (3.13) is attained by the following signaling scheme:

the optimal correlation matrices K̂r and K̂t are defined as in (3.5), and the optimal

covariance matrix P̂ is given by

P̂ = TMKP ⊗ x̂x̂H (3.14)

where the vectors û and x̂ are, as before, solutions of the optimization problem (3.6).

The M ×M constant matrix KP has all the entries equal to zero except the entry (1,1)

which is one. The proof is given in Appendix G. In this case, the mutual information (per

channel use) is given by

1

T
I(Y ; X) =

ρ2

2
N2 T M2 λ̂2 + o(ρ2). (3.15)

where λ̂ = (û⊗ x̂)H Υ−1 (û⊗ x̂).

Remarks. In [45] it has been proved that for the uncorrelated Rayleigh fading channel

only one transmit antenna should be employed. Here, we see from (3.15) that having more

transmit (M) and receive (N) antennas can actually enhance the channel performance in

terms of capacity significantly in the correlated setup. We see that the mutual information

is proportional to M 2N2, whereas in [45] the increase is only linear in the number of the

receive antennas. Hence, by making the antennas as correlated as possible the total

gain is M2N . Remark that although the mathematics for calculating P̂ , K̂t and K̂r

are quite involved, our findings are not surprising since we see that the optimal values
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correspond to those of the coherent correlated Rayleigh fading channel case (it is easy to

check that P̂ = P̂ coh defined in (3.9)). The conclusions herein presented are in concordance

with [46, 66] and with the results of the previous subsection where it has been shown that

channel correlation and correlated noise can actually improve the channel performance.

3.3 Deterministic Fading Channel: the Low SNR PEP Analy-

sis

Data model and assumptions. We retain the data model (3.1), but the presumptions

under which we work are the following:

C1. (Channel matrix) The matrix H is not known at the receiver neither at the trans-

mitter, and no stochastic model is assumed for it;

C2. (Transmit power constraint) The codeword X is chosen from a finite codebook

C = {X1, X2, . . . , XK} known to the receiver, where K is the size of the codebook.

We impose the power constraint tr(XH
k Xk) = 1 for each codeword. We further

assume that each codeword is of full rank;

C3. (Noise distribution) As in the assumption B3, the noise covariance matrix Υ =

E[vec(E) vec(E)H ] is known at the transmitter and at the receiver.

Receiver. Under the above conditions, the conditional pdf of the received vector y =

vec(Y ), given the transmitted matrix X and the unknown realization of the channel

g = vec (H), is given by

p(y|X, g) = k exp{−||y − (IN ⊗X)g||2
Υ
−1},

where k = 1/
(
πTNdet(Υ)

)
and the notation ||z||2A = zHAz is used. Since no stochastic

model is attached to the channel propagation matrix, the receiver faces a multiple hypoth-

esis testing problem with the channel H as a deterministic nuisance parameter. Hence,

we shall assume a GLRT receiver. The GLRT [51] is composed of a bank of K parallel

processors where the k -th processor assumes the presence of the k -th codeword and com-

putes the likelihood of the observation, after replacing the channel by its ML estimate.
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The GLRT detector chooses the codeword associated with the processor exhibiting the

largest likelihood of the observation, i.e.,

k̂ = argmax{p(y|Xk, ĝk) : k = 1, 2, . . . , K}

where

ĝk = (X H
k X k)

−1X H
k Υ− 1

2 y

with X k = Υ− 1

2 (IN ⊗Xk) represents the ML estimate of the channel. Due to the

respective expression for ĝk, we note that since each codeword of the codebook has full

rank (presumption C2), the ML channel estimate is well defined.

Low SNR analysis. In the sequel, a low SNR analysis of the PEP is introduced. Let

PXi→Xj
be the probability of the GLRT receiver deciding X j when X i is sent. It can be

shown that for T ≥ 2M

PXi→Xj
≈ P

(
Y > gH Lijg

)
, (3.16)

with

Lij = X H
i Π⊥

j X i, Π⊥
j = ITN −X j

(
X H

j X j

)−1
X H

j

and Y =
∑MN

m=1 sin αm (|am|2 − |bm|2) where am, bm are iid circular complex Gaussian

random variables with zero mean and unit variance, i.e., am, bm
iid∼ CN (0, 1) for m =

1, . . . , MN . The angles αm are the principal angles between the subspaces spanned by

X i and X j . The proof is given in Appendix H. For the case of spatio-temporal white

observation noise, i.e., Υ = INT and M = 1, from (3.16) we have

Pxi→xj
≈ P

(
N∑

i=1

(|ai|2 − |bi|2) > ||g||2 sin α1

)
, (3.17)

where we assume sin α1 6= 0 (remark that for Υ = INT there are maximum M different

principal angles where each of them is of multiplicity N). In Chapter 2 we derive the

expression for the PEP in the high SNR regime and T ≥ 2M . For M = 1 and Υ = INT ,

it is given by

Pxi→xj
= Q

(
1√
2
||g|| sin αij

)
. (3.18)

Equations (3.17) and (3.18) show that the probability of misdetecting xi for xj depends

on the channel g, but more important, on the relative geometry of the codewords xi
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and xj . Since Pxi→xj
= Pxj→xi

(a feature of the scenario M = 1 and Υ = INT ),

the PEPs are symmetric which gives rise to a intuitive distance measure. Hence, by

analyzing the PEP in both extreme cases (low and high SNR) it is clear that one wishes

to make the codewords xi and xj as separate as possible, i.e., the problem of finding

good codes corresponds to the very well known packing problem in the complex projective

space [28, 74]. Unfortunately, from (3.16) it seems difficult to propose a codebook design

criteria for M > 1 and Υ 6= ITN . One of the reasons originates from the fact that PEPs

are not symmetric for this general case. Hence, as usually, we resort to an upper bound

on the PEP. From (3.16), an upper bound on the PEP is readily derived

PXi→Xj
≤ P

(
Z > ||g||2 λmin (Lij)

)
, (3.19)

where Z =
∑MN

m=1 |am|2. The bound in (3.19) is admittedly loose, but allows us to come

up with a workable codebook design criterion. The simulation results below will assess

its effectiveness. By invoking the second part of the theorem on pp. 200 in [52], the case

when M ≤ T < 2M , and then by repeating the analysis of the case T ≥ 2M presented

in Appendix H, it is straightforward to see that the matrix Lij is rank deficient. This

can seriously effect the error performance of the system since, by interpreting (3.16), one

wants to maximize gH Lijg. Thus, as in the high SNR regime and GLRT receiver, when

designing constellation for arbitrary Υ and the low SNR regime, we take T ≥ 2M . Also,

remark that for M ≤ T < 2M the bound in (3.19) is not applicable since λmin (Lij) = 0.

Codebook construction methodology. Denoting a codebook by C = {X1, X2, ..., XK}

we are led to the following optimization problem

C∗ = arg max
C ∈ M

f(C) (3.20)

where

f : M→ R, C = {X1, . . . , XK} 7→ f(C)

and

f(C) = min{fij(C) : 1 ≤ i 6= j ≤ K}
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with fij(C) = λmin (Lij). A codebook C is a point in the space

M = {(X1, . . . , XK) : tr(XH
k Xk) = 1}.

Remark that the codebook design criterion in (3.20) is equivalent to the one for the high

SNR regime that has been proposed in Chapter 2, see (2.11). Consequently, the algorithm

presented in table 2.1 will be employed to construct codebooks for some particular wireless

scenarios.

3.3.1 Results

Using the codebook construction criterion methodology in (2.11), we have constructed

codes for three special categories of noise covariance matrices Υ. If not stated otherwise,

in all simulations we assume uncorrelated Rayleigh fading model for the channel matrix,

i.e., hij
iid∼ CN

(
0, σ2

)
.

First category: spatio-temporal white observation noise

We are not aware of any work concerning the low SNR non-coherent MIMO scenario

employing a GLRT receiver. Hence, we shall compare the performance of our codes and our

GLRT receiver with the codes assuming a Rayleigh fading channel with equally probable

codewords [39] and ML receiver. We also show that our codes are of great interest for the

constellations with unequal priors [47, 48].

• Constellations with equal priors for M = 1. In figure 3.1 we compared our codes and

our GLRT receiver against the codes found in [39] with the ML receiver proposed therein.

We considered the cases where the coherence interval T = 2, SNR=7 dB and codebooks

with K = 8 and K = 16 codewords. The solid and dashed curves represent our codes,

and Borran codes respectively. As we can see for K = 8, although the Borran’s codes

assume the knowledge of actual SNR = E
[∥∥xkh

H
∥∥2
]
/E
[
‖E‖2

]
=7 dB, our codebook

constructions can save up to 3 receive antennas at symbol error rate (SER) of 2 · 10−3.

The same figure plots the results of a similar experiment for K = 16. It can be seen that

for SER = 2 · 10−2, our codes demonstrate a saving of 6 receive antennas when compared

with Borran’s codes.



58
Capacity and Error Probability Analysis of Non-Coherent MIMO Systems in

the Low SNR Regime

• Constellations with equal priors and M > 1 . We present some results to study the

impact of employing M > 1 transmit antennas in the low SNR regime. First, we compare

our codebook constructions obtained by the method presented in [73, 74] for M = 1,

M = 2 and M = 3. Figure 3.2 shows the result of the performance comparisons of

our 256-point constellations for T = 8 and SNR = 0 dB. It can be seen that for SER

= 2 · 10−3, our codes for M = 1 can spare 1 receive antennas when comparing with our

codes constructed for M = 2, and nearly 4 receive antennas compared with our codes

constructed for M = 3. Figure 3.3 plots the result of the experiment for T = 8, SNR= -6

dB, K = 32 and M = 1, 2. We see that at SER = 2·10−2, our codes for M = 1 demonstrate

a saving of 8 receive antennas when compared with our codes constructed for M = 2. The

same plot presents the result of the experiment for T = 8, SNR= -6 dB, K = 67 and

M = 1, 2. For SER = 4 ·10−2, our codes for M = 1 can spare 9 receive antennas compared

with our codes constructed for M = 2. Then, we compare our codebook constructions for

M = 1 against Borran’s codes with M = 2. Figure 3.4 plots the result of the experiment.

The solid signed and the solid circled curve show the performance of our codes for K = 32,

T = 4, M = 1, and K = 16, T = 3, M = 1, respectively. The dashed signed and the

dashed circled curve represent the performances of the Borran’s codes for K = 32, T = 4,

M = 2 and K = 16, T = 3, M = 2, respectively. For 32-point constellations, we see that

our codes can save 7 receive antennas at SER = 4 · 10−2. For 16-point constellations, we

witness the gain of more than 10 receive antennas at SER = 10−1. We think that the

results presented in the figures 3.2- 3.4 further strengthen the motivation of using a single

transmit antenna codebooks in the low SNR regime when GLRT receiver is employed.

• Constellations with unequal priors. Now, we depart from our GLRT receiver and

show that our codebook designs for M = 1 are nevertheless of interest for schemes that

allow for non-uniform priors, e.g., the Bayesian receiver in [47, 48]. In figure 3.5 we

show the results of the simulations. We considered the case where the coherence interval

T = 2, P = 0.5 and rate = 1 bps/Hz, with P = E[tr
(
XH

k Xk

)
]. For simplicity, we

assume Kr = IN . We consider codes with codewords of the form Xk =
[
xk 0T×(M−1)

]

since this form of the code resembles the capacity achieving distribution at sufficiently
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low SNR presented in section 3.2. We call them single beam constellations. First, we

treat the case of uncorrelated Rayleigh fading channel, i.e., K t = IM where M = 3.

Note that in this case only one transmit antenna is effectively used. The dashed and

dashed-circled curves represent our codes, and Srinivasan’s 5 point constellations with

unequal priors [47] (the constellations assume a point in the origin with probability 1
2 ,

with the probabilities of the points lying in the sphere being equal). Next, we assume

the correlated Rayleigh fading case with K t = K̂t with K̂t defined in section 3.2 (when

referring to Kt = K̂t case, we simply write rank(Kt)=1). The solid and solid-circled

curves represent our codes, and Srinivasan’s 5 point constellations with unequal priors.

