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i



Acknowledgement

I would like to thank the members of my thesis committee, Professor Bruno Sinopoli and Professor José
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Abstract

This thesis analyzes large deviations performance of linear consensus-based algorithms for distributed in-

ference (detection and estimation). With consensus-based algorithms, agents communicate locally with

their neighbors, through intermittently failing links, and assimilate their streaming observations in real time.

While existing work usually focuses on asymptotic consistency and asymptotic normality measures, we

establish the large deviations rates, thus giving parallels of the classical Chernoff lemma and Cramer’s the-

orem for distributed systems. Our main contributions are two-fold. (1) We find the large deviation rate J
for convergence in probability of products of random stochastic matrices that model the local inter-agent

interactions. Our analysis includes a wide range of random stochastic matrix models, including asymmetric

matrices and temporal dependencies. Further, for commonly used gossip and link failure models, we show

how the rate J can be computed by solving a min-cut problem. (2) We find tight upper and lower bounds

on the large deviations performance of linear consensus-based inference, as well as the full large deviation

principle when the underlying network is regular. When translated into distributed detection, our results

reveal a phase transition behavior with respect to the network connectivity, measured by J . If J is above a

threshold, each agent is an asymptotically optimal detector with the error exponent equal to the total Cher-

noff information of the network; if below the threshold, we characterize what fraction of the total Chernoff

information can be achieved at each agent. When translated into distributed estimation, our results show

that distributed system’s performance relative to the performance of an ideal, centralized system, is a highly

nonlinear function of the required estimation accuracy. Finally, our methodology develops new tools that

are of general interest in the large deviations theory and products of random matrices.
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Chapter 1

Introduction

This thesis is mainly devoted to the large deviations performance analysis of consensus-based distributed

algorithms for inference (detection, estimation) in networks. With these algorithms, each agent i in an N -

agent network collects (possibly vector) measurements yi,k over time k to perform the inference task. At

each time k, agent i updates its state (solution estimate) xi,k 2 Rd, by mixing it with the states of immediate

neighbors (consensus), and by accounting for the new local measurement yi,k (innovation), [1, 2]. The

update of xi,k is generally of the form:

bxi,k =

X

j2Oi,k

Wij,k xj,k�1

(consensus) (1.1)

xi,k = bxi,k � 1

k
(bxi,k � Zi,k) (innovation). (1.2)

In (1.1), bxi,k is an intermediate state, Oi,k is a (possibly random) neighborhood of agent i (including i),

and Wij,k � 0 is the averaging weight, with
P

j2Oi,k
Wij,k = 1; in (1.2), Zi,k is a deterministic function

of yi,k. For example, with distributed detection, Zi,k = log

f
1

(yi,k)

f
0

(yi,k)

is the log-likelihood ratio based on the

measurement yi,k. We refer to quantity Zi,k as the innovation.

Recently, there has been a strong interest in the literature for distributed algorithms of type (1.1)–(1.2),

due to several favorable features of such algorithms: 1) they process data online; 2) utilize only inter-

neighbor communications, hence avoiding the fusion-node bottleneck; and 3) exhibit resilience to random

communication failures. Algorithms (1.1)–(1.2) have been studied in several application contexts, including

detection and estimation in sensor networks [2], modeling swarm behavior of robots/animals [3, 4], detection

of a primary user in cognitive radio networks [5], and power grid state estimation [6].

A relevant aspect with (1.1)–(1.2) is the randomness in communication links. For example, with wireless
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sensor networks, packet dropouts may occur at random times. We analyze (1.1)–(1.2) allowing for the

random underlying networks and link failures.