As expected, high improvements are possible when codes are used in correlated MIMO

scenarios which is in concordance with the information-theoretic result presented herein.

The gain of our 5 point constellations with unequal priors compared with Srinivasan’s

codes is due to the fact that we use optimal packings in complex projective space (in the

outer sphere), whereas Srinivasan uses optimal packings in the real projective space (one

can expect larger gains as K increases, where K represents the number of the codewords on

the sphere). The improvement obtained can be explained by the optimality of our designed

packings. Rankin bound is an upper bound on the packing radius of K subspaces in the

Grassmanian space G(M, CT ). When M = 1, the bound applies to packings in the complex

projective space, and in this case it holds

min {sin2 αij : 1 ≤ i 6= j ≤ K} ≤ T − 1

T

K

K − 1

where αij is the acute angle between codewords xi and xj . Please refer to [28] for more

details. One can easily check that our designed codebook indeed meets the Rankin bound

which is 2
3 for T = 2 and K = 4. Our codebook is represented in the following matrix




0.4946− 0.6268i −0.2375 + 0.5533i
−0.8183− 0.4446i −0.3392 + 0.1328i

0.4908− 0.4101i 0.7326 + 0.2329i
−0.0955− 0.2776i −0.8817 + 0.3693i


 .

The dash-dotted curve represents our 4 point constellation with equal priors and M = 1,

and is plotted only to confirm that if the receiver knows the channel statistics, then

constellations with non-uniform priors are the best option.
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M = 1, T = 2, SNR = 7 dB

Our codes, K = 16, GLRT receiver
Borran’s codes, K = 16, ML receiver
Our codes, K = 8, GLRT receiver
Borran’s codes, K = 8, ML receiver

Figure 3.1: Category 1 - spatio-temporal white observation noise: Solid signed curve-our
codes for K = 16, T = 2, M = 1, dashed signed curve-Borran’s codes for K = 16,
T = 2, M = 1, solid circled curve-our codes for K = 8, T = 2, M = 1, dashed circled
curve-Borran’s codes for K = 8, T = 2, M = 1.

Second category: spatially white-temporally colored observation noise

The second category corresponds to spatially white-temporally colored observation

noise, i.e., Υ = IN⊗Σ(ρ) where the vector ρ : T×1 is the first column of the Toeplitz ma-

trix Σ(ρ). To the best of our knowledge, we are not aware of any work that treats the prob-

lem of codebook constructions in the presence of spatially white-temporally colored ob-

servation noise for the low SNR regime. Hence, we compare our codes designed (adapted)

to this specific scenario with codes designed when the presence of spatio-temporal white

observation noise is assumed. The goal here is to demonstrate the increase of performance

obtained by matching the codebook construction to the noise statistics.

• Constellations with equal priors. Figure 3.6 shows the result of the experiment for

T = 8, K = 256, SNR = -10 dB and ρ=[ 1; 0.8; 0.5; 0.15; 0; 0; 0; 0]. The solid and solid-

circled curve represent our codes adapted to the noise statistics for M = 1 and M = 2,

respectively. The dashed and dashed-circled curve represent the performance of our codes

adapted to ρ=[ 1; zeros(7,1) ] for M = 1 and M = 2, respectively. We see that for SER
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T = 8, SNR = 0 dB, K = 256

GLRT receiver, M = 1
GLRT receiver, M = 2
GLRT receiver, M = 3

Figure 3.2: Category 1 - spatio-temporal white observation noise: T = 8, K = 256, SNR
= 0 dB. Solid curve-our codes for M = 1, dashed curve-our codes for M = 2, dash-dotted
curve-our codes for M = 3. All codes use GLRT receiver.

= 5 · 10−3, our M = 1 codes adapted to the noise statistics demonstrate the gain of 5

receive antennas over our M = 2 adapted codes, and 7 receive antennas over M = 1 noise

mismatched codes. Figure 3.7 plots the result of the experiment for T = 8, SNR= -10

dB, K = 67 and ρ= [ 1; 0.85; 0.6; 0.35; 0.10; 0; 0; 0 ]. The solid and solid-circled curve

represent the performance of our codes that match the noise statistics for M = 1 and

M = 2, respectively. The dashed and dashed-circled curve show the performance of our

codes adapted to ρ=[ 1; zeros(7,1) ]. For SER = 2 · 10−3, our M = 1 codes adapted to

the noise statistics demonstrate the gain of 3 receive antennas over our M = 2 adapted

codes, and more than 6 receive antennas over M = 1 noise mismatched codes. Figure 3.8

shows the result of the experiment for T = 8, K = 32, SNR = -10 dB and ρ=[ 1; 0.8;

0.5; 0.15; 0; 0; 0; 0]. The solid and solid-circled curve represent our codes adapted to the

noise statistics for M = 1 and M = 2, respectively. The dashed and dashed-circled curve

represent the performance of our codes adapted to ρ=[ 1; zeros(7,1) ] for M = 1 and

M = 2, respectively. We witness that for SER = 3 ·10−3, our M = 1 codes adapted to the

noise statistics demonstrate the gain of 4 receive antennas over our M = 2 adapted codes,

and more than 8 receive antennas over M = 1 noise mismatched codes. We conclude
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GLRT receiver, M = 1, K = 32
GLRT receiver, M = 2, K = 32
GLRT receiver, M = 1, K = 67
GLRT receiver, M = 2, K = 67

Figure 3.3: Category 1 - spatio-temporal white observation noise: T = 8, SNR = -6 dB.
Solid curve-our codes for M = 1 and K = 32, dashed curve-our codes for M = 1 and
K = 67, solid-circled curve-our codes for M = 2 and K = 32, dashed-circled curve-our
codes for M = 2 and K = 67. All codes use GLRT receiver.

that for sufficiently low SNR one should construct codebook constellations with just one

transmit antenna that match the noise statistics.

• Constellations with unequal priors. Although our primal goal in this work is to ad-

dress the deterministic channel case, figure 3.9 further shows that our codebook designs

for M = 1 are also of interest for MAP receivers that assume knowledge of the channel

statistics. Figure 3.9 plots the result of the experiment for T = 6, SNR= -6 dB and ρ=[ 1;

0.85; 0.6; 0.35; 0.1; 0 ]. The solid, dash-dotted and dashed line represent the performances

of our eight point constellations that match the noise statistics, when the GLRT receiver

is implemented for M = 1, M = 2 and M = 3, respectively. The plus-signed dotted

line represents the performance of our eight point constellation that is constructed for the

spatio-temporal white noise case (Υ = ITN ), when GLRT receiver is implemented and

M = 1. The plus-signed solid curve represent our 17 point constellation that match the

noise statistics and M = 1. The dashed-circled curve shows the performance of our 17

point constellation that is constructed for Υ = ITN and M = 1. Both 17 point constella-

tions are with unequal priors [47] (there is a point in the origin with probability 1
2 , with
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Our codes, K = 16, T = 3, M = 1, GLRT receiver
Borran’s codes, K = 16, T = 3, M = 2, ML receiver
Our codes, K = 32, T = 4, M = 1, GLRT receiver
Borran’s codes, K = 32, T = 4, M = 2, ML receiver

Figure 3.4: Category 1 - spatio-temporal white observation noise: Solid signed curve-our
codes for K = 32, T = 4, M = 1, dashed signed curve-Borran’s codes for K = 32,
T = 4, M = 2, solid circled curve-our codes for K = 16, T = 3, M = 1, dashed circled
curve-Borran’s codes for K = 16, T = 3, M = 2.

the probabilities of the points lying in the sphere being equal), and they use MAP re-

ceiver. The gain that 17 point constellation with unequal priors demonstrate over 8 point

constellation with equal priors can be explained by the fact that the signaling scheme pro-

posed in [47] only resembles optimal, the capacity achieving distribution. The information

theoretic results presented here, over the low SNR non-coherent Rayleigh fading channel

with arbitrary noise correlation structure under an average power constraint, suggest that

the capacity achieving distribution becomes peaky. We see that for SER of 2 · 10−4, we

can save two receive antennas when we compare our 17 point constellation matched to

the noise statistics with the mismatched constellation constructed for Υ = ITN . Also, as

expected, for SER of 2 · 10−4, and M = 1, two receive antennas can be spared when we

compare our eight point constellation matched to the noise statistics with the mismatched

constellation constructed for Υ = ITN .

Next, we consider correlated Rayleigh fading channel case. We treat single beam

constellations, i.e., codes with codewords of the form Xk =
[
xk 0T×(M−1)

]
, and we show

that significant improvements are possible over uncorrelated Rayleigh fading. Figure 3.10
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T = 2, P = 0.5, rate = 1 b/s/Hz

MAP receiver, our 5−point constellation, single beam, rank(Kt) = 1, M = 3
MAP receiver, Srinivasan’s 5−point constellation, single beam, rank(Kt) = 1, M = 3
MAP receiver, our 5−point constellation, single beam, Kt = eye(M), M = 3
MAP receiver, Srinivasan’s 5−point constellation, single beam, Kt = eye(M), M = 3
GLRT receiver, our 4−point constellation, M = 1

Figure 3.5: Category 1 - spatio-temporal white observation noise: T = 2, P = 0.5, rate =
1 b/s/Hz, Kr = IN . Correlated Rayleigh fading: solid curve-our 5 point single beam con-
stellation with unequal priors for M = 3 and rank(K t)=1, solid circled curve-Srinivasan’s
5 point single beam constellation with unequal priors [47] for M = 3 and rank(K t)=1.
Uncorrelated Rayleigh fading: dashed curve-our 5 point single beam constellation with
unequal priors for M = 3 and Kt = IM , dashed circled curve-Srinivasan’s 5 point single
beam constellation with unequal priors for M = 3 and K t = IM . Dash-dotted curve-our
4 point constellation for M = 1 with equal priors. Our and Srinivasan’s 5 point constel-
lations use maximum a-posteriori (MAP) receiver, our 4 point constellation uses GLRT
receiver.

plots the result of the experiment. We considered the case where the coherence interval

T = 6, P = 0.1, Kr = IN , ρ=[ 1; 0.85; 0.6; 0.35; 0.1; 0 ] and rate = 0.5 bps/Hz,

with P = E[tr
(
XH

k Xk

)
]. The correlated Rayleigh fading case where K t = K̂t with K̂t

defined in section 3.2 is assumed (again, the notation rank(K t)=1 implies that the case

when Kt = K̂t is treated). The dotted plus-signed and dash-dotted curve represent our

17 point single beam constellation with unequal priors [47], and our 8 point single beam

constellation with equal priors, respectively. Then, we investigate the case of uncorrelated

Rayleigh fading channel, i.e., Kt = IM where M = 3. The dashed curve represents our

17 point single beam constellation with unequal priors and the solid curve represents our

8 point single beam constellation with equal priors. For SER = 10−2, our 8 and 17 point

codes in the correlated regime perform substantially better than in uncorrelated regime
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(more than 10 receive antennas can be spared if one decides to make the transmit antennas

fully correlated). This is in concordance with the results presented in section 3.2 where

it has been proved that channel correlation can actually improve the performance of the

channel in arbitrary noise environment. We witness the effect of our 17 point codes losing

their superiority over 8 point codes as the number of receive antennas increases. This

can be justified by the fact that the signaling scheme proposed in [47] only resembles the

optimal, capacity achieving distribution.
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T = 8, K = 256, SNR = −10 dB, ρ = [ 1; 0.8; 0.5; 0.15; zeros(4,1) ]

GLRT receiver, M = 1, codes adapted to ρ = [ 1; 0.8; 0.5; 0.15; zeros(4,1) ]
GLRT receiver, M = 2, codes adapted to ρ = [ 1; 0.8; 0.5; 0.15; zeros(4,1) ]
GLRT receiver, M = 1, codes adapted to ρ = [ 1; zeros(7,1) ]
GLRT receiver, M = 2, codes adapted to ρ = [ 1; zeros(7,1) ]

Figure 3.6: Category 2 - spatially white - temporally colored: T = 8, K = 256, SNR =
-10 dB, ρ=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. Solid curve-our codes for M = 1 adapted to ρ=[
1; 0.8; 0.5; 0.15; zeros(4,1) ], solid-circled curve-our codes for M = 2 adapted to ρ=[ 1;
0.8; 0.5; 0.15; zeros(4,1) ], dashed curve-our codes for M = 1 adapted to ρ=[ 1; zeros(7,1)
], dashed-circled curve-our codes for M = 2 adapted to ρ=[ 1; zeros(7,1) ]. All codes use
GLRT receiver.

Third category: E = s αT + Etemp

We considered the case where the noise matrix is of the form E = s αT + Etemp. This

models an interfering source s (with known covariance matrix Υs) where the complex

vector α is the known channel attenuation between each receive antenna and the interfering

source. The matrix Etemp has a noise covariance matrix belonging to the second category.

Thus, the noise covariance matrix is given by Υ = ααH ⊗Υs + IN ⊗ Σ(ρ). As in the
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T = 8, K = 67, SNR = −10 dB, ρ = [ 1; 0.85; 0.6; 0.35; 0.10; zeros(3,1) ]

GLRT receiver, M = 1, codes adapted to ρ = [ 1; 0.85; 0.6; 0.35; 0.10; zeros(3,1) ]
GLRT receiver, M = 2, codes adapted to ρ = [ 1; 0.85; 0.6; 0.35; 0.10; zeros(3,1) ]
GLRT receiver, M = 1, codes adapted to ρ = [ 1; zeros(7,1) ]
GLRT receiver, M = 2, codes adapted to ρ = [ 1; zeros(7,1) ]

Figure 3.7: Category 2 - spatially white - temporally colored: T = 8, K = 67, SNR = -10
dB, ρ=[ 1; 0.85; 0.6; 0.35; 0.1; zeros(3,1) ]. Solid curve-our codes for M = 1 adapted to
ρ=[ 1; 0.85; 0.6; 0.35; 0.1; zeros(3,1) ], solid-circled curve-our codes for M = 2 adapted to
ρ=[ 1; 0.85; 0.6; 0.35; 0.1; zeros(3,1) ], dashed curve-our codes for M = 1 adapted to ρ=[
1; zeros(7,1) ], dashed-circled curve-our codes for M = 2 adapted to ρ=[ 1; zeros(7,1) ].
All codes use GLRT receiver.

second category, we shall compare our codes adapted to this specific scenario with codes

designed for spatio-temporal white observation noise. We demonstrate the increase of

performance obtained by matching the codebook construction to the noise statistics.

• Constellations with equal priors. Figure 3.11 plots the result of the experiment for

T = 8, N = 2, K = 32, s=[1;0.7;0.4;0.15;0;0;0;0], ρ = [1;0.8;0.5;0.15;0;0;0;0] and α =

[-1.146 + 1.189i;1.191- 0.038i]. For SER = 10−2 we experience the gain of 3 dB when we

compare the one transmit antenna constellation, constructed taking into account the noise

statistics, with the one transmit constellation constructed for Υ = ITN . The conclusion

we draw here, as before, is that for sufficiently low SNR one should construct codebook

constellations with just one transmit antenna that match the noise statistics. Also, as

expected, the M = 2 codebook construction, adapted to noise statistics, outperforms the

one antenna constellation as SNR increases. Figure 3.12 shows the result of the experiment

for T = 4, N = 2, K = 16, s = [1;0.7;0.4;0], ρ = [1;0.8;0.5;0] and α = [-0.433 + 0.125i;-

1.665 + 0.288i]. The solid (dashed) curve represent our codes for M = 2 (M = 1) adapted
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GLRT receiver, M = 1, codes adapted to ρ = [ 1; 0.8; 0.5; 0.15; zeros(4,1) ]
GLRT receiver, M = 2, codes adapted to ρ = [ 1; 0.8; 0.5; 0.15; zeros(4,1) ]
GLRT receiver, M = 1, codes adapted to ρ = [ 1; zeros(7,1) ]
GLRT receiver, M = 2, codes adapted to ρ = [ 1; zeros(7,1) ]

Figure 3.8: Category 2 - spatially white - temporally colored: T = 8, K = 32, SNR = -10
dB, ρ=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. Solid curve-our codes for M = 1 adapted to ρ=[ 1;
0.8; 0.5; 0.15; zeros(4,1) ], solid-circled curve-our codes for M = 2 adapted to ρ=[ 1; 0.8;
0.5; 0.15; zeros(4,1) ], dashed curve-our codes for M = 1 adapted to ρ=[ 1; zeros(7,1) ],
dashed-circled curve-our codes for M = 2 adapted to ρ=[ 1; zeros(7,1) ]. All codes use
GLRT receiver.

to colored noise, respectively, and the dash-dotted curve represents our codes for M = 1

adapted to spatio-temporal white observation noise. For SER = 10−2 we witness the gain

of 1.5 dB when we compare the one transmit antenna constellation constructed taking into

account the noise statistics, with the one transmit constellation constructed for Υ = ITN .

Again, as SNR increases, the M = 2 codebook construction, adapted to the noise statistics,

outperforms the one antenna constellation.

The foregoing results for the cases when the noise matrix is of the form of the second

and third category give rise to the following conclusion:

For a GLRT receiver, at sufficiently low SNR, one should construct codebook constel-

lations with just one transmit antenna, but which are adapted to the noise statistics.

• Constellations with unequal priors. As for the case when the noise covariance matrix

belongs to the second category, we demonstrate that our codebook designs for M = 1 are

of interest for MAP receivers that assume knowledge of the channel statistics. Figure 3.13

plots the result of the experiment for T = 4, M = 1, N = 2, s = [1;0.7;0.4;0], ρ =
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GLRT receiver, K=8, M=1, codes adapted to ρ = [ 1; 0.85; 0.6; 0.35; 0.1; 0 ]
GLRT receiver, K=8, M=2, codes adapted to ρ = [ 1; 0.85; 0.6; 0.35; 0.1; 0 ]
GLRT receiver, K=8, M=3, codes adapted to ρ = [ 1; 0.85; 0.6; 0.35; 0.1; 0 ]
MAP receiver, K=17, M=1, codes adapted to ρ = [ 1; 0.85; 0.6; 0.35; 0.1; 0 ]
GLRT receiver, K=8, M=1, codes adapted to ρ = [ 1; zeros(5,1) ]
MAP receiver, K=17, M=1, codes adapted to ρ = [ 1; zeros( 5,1) ]

Figure 3.9: Category 2 - spatially white - temporally colored: T = 6, SNR = -6 dB, ρ=[
1; 0.85; 0.6; 0.35; 0.1; 0 ]. Solid, dash-dotted and dashed curve-our 8 point constellations
that match the noise statistics for M = 1, M = 2 and M = 3, respectively. Plus-signed
dotted curve-our 8 point constellation that is constructed for the spatio-temporal white
noise case (Υ = ITN ) and M = 1. Plus-signed solid curve-our 17 point constellation that
match the noise statistics and M = 1. Dashed-circled curve-our 17 point constellation that
is constructed for Υ = ITN and M = 1. Our 8 point constellations use GLRT receiver,
our 17 point constellations use MAP receiver.

[1;0.8;0.5;0], α = [-0.4326 + 0.1253i;-1.6656 + 0.2877i]. Solid-circled curve represents our

17 point codes with unequal priors [47] adapted to colored noise, and use MAP receiver.

The plus-signed solid curve represents our 8 point codes with equal priors adapted to

colored noise, and use ML receiver. The solid curve represents our 8 point codes with

equal priors adapted to colored noise, and use GLRT receiver. The dashed-circled curve

represents our 17 point codes with unequal priors adapted to white noise, and use MAP

receiver. The plus-signed dashed curve represents our 8 point codes with equal priors

adapted to white noise, and use ML receiver. The dashed curve represents our 8 point

codes with equal priors adapted to white noise, and use GLRT receiver. For SNR from

-5 dB to 5 dB, our one transmit antenna constellations adapted to the noise statistics

demonstrate the gain of 2 dB when compared to the codes designed for the white noise

case. For SER = 10−2, our 17 point codes demonstrate the gain of 1 dB when compared to



3.4 Conclusions 69

0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

P = 0.1, T = 6, rate = 0.5 b/s/Hz, ρ = [ 1; 0.85; 0.6; 0.35; 0.1; 0 ], MAP receiver

N (Number of receive antennas)

S
E

R

M = 3, single beam, 8−point codes adapted to ρ, equal priors, Kt = eye(M)
M = 3, single beam, 17−point codes adapted to ρ, unequal priors, Kt = eye(M)
M = 3, single beam, 8−point codes adapted to ρ, equal priors, rank(Kt) = 1
M = 3, single beam, 17−point codes adapted to ρ, unequal priors, rank(Kt) = 1

Figure 3.10: Category 2 - spatially white - temporally colored: Kr = IN . Correlated
Rayleigh fading: dotted plus-signed curve-our 17 point single beam constellation with
unequal priors for M = 3 and rank(K t)=1, dash-dotted curve-our 8 point single beam
constellation with equal priors for M = 3 and rank(K t)=1. Uncorrelated Rayleigh fading:
dashed curve-our 17 point single beam constellation with unequal priors for M = 3 and
Kt = IM , solid curve-our 8 point single beam constellation with equal priors for M = 3
and Kt = IM . All codes use MAP receiver.

the 8 point codes, which is in concordance with the theoretic-information results presented

in this chapter. Also, we see that our GLRT receiver performs sub-optimally w.r.t. the

ML receiver.

3.4 Conclusions

We have studied the MIMO channel in the low SNR regime from two perspectives: capacity

and PEP analysis. The novel aspect is that we allow the Gaussian observation noise to have

an arbitrary correlation structure. From the capacity analysis perspective for correlated

Rayleigh fading channel, we have shown that, by maximizing the mutual information for

the on-off and Gaussian signallings over the system’s parameters (antenna correlation),

the transmit (receive) antennas should be made as correlated as possible. Further, we

have presented the PEP analysis for the low SNR deterministic channel setup and have

shown how the noise statistics could be taken into account when constructing codebook
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T=8,N=2,K=32,s=[1;0.7;0.4;0.15;zeros(4,1)],ρ=[1;0.8;0.5;0.15;zeros(4,1)],α = [−1.146+1.189i;1.191−0.038i]

M = 2, codes adapted to colored noise, GLRT receiver
M = 1, codes adapted to colored noise, GLRT receiver
M = 1, codes adapted to white noise, GLRT receiver

Figure 3.11: Category 3 - Solid curve-our codes for M = 2 adapted to colored noise,
dashed curve-our codes for M = 1 adapted to colored noise, dash-dotted curve-our codes
for M = 1 adapted to white noise. All codes use GLRT receiver.

constellations. We argued that one should construct codebooks for just one transmit

antenna that match the noise statistics.
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Figure 3.12: Category 3 - Solid curve-our codes for M = 2 adapted to colored noise,
dashed curve-our codes for M = 1 adapted to colored noise, dash-dotted curve-our codes
for M = 1 adapted to white noise. All codes use GLRT receiver.
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K = 17, codes adapted to colored noise, MAP receiver
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Figure 3.13: Category 3 - Solid-circled curve-our 17 point codes with unequal priors [47]
adapted to colored noise, plus-signed solid curve-our 8 point codes with equal priors
adapted to colored noise, solid curve-our 8 point codes with equal priors adapted to col-
ored noise, dashed-circled curve-our 17 point codes with unequal priors adapted to white
noise, plus-signed dashed curve-our 8 point codes with equal priors adapted to white noise,
dashed curve-our 8 point codes with equal priors adapted to white noise. Circled, signed,
and 8-point code curves use MAP, ML and GLRT receivers, respectively.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

The research conducted in this thesis can be divided in two parts: high and low SNR

regime.

In Chapter 2, we addressed the problem of space-time codebook design for non-coherent

communications in multiple-antenna wireless systems and high SNR regime. In contrast

with other approaches, the channel matrix was modeled as an unknown deterministic

parameter at both the receiver and the transmitter, and the Gaussian observation noise

was allowed to have an arbitrary correlation structure, known by the transmitter and

the receiver. In order to handle the unknown deterministic space-time channel, a GLRT

receiver was considered. A new methodology for space-time codebook design under this

non-coherent setup was proposed. This optimizes the probability of error of the GLRT

receiver’s detector in the high SNR regime, thus solving a high-dimensional nonlinear non-

smooth optimization problem in a two-step approach: (i) firstly, a convex SDP relaxation

of the codebook design problem yields a rough estimate of the optimal codebook; (ii) this

is then refined through a geodesic descent optimization algorithm that exploits the Rie-

mannian geometry imposed by the power constraints on the space-time codewords. The

results obtained through computer simulations illustrate the advantages of our method.

For the specific case of spatio-temporal white observation noise, our codebook construc-

tions replicate the performance of state-of-art known solutions. The main point here is

that our methodology permits to extend the codebook construction to any given corre-

lated noise environment. The simulation results show the good performance of these new
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designed codes in colored noise setups.

In Chapter 3, the non-coherent single-user MIMO channel in the low SNR regime

was investigated from two viewpoints: capacity and probability of error analysis. The

novelty in both viewpoints is that an arbitrary correlation structure is allowed for the

Gaussian observation noise. First, we looked at the capacity of the spatially correlated

Rayleigh fading channel. We investigated the impact of channel and noise correlation

on the mutual information for the on-off and Gaussian signaling schemes. Our results

establish that, in the low SNR regime, mutual information is maximized when the transmit

antennas are fully correlated (the same holds for the receive array). Then, we considered

the deterministic channel setup and perform a PEP analysis for the GLRT receiver. This

leads to a codebook design criterion on which we base the construction of new space-time

constellations. Their performance were assessed by computer simulations and we argued

that one should construct codebooks for just one transmit antenna that match the noise

statistics. As a byproduct, we showed that our codebooks are also of interest for Bayesian

receivers which decode constellations with non-uniform priors.

4.2 Future Work

There are number of possibilities for future research. In the following, some research

directions are mentioned:

1. An important outcome of this thesis is the conclusion that is worthwhile to treat the

codebook design problem in the case when the Gaussian observation noise is allowed

to have an arbitrary correlation structure, since we have seen that if the perfect

knowledge of the noise correlation is available, significant improvements over uni-

tary constellations in general correlated noise environments are possible. Potential

next questions to consider are the following. The designed codebooks do not possess

any structure that could alleviate a reduction in the size of the memory needed to

store them. This is especially important in the high SNR regime where, due to large

capacity, one should construct high-rate constellations. (In the low-medium SNR

regime, constellations with relatively small cardinalities suffice since the channel ca-
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pacities are also relatively small). In practice, the storage of a high-rate unstructured

codebook becomes infeasible because the size of the codebook increases exponentially

with the data rate. Hence, the design of structured constellations, which will con-

sequently allow tractable encoding, may be a topic for future research. Likewise,

there is a concern w.r.t. the decoding complexity. The decoding complexity of the

codebook constructions is, unfortunately, exponential in the data rate. Since, in

this work, the decoding complexity did not represent a constraint, the design of

non-coherent STC with reduced complexity algorithms remains an important open

problem that deserves further investigation.

2. Throughout the thesis, the noise covariance matrix is assumed to be perfectly known

at the site where the codebook design is performed. An assessment of the sensitivity

of the codebook design to mismatch between the noise covariance assumed in the

design and the noise covariance encountered in practice could be a good topic for

future work.

3. The research presented in the thesis has been conducted on channels that are as-

sumed to be flat fading. This can be considered true for low symbol rate or narrow

bandwidth communications systems. For higher symbol rate transmissions, fading

is frequency selective and so poses a greater challenge given limited link budget and

severity of wireless environment. We plan to devote our attention to orthogonal

frequency division multiplexing (OFDM) which has emerged as a very promising

technique to provide high data-rate transmission over broadband MIMO channels.

Its relevance is testified by being chosen as the standard interface for digital audio

broadcasting (DAB), terrestrial digital video broadcasting (DVB), wireless local area

networks (WLANs), and wireless metropolitan area networks (MANs). One of the

key advantages of OFDM over traditional single-carrier modulation and CDMA is

its low computational complexity in practical implementations. MIMO-OFDM is

therefore a particularly promising candidate for future fourth-generation (4G) wire-

less networks. An interesting research direction is the design of optimum modulation
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and coding schemes for MIMO-OFDM in both high and low SNR regime. We are

particularly interested in the non-coherent case. Our goal is to find modulation and

coding schemes for MIMO-OFDM that exploit the available spatial and frequency

diversity, being robust for a wide range of realistic channels.

4. In Chapter 2, new packings in the complex projective space have been presented. In

some cases we were able to construct optimal packings that meet the Rankin bound

(so-called ETFs). Equivalently, an ETF can be seen as a sequence of K unit vectors

in a T -dimensional Euclidian space whose pairwise absolute inner products meet the

well-known Welch lower bound [65]. ETFs have applications in communications,

coding theory and sparse approximation [78], [79]. As an example, in [80] it has

been shown that an ETF provides an error correcting code that is maximally robust

against two erasures. ETFs also play an important role in multiuser communication

systems. It is known that ETFs achieve the capacity of a Gaussian channel and

satisfy an interference invariance property [81]. Numerical evidence indicates that

complex ETFs do not exist for most pairs (T, K). An interesting open question is

to find conditions on (T, K) that rule out the existence of general complex ETFs.

In the other direction, it seems that a maximal complex ETF exists for each natural

number T (in this specific case K = T 2). Resolving this conjecture represents a

challenging topic for future work.

5. In Chapter 3, section 3.2, the capacity analysis of MIMO fading channels in the

low SNR regime for the case when the channel correlation matrix is modeled by

the Kronecker product of the transmit and receive correlation matrix was presented.

The generalization of the analysis to the case when the channel covariance matrix

has an arbitrary correlation structure represents a possible topic for future work.

Moreover, an extension of the analysis presented in Chapter 3 to the cases when

peak and fourth-order moment signal constraints are imposed in order to determine

what signaling should be applied to the input, how many transmit antennas should

be employed and what is the optimal value of the channel covariance matrix is an
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interesting topic for future research.
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Appendix A

Pairwise Error Probability for Fast

Fading in the High SNR Regime

In this appendix, we derive the expression for the asymptotic (high SNR regime) pairwise

error probability for fast fading presented in (2.8).

If Xi is transmitted, then the probability that the receiver decides in favor of X j is:

PXi→Xj
= P (zH

i Υ−1zi > zH
j Υ−1zj) (A.1)

where for k ∈ {i, j}

zk = y − X̃kĝk,

X̃k = IN ⊗Xk, X k = Υ− 1

2 X̃k

y = vec(Y ) = X̃ig + e, e = vec(E),

and

ĝk = (X H
k X k)

−1X H
k Υ− 1

2 y

is the ML estimate of the channel when Xk is transmitted. The unknown realization of

the channel is denoted by g = vec(HH).

Let Si = (X H
i X i)

−1X H
i Υ− 1

2 . Thus,

zi = y − X̃iĝi

= (ITN − X̃iSi)︸ ︷︷ ︸
P i

(X̃ig + e)

= P ie. (A.2)
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Similarly, it can be shown that

zj = ∆g + P je (A.3)

where P j = ITN − X̃jSj and ∆ = P jX̃i. Hence, substituting (A.2) and (A.3) in (A.1)

we have

PXi→Xj
= P (eH(P H

i Υ−1P i − P H
j Υ−1P j︸ ︷︷ ︸

T

)e−

− eHP H
j Υ−1∆g − gH∆HΥ−1P je > gH∆HΥ−1∆g︸ ︷︷ ︸

λ

). (A.4)

Unfortunately, the expression (A.4) cannot be simplified analytically. We shall an-

alyze (A.4) in the high SNR regime where the linear term of e is dominant, i.e., the

quadratic term of e is negligible. In the following, we explain better the preceding claim.

First note that SNR and Υ are linked by the formula

SNR =
E
[∥∥XkH

H
∥∥2
]

E
[
‖E‖2

] =
tr
(
HHHE

[
XH

k Xk

])

tr (Υ)
.

In the above equation, the channel was assumed deterministic (we used assumption A1.).

Moreover, once the codebook is fixed, we have E
[
XH

k Xk

]
= R for a certain positive-

definite matrix R. Thus,

SNR =
κ

tr (Υ)
, κ := tr

(
HHHR

)
,

and saying that SNR → +∞ corresponds to saying that Υ → 0. Our argument is that

when SNR → +∞ the linear term

z = −eHP H
j Υ−1∆g − gH∆HΥ−1P je

dominates (in the mean square sense) the quadratic term eT Te in (A.4).

As the random vector e ∼ CN (0,Υ) and other quantities in (A.4), e.g., P j , ∆, depend

on Υ we admit that our claim is not readily acceptable. However, if we work out the

dependencies, it can be validated. We propose the following exercise. Let Υ = Υ(t) = tΥ0

for some (fixed) Hermitian positive definite matrix Υ0 and t > 0. Taking t ↓ 0 corresponds

to making SNR → +∞. Remark that

e
d
= Υ1/2z
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where
d
= means equality in distribution and z ∼ CN (0, ITN ). Now, if we unwind the

definitions of P j , etc, and go through tedious but straightforward computations, it can be

seen that (A.4) boils down to

PXi→Xj
= P

(
zHCz − 1√

t

(
zHc + cHz

)
>

1

t
η

)
(A.5)

where C, c and η denote constants with respect to t (they do not depend on t) which are

not explicitly given here. Thus, the random variables

zHCz and zHc + cHz

have fixed power (not depending on t, i.e., SNR). Since t > 0 we can rewrite (A.5) as

PXi→Xj
= P

(
tzHCz −

√
t
(
zHc + cHz

)
> η

)
. (A.6)

When t ↓ 0 (SNR → +∞) we have t �
√

t and that’s how we justify the approximation

PXi→Xj
≈ P

(
−
√

t
(
zHc + cHz

)
> η

)
(A.7)

which corresponds to (A.6) above. As a side remark, note that (A.7) confirms that

PXi→Xj
→ 0 as t ↓ 0, thanks to the fact that η > 0.

The above argument is not new. We were inspired by similar manipulations from the

book [19], see pp. 56.

Therefore,

PXi→Xj
≈ P (−eHP H

j Υ−1∆g − gH∆HΥ−1P je︸ ︷︷ ︸
z

> λ). (A.8)

We see that z is a real Gaussian variable with zero mean (because E[e] = 0) and

unknown variance σ2, i.e., z
iid∼ N

(
0, σ2

)
, which will be calculated in sequel:

σ2 = E[z2] = E[
(
eHP H

j Υ−1∆g + gH∆HΥ−1P je
)2

]

= E[gH∆HΥ−1P jeeHP H
j Υ−1∆g + eHP H

j Υ−1∆ggH∆HΥ−1P je].

Continuing with analysis,

E[eHP H
j Υ−1∆ggH∆HΥ−1P je] = tr

(
E[eeHP H

j Υ−1∆ggH∆HΥ−1P j ]
)

= gH∆HΥ−1P jΥP H
j Υ−1∆g
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which implies

σ2 = 2gH∆HΥ−1P jΥP H
j Υ−1∆g

= 2gHX̃i
H

P H
j Υ−1P jΥP H

j Υ−1P j︸ ︷︷ ︸
R

X̃ig. (A.9)

It is known that, if z∼N
(
0, σ2

)
, then

P (z > λ) = Q
(

λ

σ

)
(A.10)

where Q(x) =
∫ +∞
x

1√
2π

e−
t2

2 dt. The matrix R in (A.9) can be simplified and it can be

easily shown that

R = P H
j Υ−1P j = Υ− 1

2 Π⊥
j Υ− 1

2 . (A.11)

where Π⊥
j = ITN − X j

(
X H

j X j

)−1
X H

j is the orthogonal projector onto the orthogonal

complement of the column space of X j . Using (A.11) and substituting it in (A.9) we have

σ2 = 2gHX̃i
H

P H
j Υ−1P jX̃ig = 2gH∆HΥ−1∆g

which implies

σ =

√
2gH∆HΥ−1∆g . (A.12)

Equations (A.4), (A.8), (A.10) and (A.12) result in

PXi→Xj
≈ Q

(
λ

σ

)
= Q

(
gH∆HΥ−1∆g√
2gH∆HΥ−1∆g

)
= Q

(
1√
2

√
gH∆HΥ−1∆g

)
.

(A.13)

Let Lij = ∆HΥ−1∆. Thus,

Lij = ∆HΥ−1∆ = X̃i
H

P H
j Υ−1P jX̃i. (A.14)

Hence, due to (A.11) and (A.14) it holds

Lij = X̃i
H
Υ− 1

2 Π⊥
j Υ− 1

2 X̃i = X H
i Π⊥

j X i. (A.15)

Equations (A.13), (A.14) and (A.15) result in (2.8). This completes the proof.



Appendix B

Optimization Problem

In this section, we prove that the equivalent formulation of the optimization problem (2.36)

is given by (2.37).

The optimization problem in (2.36) can be rewritten in the following way

(X∗

k
, t∗) = arg max

λmin(Lmk) ≥ t,m = 1, ..., k − 1 (A)

λmin(Lkm) ≥ t,m = 1, ..., k − 1 (B)

tr(XH

k
Xk) = 1,

t (B.1)

where

Lij = X H
i Π⊥

j X i, Π⊥
j = ITN −X j(X

H
j X j)

−1X H
j ,

X i = Υ− 1

2 X̃i and X̃i = IN ⊗X i.

Approach: Define Xk = vec(Xk)vecH(Xk). We are going to show that both (A) and

(B) can be written as LMI’s with respect to Xk, vec(Xk) and t.

(A) Note that

λmin(Lmk) ≥ t ⇔ Lmk − tIMN � 0.

Since the matrix Lmk− tIMN = X H
mX m−X H

mX k(X
H
k X k)

−1X H
k X m− tIMN is the Schur

complement [84] of X H
k X k in

[
X H

k X k X H
k X m

X H
mX k X H

mX m − tIMN

]

we have the following equivalence (we assumed that Xk is of full column rank):

λmin(Lmk) ≥ t ⇔
[
X H

k X k X H
k X m

X H
mX k X H

mX m − tIMN

]
� 0. (B.2)
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• Let [M ]i,j denote the ij-th element of the matrix M and ei represent the i-th column

of the identity matrix IMN . Then,

[X H
k X k]i,j = eH

i X H
k X kej = eH

i X̃k
H
Υ−1X̃kej = tr

(
Υ−1X̃kej

(
X̃kei

)H
)

(B.3)

As X̃k = IN ⊗ Xk, there exists matrix K of size TMN 2 × TM such that vec(X̃k) =

K vec(Xk), see [90]. Hence,

X̃kej = vec
(
X̃kej

)
=
(
eT

j ⊗ ITN

)
vec(X̃k) = (eT

j ⊗ ITN )Kvec(Xk). (B.4)

Substituting (B.4) in (B.3) we have

[X H
k X k]i,j = tr

(
Υ−1(eT

j ⊗ ITN )Kvec(Xk)
(
(eT

i ⊗ ITN )Kvec(Xk)
)H)

= tr (Bij (ITN ) Xk) , (B.5)

where we define Bij(Φ) = KH(ei ⊗ ITN )Υ− 1

2 ΦΥ− 1

2 (eT
j ⊗ ITN )K.

• Similarly,

[X H
mX k]i,j = eH

i X H
mX kej = eH

i X H
mΥ− 1

2 X̃kej = eH
i X H

mΥ− 1

2 (eT
j ⊗ ITN )K vec(Xk).

(B.6)

(B) By repeating the analysis for the case (A) we have:

[Lkm]i,j = eH
i X H

k Π⊥
mX kej = eH

i X̃k
H
Υ− 1

2 Π⊥
mΥ− 1

2 X̃kej

= tr

(
Υ− 1

2 Π⊥
mΥ− 1

2 X̃kej

(
X̃kei

)H
)

.

Using (B.4) we obtain

[Lkm]i,j = tr
(
KH(ei ⊗ ITN )Υ− 1

2 Π⊥
mΥ− 1

2 (eT
j ⊗ ITN )Kvec(Xk)vecH(Xk)

)
.

Hence,

[Lkm]i,j = tr
(
Bij(Π

⊥
m) Xk

)
. (B.7)

Combining (B.2), (B.3), (B.5), (B.6) and (B.7) we conclude that both (A) and (B) can

be written as LMI’s with respect to the variables Xk, vec(Xk) and t. Consequently, the

optimization problems (2.36) and (2.37) are equivalent. This concludes the proof.
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Calculating Gradients

In this section, we calculate gradient to be used in (2.42). Although the function fij

assumes complex valued entries, that is

fij : C
T×M × ...× C

T×M
︸ ︷︷ ︸

K

→ R fij(X1, X2, ..., XK) = λmin(Lij)

where

Lij = X H
i Π⊥

j X i,Π
⊥
j = ITN −X j(X

H
j X j)

−1X H
j , X i = Υ− 1

2 X̃i

and X̃i = IN ⊗X i, we shall treat fij as a function of the real and imaginary components

of X1, X2, ..., XK , i.e.

fij : R
T×M × ...RT×M
︸ ︷︷ ︸

2K

→ R,

fij (<{X1} ,={X1} ,<{X2} ,={X2} , ...,<{XK} ,={XK}) = λmin(Lij).

Let λmin be a simple eigenvalue of the Hermitian matrix Lij(C0), and let u0 be an

associated unit-norm eigenvector, so that Lij(C0)u0 = λmin (Lij(C0)) u0. The differential

dfij , computed at the point C0, is given by, pp. 162 in [90]

dfij = uH
0 dLiju0.

where dLij denotes the differential of the map C 7→ Lij(C) computed at the point C0.

Define Kj = Υ− 1

2 Π⊥
j Υ− 1

2 . Hence,

dLij = (dX̃i)
HKjX̃i + X̃i

H
KjdX̃i + X̃i

H
dKjX̃i

85



86 Calculating Gradients

and

dfij = uH
0 dLiju0 = uH

0

(
(dX̃i)

HKjX̃i + X̃i
H

KjdX̃i + X̃i
H

dKjX̃i

)
u0

= <





tr


(dX̃i)

H 2KjX̃iu0u
H
0︸ ︷︷ ︸

Ci








+ uH
0 X̃i

H
dKjX̃iu0. (C.1)

Continuing with analysis,

dKj = −Υ− 1

2

(
dX j(X

H
j X j)

−1X H
j + X j(X

H
j X j)

−1(dX j)
H
)
Υ− 1

2

︸ ︷︷ ︸
Kj1

−

−Υ− 1

2 X jd
((

X H
j X j

)−1
)

X H
j Υ− 1

2

︸ ︷︷ ︸
Kj2

. (C.2)

Using the equality d
(
A−1

)
= −A−1dAA−1 [90], we can write

d
((

X H
j X j

)−1
)

= −
(
X H

j X j

)−1
(
(dX j)

H
X j + X H

j dX j

) (
X H

j X j

)−1
.

(C.3)

Substituting (C.3) and (C.2) in (C.1) we get

uH
0 X̃i

H
dKjX̃iu0 = uH

0 X̃i
H

Kj1X̃iu0 + uH
0 X̃i

H
Kj2X̃iu0

with

uH
0 X̃i

H
Kj1X̃iu0 = −2<

{
uH

0 X H
i X j

(
X H

j X j

)−1
(dX j)

H
X iu0

}

= <





tr



(
dX̃j

)H
−2Υ− 1

2 X iu0u
H
0 X H

i X j

(
X H

j X j

)−1

︸ ︷︷ ︸
Cj1








and

uH
0 X̃i

H
Kj2X̃iu0 = 2<

{
uH

0 X H
i X j

(
X H

j X j

)−1
(dX j)

H
X j

(
X H

j X j

)−1
X H

j X iu0

}

= <
{

tr

((
dX̃j

)H
Cj2

)}

where Cj2 = 2Υ− 1

2 X j

(
X H

j X j

)−1
X H

j X iu0u
H
0 X H

i X j

(
X H

j X j

)−1
. Define Cj = Cj1 +

Cj2. Thus,

dfij = <
{

tr
(
(dX̃i)

HCi

)}
+ <

{
tr
(
(dX̃j)

HCj

)}
.
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Note that dX̃i = IN ⊗ dX i, then

dfij = <
{
tr
(
(dX i)

HCi

)}
+ <

{
tr
(
(dXj)

HCj

)}

where Ci =
∑N

k=1 Cik and Cik is a diagonal block of the matrix C i of size T ×M ., i.e.,

Ci =




Ci1 ∗ ... ∗
∗ Ci2 ... ∗
∗ ∗ . . . ∗
∗ ∗ ∗ CiN


 .

Remark that the matrix C i is of size TN ×MN . Now, it is straightforward to identify

the gradient. Hence, the gradient is given by

∇fij(x) =




0(i−1)c×1

<
{
vec(Ci)

}

=
{
vec(Ci)

}

0(j−i−1)c×1

<
{
vec(Cj)

}

=
{
vec(Cj)

}

0(K−j)c×1




2KTM×1

for 1 ≤ i 6= j ≤ K and c = 2TM , where x =




<{vec(X1)}
= {vec(X1)}

...
<{vec(XK)}
= {vec(XK)}




.
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Appendix D

Mutual Information for On-Off

Signaling in the Low SNR Regime

In this section, we show that the expression for the mutual information between Y and

X up to first order in ρ, for on-off signaling and sufficiently low SNR, is given by (3.2).

Since

I(Y ; X) = h(Y )− h(Y |X),

we shall find the mutual information by computing the conditional entropy of Y given X,

i.e., h(Y |X), and in sequel, the entropy of Y , i.e., h(Y ).

• We start by computing h(Y |X). Given X, y = vec(Y ) is a zero-mean complex

Gaussian with covariance E[yyH |X] = Kr ⊗ ρ
M XKtX

H + Υ and the conditional pdf of

Y given X is described by

p(Y |X) =
exp{−yH

(
Kr ⊗ ρ

M XKtX
H + Υ

)−1
y}

πTNdet
(
Kr ⊗ ρ

M XKtX
H + Υ

) . (D.1)

From (D.1) it is possible to compute the conditional entropy h(Y |X). By definition (we

use logarithms to base e):
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h(Y |X) = −Ep(Y ,X)[log p(Y |X)]

= NT log π + Ep(Y ,X)[y
H
(
Kr ⊗

ρ

M
XKtX

H + Υ
)−1

y] + log det(Υ) +

+Ep(Y ,X)[log det
(
ITN +

ρ

M
Z
)
]

(
where Z = Υ− 1

2

(
Kr ⊗XKtX

H
)
Υ− 1

2

)
(D.2)

= NT log π + log det(Υ) + ρεlog det

(
ITN +

ρ1−ε

M
Zon

)
+

+Ep(X)[Ep(Y |X)[tr

(
yyH

(
Kr ⊗

ρ

M
XKtX

H + Υ
)−1

)
]]

(
where Zon = Υ− 1

2

(
Kr ⊗XonKtX

H
on

)
Υ− 1

2

)

≈ NT log π + log det(Υ) + Ep(X)[tr (INT )]] + ρεlog
r∏

i=1

ρ1−ε

M
λi

as ρ1−ε is large for ε > 1 and ρ small,

λ′is are the positive eigenvalues of Zon and r is its rank

= NT log πe + log det(Υ) + o(ρ), since lim
ρ→0+

ρεlog ρ = 0 for ε > 1. (D.3)

• Next, we compute h(Y ). We have

p(Y ) = ρε
exp{−yH

(
Kr ⊗ ρ1−ε

M XonKtX
H
on + Υ

)−1
y}

πTNdet
(
Kr ⊗ ρ1−ε

M XonKtX
H
on + Υ

) + (1− ρε)
exp{−yHΥ−1y}

πTNdet (Υ)
.

(D.4)

It is not difficult to see that the second term of (D.4) is much larger than the first (since

ρ is small and ε > 1, ρε is small, the determinant in the denominator of the first term is

large, whereas the numerator is bounded above by one), therefore

h(Y ) = −Ep(Y )[log p(Y )]

≈ −log (1− ρε) + NT log π + log det(Υ) + Ep(Y )[y
HΥ−1y]

≈ ρε + NT log π + log det(Υ) + Ep(Y )[tr
(
yyHΥ−1

)
] (D.5)

= NT log πe + log det(Υ) +
ρ

M
tr
(
Υ−1

(
Kr ⊗XonKtX

H
on

))
+ o(ρ). (D.6)

The step (D.6) is valid because

Ep(Y )[tr
(
yyHΥ−1

)
] = Ep(X,hw,e)[tr

(
f(X,hw,e)f

H
(X,hw,e)Υ

−1
)
] (D.7)
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where

f(X,hw,e) =

(
K

1

2
r ⊗

√
ρ

M
XK

1

2

t

)
hw + e, hw = vec(Hw)

and e = vec(E). Since X, hw and e are independent random variables, from (D.7) we

easily get

Ep(Y )[tr
(
yyHΥ−1

)
] = NT +

ρ

M
tr
(
Υ−1

(
Kr ⊗XonKtX

H
on

))
. (D.8)

Substituting (D.8) in (D.5) results in (D.6). Then, using (D.3) and (D.6) we have

I(Y ; X) = h(Y )− h(Y |X) =
ρ

M
tr
(
Υ−1

(
Kr ⊗XonKtX

H
on

))
+ o(ρ),

as required.
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Appendix E

Optimization Problem for On-Off

Signalling

In this Appendix, we prove that the maximum of the optimization problem defined in (3.3)

is attained by the signaling scheme presented in (3.5) and (3.6).

Approach: It is known that if the constraints are independent (in the sense that each

constraint function depends only on one of the variables), we can always maximize (min-

imize) a function by first maximizing (minimizing) over some of the variables, and then

maximizing (minimizing) over the remaining ones. See, e.g., pp. 133 in [84] for more de-

tails. This simple and general procedure will help us to transform the problem in (3.3)

into equivalent forms.

Let p∗ represent the maximum of (3.3), i.e.,

p∗ = max

tr
(
XonXH

on

)
≤ TM

Λt ∈ DM ,Λr ∈ DN , U t ∈ UM , U r ∈ UN

Kt = U tΛtU
H
t , Kr = U rΛrU

H
r

tr
(
Υ−1

(
Kr ⊗XonKtX

H
on

))
(E.1)

where

Dn = {E : n× n diagonal matrix such that E � 0 and tr (E) = n}, (E.2)

Un = {F : n× n unitary matrix, i.e., F HF = FF H = In}, (E.3)

U t (U r) is the M ×M (N × N) unitary matrix of the eigenvectors of K t (Kr) and Λt

(Λr) is the diagonal matrix of the corresponding eigenvalues (for which we assume that

they are arranged in the decreasing order). That is, U tΛtU
H
t (U rΛrU

H
r ) represents the

eigenvalue decomposition (EVD) of the matrix K t (Kr). Let X̂on, Û r, Λ̂r, Û t and Λ̂t
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denote optimal values for the matrices Xon, U r, Λr, U t and Λt, respectively. There are

two main steps in the proof. In the first step, Λ̂r, Û t and Λ̂t will be determined for given

Xon, U r, whereas the second step furnishes X̂on and Û r.

Step1. We start by rewriting the problem in (E.1) in the equivalent form,

p∗ = max

tr
(
XonXH

on

)
≤ TM

Λt ∈ DM ,Λr ∈ DN , U t ∈ UM , U r ∈ UN

N∑

i=1

λi tr
(
XonKtX

H
onF iΥ̂

−1
F H

i

)
,

(E.4)

where λi is the diagonal element of Λr on the position (i, i),

Υ̂ =
(
UH

r ⊗ IT

)
Υ (U r ⊗ IT ) , F i = fT

i ⊗ IT , (E.5)

and f i represents the i-th column of IN .

Idea: The idea that we shall use in order to determine the optimal Λr, U t and Λt is

to relax the problem in (E.4) (hence, by doing this, the optimal value of the new, relaxed

problem will be equal or larger than of the original one in (E.4)), and then to show that the

maximum of the relaxed problem is also attainable for the original problem. The relaxed

problem is defined as

q∗ = max

A = AH � 0, tr(A) ≤ TM2

Λr ∈ DN , U r ∈ UN

N∑

i=1

λi tr
(
AF iΥ̂

−1
F H

i

)
, (E.6)

The motivation behind the definition of the new variable A, a T × T Hermitian positive

semidefinite matrix that obeys the constraint tr(A) ≤ TM 2, is the fact that XonKtX
H
on

is also a Hermitian positive semidefinite matrix with the same upper bound on the trace

constraint, i.e., tr
(
XonKtX

H
on

)
≤ TM2 (which is easily verified since tr

(
XonXH

on

)
≤

TM). Clearly, p∗ ≤ q∗. The problem in (E.6) can be readily maximized by maximizing

it first w.r.t. Λr, and then w.r.t. A. We shall maximize (E.6) w.r.t. Λr by invoking

the following fact: if a convex function f is defined on the bounded, closed convex set

Ω, then, if f has a maximum over Ω it is achieved at an extreme point of Ω (see, e.g.,

pp. 119 in [92]). In our case, the function f is a linear combination of λi’s and the set

Ω = {(λ1, ..., λN ) : N × 1 vectors such that
∑N

i=1 λi = N and λi ≥ 0}. It is readily

seen that the extreme points of Ω are the vectors whose all entries are zero except one
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which is equal to N . Regarding maximization of (E.6) w.r.t. A, the Fan’s theorem

is used, see pp. 17 in [95]. That is, beamforming in the direction of λmax(F iΥ̂
−1

F H
i ) is

performed such that an upper bound on tr
(
AF iΥ̂

−1
F H

i

)
is attained (tr

(
AF iΥ̂

−1
F H

i

)
≤

tr(A)λmax(F iΥ̂
−1

F H
i )). Hence,

[
Λ̂r

]
i,i

= Nδii∗ , Â = TM2 U i∗KAUH
i∗ , (E.7)

where the matrix U i∗ is the T ×T unitary matrix of the eigenvectors of F i∗Υ̂
−1

F H
i∗ (that

is, we assume that U i∗Di∗U
H
i∗ represents the EVD of the matrix F i∗Υ̂

−1
F H

i∗ where the

matrix Di∗ is the diagonal matrix of the corresponding eigenvalues sorted in the decreasing

order), the T × T constant matrix KA has all the entries equal to zero except the (1, 1)

entry which is one, δij = 1 for i = j and zero otherwise, the matrix F i∗ is defined as

in (E.5), and

i∗ = arg max
i = 1, ..., N

λmax

(
F iΥ̂

−1
F H

i

)
. (E.8)

For the choice in (E.7) and from (E.6), we get

q∗ = NTM2 max
U r ∈ UN

λmax

(
F i∗Υ̂

−1
F H

i∗

)
. (E.9)

Next, we prove that the optimal value of the relaxed problem in (E.9) is attainable for the

original problem in (E.4). To see this, we define X̂on, Û t and Λ̂t in the following way,

X̂on =
√

TM U i∗KX , Û t = IM ,
[
Λ̂t

]
j,j

= Mδj1, for j = 1, ..., M (E.10)

together with Λ̂r as in (E.7). The T ×M constant matrix KX has all the entries equal

to zero except the (1, 1) entry which is one, and i∗ is defined in (E.8). In that case,

p∗ = q∗ = NTM2 max
U r ∈ UN

λmax

(
F i∗Υ̂

−1
F H

i∗

)
. (E.11)

Remark that for the choice in (E.10) the power constraint on the transmitted codeword

is satisfied with equality, K̂t is a diagonal matrix, and both K̂t and K̂r are rank one

matrices.

Step2. In the first step, we have determined K̂t and Λ̂r. It remains now to compute

X̂on and Û r. First, note that from (E.10) we can write

X̂on =
√

TM
[
x 0T×(M−1)

]
, (E.12)
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where the unit norm vector x ∈ C
T is the eigenvector associated to the maximal eigenvalue

of the matrix F i∗Υ̂
−1

F H
i∗ , i.e., it is the first column of the unitary matrix U i∗ . Hence,

we need to find such a unit norm vector x and a unitary matrix U r that maximize p∗

in (E.11). Let

λ̂ = max
U r ∈ UN

λmax

(
F i∗Υ̂

−1
F H

i∗

)
.

Then the following equalities hold:

λ̂ = max
U r ∈ UN

max
i = 1, ..., N

max
x ∈ C

T , ||x|| = 1
xH
(
F iΥ̂

−1
F H

i

)
x (E.13)

= max
U r ∈ UN

max
i = 1, ..., N

x ∈ C
T , ||x|| = 1

xH
(
fT

i ⊗ IT

) (
UH

r ⊗ IT

)
Υ−1 (U r ⊗ IT ) (f i ⊗ IT ) x

(
from (E.5), Υ̂ =

(
UH

r ⊗ IT

)
Υ (U r ⊗ IT ) and F i = fT

i ⊗ IT

)

= max
U r =

[
u1 u2 . . . uN

]
∈ UN

max
i = 1, ..., N

x ∈ C
T , ||x|| = 1

(
uH

i ⊗ xH
)
Υ−1 (ui ⊗ x)

(E.14)

= max
u ∈ C

N , ||u|| = 1,
x ∈ C

T , ||x|| = 1

(u⊗ x)H Υ−1 (u⊗ x) . (E.15)

The passage from (E.14) to (E.15) is valid due to the following arguments. Let

p1 = max
U r =

[
u1 u2 . . . uN

]
∈ UN

max
i = 1, ..., N

x ∈ C
T , ||x|| = 1

f1i(ui, x) (E.16)

and

p2 = max
u ∈ C

N , ||u|| = 1,
x ∈ C

T , ||x|| = 1

f2(u, x) (E.17)

where the functions f1i(ui, x) =
(
uH

i ⊗ xH
)
Υ−1 (ui ⊗ x), for i = 1, ..., N , and f2(u, x) =

(
uH ⊗ xH

)
Υ−1 (u⊗ x). Remark that f1i(ui, x), for i = 1, .., N , and f2(u, x) are con-

tinuous functions (as a consequence, f1(u1, ..., uN , x) = max (f11(u1, x), ..., f1N (uN , x))

is also continuous because pointwise maximum of continuous functions is a continuous

function). Moreover, f1(u1, ..., uN , x) and f2(u, x) are defined over the product spaces
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CS1 = {(J , t) : where J ∈ UN and t ∈ S
2T−1} and CS2 = {(w, v) : where w ∈

S
2N−1 and v ∈ S

2T−1}, respectively (the symbol S
n−1 denotes the unit sphere in R

n),

that are compact spaces (both Um and S
n, for some m, n ∈ N, are subclasses of the Stiefel

manifold which is a compact space, and every product of compact spaces is a compact

space by the Tychonoff’s theorem, see [96]). Due to the Bolzano-Weierstrass’ fundamen-

tal existence theorem (see, e.g., pp. 654 in [91]) we know that both f1(u1, ..., uN , x) and

f2(u, x) achieve the minimum and the maximum on CS1 and CS2, respectively. Now, we

need to show that p1 = p2. To prove this, we show that p1 ≤ p2, but also p2 ≤ p1. Let’s

assume w.l.o.g. that the maximum in (E.16) is achieved for some û1 (the unit vector

that is the first column of the unitary matrix U r) and x̂. Then, by taking u = û1 and

x = x̂ in (E.17), we have p1 = f2(û1, x̂) ≤ p2. Similarly, let’s assume that the maximum

in (E.17) is achieved for some û and x̂. We know that we can construct an unitary matrix

U r with û as its first column. Hence, p2 = f1(û, u1, ..., uN−1, x̂) ≤ p1 where ui, for

i = 1, ..., N − 1, is the (i + 1)-th column of the matrix U r. Thus, p1 = p2.

Let (û, x̂) be the solution pair of (E.15), i.e.,

(û, x̂) = arg max
u ∈ C

N , ||u|| = 1,
x ∈ C

T , ||x|| = 1

(u⊗ x)H Υ−1 (u⊗ x) . (E.18)

Then, using (E.12) and the fact that û is the i∗-th column of Û r (where i∗ is defined

in (E.8) and due to the passage from (E.14) to (E.15) we can w.l.o.g. assume that i∗ = 1,

although any other choice of i∗ would just change Û r but not K̂r), we have

X̂on =
√

TM
[
x̂ 0T×(M−1)

]
, K̂r = N ûûH . (E.19)

Equations (E.7), (E.10), (E.18) and (E.19) complete the proof.
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Appendix F

Mutual Information for Gaussian

Signaling in the Low SNR Regime

In this section, we show that the expression for the mutual information between Y and X

up to second order in ρ, for Gaussian signaling and sufficiently low SNR, is given by (3.11).

But, before that, we prove the validity of (3.10).

(A) Here, we shall show that (3.10) holds. As in Appendix D, we find the mutual

information by computing the conditional entropy h(Y |X) and the entropy of Y , i.e.,

h(Y ).

• We start by computing h(Y |X). By repeating the analysis for the on-off signaling

in Appendix D, we readily find

h(Y |X) = NT log πe + log det(Υ) + E[log det
(
ITN +

ρ

M
Z
)
]

≈ NT log πe + log det(Υ) +
ρ

M
tr (E[Z])− ρ2

2M2
tr
(
E[Z2]

)
, (F.1)

where the matrix Z is defined in (D.2).

• Next, we compute h(Y ). Since vec(X)∼CN (0, P ) for some matrix P , and p(Y |X)

in (D.1) is a function whose derivatives w.r.t. ρ at ρ = 0 can be calculated, we can expand

p(Y ) and log p(Y ) to second order as

p(Y ) = p(Y , 0) + ρp′(Y , 0) +
ρ2

2
p′′(Y , 0) + o(ρ2), (F.2)

log p(Y ) ≈ log p(Y , 0) + ρ
p′(Y , 0)

p(Y , 0)
+

ρ2

2

(
p′′(Y , 0)

p(Y , 0)
−
(

p′(Y , 0)

p(Y , 0)

)2
)

(F.3)

where p′(Y , 0) and p′′(Y , 0) denote the first and second partial derivative of p(Y ) w.r.t.

ρ evaluated at ρ = 0, respectively. Due to (F.2) and (F.3) we have the following approxi-
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mation of h(Y ):

h(Y ) = −Ep(Y )[log p(Y )] ≈ a + ρb +
ρ2

2
c (F.4)

where

a = −
∫

p(Y ,0) log p(Y ,0)dY , b = −
∫ (

p′(Y ,0) log p(Y ,0) + p′(Y ,0)
)
dY , (F.5)

c = −
∫ (

p′′(Y ,0) + p′′(Y ,0) log p(Y ,0) +
(p′(Y ,0))2

p(Y ,0)

)
dY . (F.6)

We next show that the integrals in (F.6) comprising p′′(Y ,0) are equal to zero. To this

end, remark that, using (F.2)

∫
p(Y )dY =

∫ (
p(Y , 0) + ρp′(Y , 0) +

ρ2

2
p′′(Y , 0) + o(ρ2)

)
dY = 1

that implies ∫
p(n)(Y , 0)dY = 0, n = 1, 2. (F.7)

since p(Y , 0) = p(Y , 0|X) is pdf of a zero-mean complex Gaussian with covariance Υ.

Then, from (F.2) and by repeating the analysis of (D.7) and (D.8), it holds

Ep(Y )[y
HΥ−1y] =

∫
yHΥ−1y

(
p(Y , 0) + ρp′(Y , 0) +

ρ2

2
p′′(Y , 0) + o(ρ2)

)
dY

= NT +
ρ

M
tr (E[Z]) . (F.8)

From (F.8), we draw the following conclusions:

∫
yHΥ−1y p(Y , 0)dY = NT,

∫
yHΥ−1y p′(Y , 0)dY =

1

M
tr (E[Z]) , (F.9)

∫
yHΥ−1y p′′(Y , 0)dY = 0. (F.10)

Thus, equations (F.9) and (F.10) combined with (F.4), (F.5), (F.6) and (F.7), together

with the fact that log p(Y , 0) = −TN log π − log det(Υ)− yHΥ−1y, lead to

h(Y ) ≈ NT log πe + log det(Υ) +
ρ

M
tr (E[Z])− ρ2

2

∫
(p′(Y ,0))2

p(Y ,0)
dY . (F.11)

We now approximate p(Y |X) in (D.1) to first order in ρ. To this end, we use the

following approximations:

(
ITN +

ρ

M
Z
)−1

≈ ITN −
ρ

M
Z, (F.12)
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(
det
(
ITN +

ρ

M
Z
))−1

≈
(
1 +

ρ

M
tr(Z)

)−1
≈ 1− ρ

M
tr(Z), (F.13)

eρt ≈ 1 + ρt ( for some t) (F.14)

which are valid for sufficiently small ρ. Hence, using (D.1),(F.12), (F.13) and (F.14), the

approximated p(Y |X) is given by

p(Y |X) ≈ 1

πTN detΥ
e−yH

Υ
−1y

(
1 +

ρ

M
yHΥ− 1

2 ZΥ− 1

2 y
)(

1− ρ

M
tr(Z)

)
, (F.15)

where the matrix Z is defined in (D.2). From (F.15), p′(Y |X, ρ = 0) (henceforth, we

write p′(Y |X, 0)) is readily calculated,

p′(Y |X, 0) =
1

M πTN detΥ
e−yH

Υ
−1y

(
yHΥ− 1

2 ZΥ− 1

2 y − tr(Z)
)

. (F.16)

In order to find p′(Y , ρ = 0) we take the expectation of (F.16) over X leading to

p′(Y , 0) =
1

M πTN detΥ
e−yH

Υ
−1y

(
yHΥ− 1

2 KΥ− 1

2 y − tr(E[Z])
)

(F.17)

where K = E[Z]. This implies

∫
(p′(Y ,0))2

p(Y ,0)
dY =

1

M2

∫
e−yH

Υ
−1y

πTN detΥ

(
yHΥ− 1

2 KΥ− 1

2 y − tr(E[Z])
)2

dY

(
change of variables: v = Υ− 1

2 y∼CN (0, ITN ) for ρ = 0
)

=
1

M2

∫
e−vHv

πTN

(
vHKv − tr(E[Z])

)2
dv

=
1

M2

(
Ep(v)[

(
vHKv

)2
]− 2 · tr(E[Z]) Ep(v)[v

HKv] + tr2(E[Z])
)

=
1

M2
tr
(
(E[Z])2

)
. (F.18)

The step (F.18) is valid due to the following result (see, e.g., pp. 564 in [93]): if y∼CN (0, C),

then for A, B Hermitian matrices

E[yHAyyHBy] = tr(AC)tr(BC) + tr(ACBC). (F.19)

Equations (F.18) and (F.11) combined with (F.1) result in (3.10) as required.

(B) We now prove that (3.11) holds.

First, we calculate tr
(
E[Z2]

)
, where Z = Υ− 1

2

(
Kr ⊗XKtX

H
)
Υ− 1

2 . Remark that

tr
(
E[Z2]

)
= tr (E[F ]) where F =

(
Υ̂
−1

(Λr ⊗ X̃X̃
H

)
)2

, the matrix Υ̂ is defined in (E.5),
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Kr = U rΛrU
H
r (as in Appendix E) and X̃ = XK

1

2

t . If the vector x̃i, for i = 1, ..., M ,

represents the i-th column of the matrix X̃, then it holds

tr
(
E[Z2]

)
=

M∑

i=1

M∑

j=1

E[tr
(
Υ̂
−1

(Λr ⊗ x̃ix̃
H
i )Υ̂

−1
(Λr ⊗ x̃jx̃

H
j )
)
]

=
M∑

i=1

M∑

j=1

N∑

k=1

N∑

z=1

λkλzE[tr
(
Υ̂kzx̃ix̃

H
i Υ̂zkx̃jx̃

H
j

)
],

where Υ̂kz = F kΥ̂
−1

F H
z , for k, z = 1, ..., N , the matrix F k is defined in (E.5), and λk’s

are the eigenvalues of the matrix Λr. Let Φ(A, B) = E[yHAyyHBy] where y∼CN (0, C).

Then, by using (F.19), it is easy to check that

Φ(A, AH) =
1

4

(
Φ(A + AH , A + AH) + Φ(jA− jAH , jA− jAH)

)

= tr(AC)tr(AHC) + tr(ACAHC)

for any matrix A. This, and using the facts that Υ̂kz = Υ̂
H

zk and x̃i = Eix̃ (where

x̃ = vec(X̃) and Ei is defined in (3.12)), implies

tr
(
E[Z2]

)
=

M∑

i=1

M∑

j=1

N∑

k=1

N∑

z=1

λkλz

(
tr(Υ̂kzP̃ ij)tr(Υ̂zkP̃ ji) + tr(Υ̂kzP̃ iiΥ̂zkP̃ jj)

)
,

(F.20)

where P̃ ij = EiP̃EH
j and P̃ =

((
KT

t

) 1

2 ⊗ IT

)
P

((
KT

t

) 1

2 ⊗ IT

)
.

It can readily be shown that

tr
(
(E[Z])2

)
=

M∑

i=1

M∑

j=1

tr
(
Υ−1(Kr ⊗EiP̃EH

i )Υ−1(Kr ⊗EjP̃EH
j )
)

=
M∑

i=1

M∑

j=1

N∑

k=1

N∑

z=1

λkλztr(Υ̂kzP̃ iiΥ̂zkP̃ jj). (F.21)

Combining (F.20) with (F.21) results in (3.11). This concludes the proof.



Appendix G

Optimization Problem for

Gaussian Signalling

In this Appendix, we prove that the maximum of the optimization problem defined

in (3.13) is attained by P̂ , defined in (3.14), and by K̂t and K̂r presented in (3.5).

As in Appendix E, let U tΛtU
H
t (U rΛrU

H
r ) represents the EVD of the matrix K t (Kr),

and let P̂ , Û r, Λ̂r, Û t and Λ̂t denote the optimal values of the matrices P , U r, Λr, U t

and Λt, respectively. We repeat the analysis presented in Appendix E. In the first step,

Λ̂r is calculated, whereas the second step determines P̂ , Û t, Λ̂t and Û r.

Step1. Note that

M∑

i=1

M∑

j=1

N∑

k=1

N∑

z=1

λkλztr(Υ̂kzP̃ ij)tr(Υ̂zkP̃ ji) = λT Aλ (G.1)

where the vector λ =
[
λ1 λ2 . . . λN

]T
. The entry (k, z), for k, z = 1, ..., N , of the

N ×N Hermitian matrix A is given by [A]k,z =
∑M

i=1

∑M
j=1 tr(Υ̂kzP̃ ij)tr(Υ̂zkP̃ ji).

Approach: We shall show that the matrix A is positive semidefinite. In that case, the

function λT Aλ is convex on DN defined in (E.2), and the maximum is achieved at an

extreme point of DN (see pp. 119 in [92]). To this end, let’s introduce the result that will

be used in the proof: if a NT ×NT matrix Q is positive semidefinite, then N ×N matrix

R, with

[R]k,z =
T∑

i=1

T∑

j=1

Q((k − 1)T + i, (z − 1)T + j)

for k, z = 1, ..., N , is also positive semidefinite. In words, [R]k,z is equal to the sum of

all elements of the (k, z)-th block of the matrix Q (the matrix Q consists in N 2 disjoint
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blocks where each of the blocks is of size T × T ). Now, remark that

R = (IN ⊗ 1T )T
Q (IN ⊗ 1T )

where the T×1 vector 1T is the vector of all ones (from now on, we write R = sum(N, T, Q)).

Hence, the matrix R is positive semidefinite. The subsequent series of results of matrix

analysis proves that A is positive semidefinite:

1. Let A represent the NTM ×NTM matrix obtained from Υ̂
−1

defined in (E.5) as

explained in the following. Seen as a block matrix with N 2 disjoint blocks, where

each of them is of size MT×MT , any (k, z)-th block of A, for k, z = 1, ..., N , consists

of M2 identical disjoint sub-blocks of dimension T ×T . For the (k, z)-th block of A,

the corresponding sub-block is Υ̂
∗
kz, i.e., the complex conjugate of Υ̂kz = F kΥ̂

−1
F H

z ,

where F k is defined in (E.5). Note that A is positive semidefinite. For any nonzero

complex vector v =
[
vT

1 ... vT
MN

]T
, where vi ∈ C

T for i = 1, ..., MN , it holds:

vHAv = uH
(
Υ̂
−1
)∗

u ≥ 0, where u =
[
uT

1 ... uT
N

]T
with uj =

∑M
i=1 v(j−1)M+i

for j = 1, ..., N . Since Υ̂
−1 � 0, then

(
Υ̂
−1
)∗
� 0 and A is positive semidefinite;

2. Define B = 1N×N ⊗ P̃ where 1N×N is the N × N matrix of all ones. Then, B

is positive semidefinite since the Kronecker product of two positive (semi)definite

matrices is positive (semi)definite (see pp. 245 in [94])). Also, the matrix C defined

as C = A� B, the symbol � represents the Schur (Hadamard) product, is positive

semidefinite since both A and B are positive semidefinite, and the Schur product

of two positive (semi)definite matrices is also positive (semi)definite (see pp. 458

in [53]);

3. Next, we define the matrix D as D = sum(MN, T, C) which is positive semi-

definite. Remark that sum(1, T, Υ̂
∗
kz � P̃ ij) = tr(Υ̂

H

kzP̃ ij). Now, it is easy to

see that the matrix A can be presented as follows: A = sum(N, M, D � D∗)

since
∑M

i=1

∑M
j=1 tr(Υ̂zkP̃ ij)tr(Υ̂kzP̃ ji) =

∑M
i=1

∑M
j=1 tr(Υ̂kzP̃ ij)tr(Υ̂zkP̃ ji), for

k, z = 1, ..., N and Hermitian Υ̂
−1

and P̃ .

Thus, as stated, the matrix A is positive semidefinite and the maximum is achieved at an
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extreme point of DN . So, the optimal value of Λr is given by

[
Λ̂r

]
k,k

= Nδkk∗ (G.2)

for k = 1, ..., N , where

(
k∗, P̂

)
= arg max

k = 1, ..., N

P = P H � 0, tr(P ) ≤ TM

M∑

i=1

M∑

j=1

tr(Υ̂kkP̃ ij)tr(Υ̂kkP̃ ji). (G.3)

The optimization problem in (3.14) now becomes

max
U r ∈ UN , Kt ∈ PM ,

P = P H � 0, tr(P ) ≤ TM

N2
M∑

i=1

M∑

j=1

tr(Υ̂k∗k∗P̃ ij)tr(Υ̂k∗k∗P̃ ji).

(G.4)

Step2. In the second step, we shall determine the optimal values of K t, P and U r.

Approach: Similarly to the analysis of Appendix E in order to calculate K̂t, P̂ and Û r

we relax the problem in (G.4), find an upper bound on the relaxed problem and show that

this bound is attainable for the original problem. Let p∗ be the maximum of the problem

in (G.4), and let

P =

(
IM ⊗ Υ̂

1

2

k∗k∗

)
P̃

(
IM ⊗ Υ̂

1

2

k∗k∗

)

with tr(P ) ≤ K = TM 2λmax(Υ̂k∗k∗). Then, the relaxed problem is defined as

q∗ = max

U r ∈ UN , P = P
H � 0, tr(P ) ≤ K

N2
M∑

i=1

M∑

j=1

tr(P ij)tr(P ji). (G.5)

where

P ij = EiPEH
j = Υ̂

1

2

k∗k∗P̃ ijΥ̂
1

2

k∗k∗ ,

P̃ =

((
KT

t

) 1

2 ⊗ IT

)
P

((
KT

t

) 1

2 ⊗ IT

)
,

and the matrix Ei, for i = 1, ..., M , is defined in (3.12). The matrix Υ̂
1

2

k∗k∗ is the square

root of Υ̂k∗k∗ , i.e., it is the T × T matrix such that

(
Υ̂

1

2

k∗k∗

)2

= Υ̂k∗k∗ . Clearly, p∗ ≤ q∗.

Now, note that, as tr(P ) ≤ K it holds

M∑

i=1

tr2(P ii) + 2
∑

1≤k<j≤M

tr(P kk)tr(P jj) ≤ K2.
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Also, remark that

M∑

i=1

M∑

j=1

tr(P ij)tr(P ji) =
M∑

i=1

tr2(P ii) + 2
∑

1≤k<j≤M

tr(P kj)tr(P jk).

Then, if we define

fkj =
∑

1≤k<j≤M

tr(P kk)tr(P jj)−
∑

1≤k<j≤M

tr(P kj)tr(P jk),

it holds

q∗ ≤ max
U r ∈ UN

P = P
H � 0, tr(P ) ≤ K

N2K2 − 2N2fkj ≤ N2K2

due to the fact proved in the sequel that

tr(P kk)tr(P jj) ≥ tr(P kj)tr(P jk)

for every pair (k, j) where k, j = 1, ..., M .

Proof: We start by noting that

([
ek ej

]T ⊗ IT

)
P
([

ek ej

]
⊗ IT

)
=

[
P kk P kj

P jk P jj

]
� 0

where ek represents the k-th column of IM . Now, let ai, bi, b∗i and ci, for i = 1, ..., T ,

represent the diagonal entries of the matrices P kk, P kj , P jk and P jj , respectively (i.e.,

[
P kk

]
i,i

= ai,
[
P kj

]
i,i

= bi,
[
P jk

]
i,i

= b∗i and
[
P jj

]
i,i

= ci). It is not difficult to see that

(I2 ⊗ kT
i )

[
P kk P kj

P jk P jj

]
(I2 ⊗ ki) =

[
ai bi

b∗i ci

]
� 0

for i = 1, ...T , where ki represents the i-th column of IT . Let Si =

[
ai bi

b∗i ci

]
. Hence,

T∑

i=1

Si =

[
tr(P kk) tr(P kj)

tr(P jk) tr(P jj)

]
� 0

from which the desired inequality is readily obtained. Remark that we have used the fact

that the sum of positive semidefinite matrices is a positive semidefinite matrix. Thus,

we have p∗ ≤ q∗ ≤ N2K2. We now prove that an upper bound on the relaxed problem

in (G.5) is attainable for the original problem in (G.4). To see this, we define P̂ and K̂t

on the following way,

P̂ = TMKP ⊗Uk∗KP 1
UH

k∗ ,
[
K̂t

]
j,j

= Mδj1, (G.6)
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where we assume that U k∗Dk∗U
H
k∗ represents the EVD of Υ̂k∗k∗ (the matrix Dk∗ is

the diagonal matrix of the corresponding eigenvalues sorted in the decreasing order), the

M ×M (T × T ) constant matrix KP (KP 1
) has all the entries equal to zero except the

(1, 1) entry which is one, and k∗ is defined in (G.3). Note that K̂t is a diagonal matrix.

In that case,

p∗ = q∗ = N2T 2M4 max
U r ∈ UN

λ2
max(Υ̂k∗k∗) (G.7)

where, from (G.3) and (G.6),

k∗ = arg max
k = 1, ..., N

λmax(Υ̂k∗k∗).

By repeating the analysis of the on-off signaling in Appendix E (equations (E.13, (E.14)

and (E.15)), we easily find

P̂ = TMKP ⊗ x̂x̂H , K̂r = N ûûH (G.8)

where x̂ and û are the solutions of the optimization problem in (3.6). Equations (G.6)

and (G.8) conclude the proof.
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Appendix H

Pairwise Error Probability for Fast

Fading in the Low SNR Regime

In this appendix, we derive the expression for the low SNR regime pairwise error proba-

bility presented in (3.16). In Appendix A, it has been shown that if X i is transmitted,

then the probability that the receiver decides in favor of X j is:

PXi→Xj
= P

(
eH(P H

i Υ−1P i − P H
j Υ−1P j)e− 2<

{
eHP H

j Υ−1∆g
}

> gHLijg
)

(H.1)

where, for k ∈ {i, j},

P k = ITN − X̃kZk, X̃k = IN ⊗Xk,

Zk = (X H
k X k)

−1X H
k Υ− 1

2 , X k = Υ− 1

2 X̃k,

∆ = P jX̃i, e = vec(E), Lij = X H
i Π⊥

j X i

and Π⊥
j = ITN − X j

(
X H

j X j

)−1
X H

j . The unknown realization of the channel is de-

noted by g = vec(H), whereas <{a} represents the real part of the complex number a.

Unfortunately, the expression (H.1) cannot be simplified analytically. Hence, we shall an-

alyze (H.1) in the low SNR regime where the linear term of e is negligible (see Appendix A

for the analysis of (H.1) in the high SNR regime). Therefore, at sufficiently low SNR,

PXi→Xj
≈ P

(
eH(P H

i Υ−1P i − P H
j Υ−1P j)e > gHLijg

)
. (H.2)

It is easy to see that, for k ∈ {i, j},

eHP H
k Υ−1P ke

d
= zHΠ⊥

k z
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where z = Υ− 1

2 e∼CN (0, ITN ) and
d
= means equal in distribution. Then, from (H.2) it

holds

PXi→Xj
≈ P

(
zH
(
U jU

H
j −U iU

H
i

)
z > gHLijg

)
. (H.3)

where, for k ∈ {i, j}, U k = X k(X
H
k X k)

− 1

2 . That is, Uk contains an orthonormal basis for

the subspace spanned by the columns of X k. Notice that UH
k Uk = IMN . To proceed with

the analysis we use the known fact from [52] pp. 199: if U i, U j are TN ×MN matrices

with orthonormal columns (T ≥ M), then there exist MN ×MN unitary matrices W 1

and W 2, and a TN × TN unitary matrix Q with the following properties:

If 2MN ≤ TN (2M ≤ T ), then

QU iW 1 =
[
IMN 0MN 0MN×(TN−2MN)

]T
(H.4)

and

QU jW 2 =
[
Cij Sij 0MN×(TN−2MN)

]T
(H.5)

where Cij is a diagonal MN ×MN matrix with diagonal entries cos αi, i = 1, ..., MN ,

0 ≤α1≤. . .≤αMN≤ π
2 , and S2

ij + C2
ij = IMN . Now, using (H.4) and (H.5) we have

W H
2 UH

j QHQU iW 1 = Cij ⇒ UH
j U i = W 2CijW

H
1 ,

so αi, for i = 1, . . . , MN , are the principal angles between the subspaces spanned by U i

and U j . It can be readily shown that

zH
(
U jU

H
j −U iU

H
i

)
z

d
= cHDc,

where

D =

[ −S2
ij CijSij

CijSij S2
ij

]

and c∼CN (0, I2MN ). Let c =
[
a1 b1 ... aMN bMN

]T
where am, bm

iid∼ CN (0, 1) for

m = 1, . . . , MN . Hence, using the fact that ± sin αi, for i = 1, ..., MN , are the eigenvalues

of the matrix D, from (H.3) we easily get

PXi→Xj
≈ P

(
MN∑

m=1

sin αm (|am|2 − |bm|2) > gHLijg

)

as required.
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