We now explain the main objective of the thesis, while we detail our contributions in the subsequent

section. For algorithms (1.1)–(1.2), existing literature provides convergence guarantees to the desired value

✓ (e.g., true parameter in distributed estimation), under mild conditions on the underlying network and the

measurements’ distribution. Our objective is to establish the large deviations rates of convergence. More

specifically, suppose that xi,k converges to ✓ as k ! 1 in probability, so that, for any (measurable) set

E ⇢ Rd that does not contain ✓:

P (xi,k 2 E) ! 0 as k !1. (1.3)

We ask how fast P (xi,k 2 E) converges to zero. In many situations, it turns out that P (xi,k 2 E) converges

to zero exponentially fast in k (per-agent number of measurements), i.e.,

P (xi,k 2 E) ⇠ e�k I(E), (1.4)

with a certain I(E) � 0. Our goal is to determine I(E) as a function of the underlying system parameters

– network topology and distribution of the agents’ measurements.

The metric I(E) is highly relevant in distributed inference. For example, in distributed detection –

hypothesis testing H
1

versus H
0

, xi,k is compared at each time k against the zero threshold to make the

decision (H
1

or H
0

):

xi,k

H
1

?
H

0

0.

The relevant detection metrics – probability of false alarm, probability of miss, and average error probability

are respectively (here ⇡
0

, ⇡
1

are the prior probabilities):

↵(k) = P (xi,k � 0 |H
0

)

�(k) = P (xi,k < 0 |H
1

)

P
e

(k) = ⇡
0

↵(k) + ⇡
1

�(k),

and they are of type (1.3).1 The large deviation rates that correspond to them are known as error expo-

nents and are standard detection metrics, e.g., [7]. For the classical, centralized detection, the rates that

corresponds to the three probabilities are the same and are known as the Chernoff information, [7, 8]. In

1For example, consider the probability of false alarm where we take E = [0, +1). It can be shown that, conditioned on H
0

,
xi,k converges in probability to ✓ = E

h

log

f1(yi,k)

f0(yi,k)

i

which is negative, so that ✓ /2 E.

2



alternative, in distributed estimation of a vector ✓, the rate I(⇠) with:

P (kxi,k � ✓k > ⇠) ⇠ e�k I(⇠), ⇠ � 0,

is known as the inaccuracy rate [9]. It measures how fast (in k) the probability P (kxi,k � ✓k  ⇠) enters a

given confidence level, e.g., 98%.

1.1 Thesis Contributions

We now state the main contributions of the thesis. We explain the contributions chapter by chapter.

Chapter 2: Products of random stochastic matrices: The symmetric i.i.d. case

The network effect on distributed inference (1.1)–(1.2) is captured through the N ⇥N random, stochastic2

weight matrices Wk that collect the weights Wij,k’s. More precisely, performance of (1.1)–(1.2) is affected

by the products Wk · · ·W1

. It is known that, under certain conditions on the underlying network, the product

Wk · · ·W1

converges in probability to the ideal consensus matrix J :=

1

N 11

> (whose all entries are equal

to 1/N ). We reveal by our analysis that the key parameter that controls the large deviations performance

of (1.1)–(1.2) is:

J := lim

k!1
�1

k
log P (kWk · · ·W1

� Jk � ✏) , ✏ 2 (0, 1], (1.5)

where k · k is the spectral norm. We refer to J as the large deviation rate of consensus. Clearly, the larger J
is, the faster consensus (convergence of product Wk · · ·W1

) is. In a sense, J measures the “connectivity”

of the network – the larger J , the better the network connectivity. The quantity J has not been computed

in the literature before. We characterize the rate J for generic random, symmetric, independent, identically

distributed (i.i.d.) matrices Wk, showing that J is solely a function of the graphs induced by the matrices

Wk and the corresponding probabilities of occurrences of these graphs [10, 11]. Further, we show that J
does not depend on ✏ 2 (0, 1]. As mentioned, calculation of J is the key to analyzing the large deviations

performance of algorithms (1.1)–(1.2), but it is also important in its own right for the theory of products of

stochastic matrices [12, 13], non-homogenous Markov chains [14] and the standard averaging (consensus)

algorithms, e.g., [15].

In general, computation of the large deviation rate J is a combinatorial problem. However, we calculate

or tightly approximate J for many important cases. We give a closed form solution for J for arbitrary

2Stochastic means that rows of the matrix sum to one and all its entries are nonnegative.
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type of averaging that runs on a tree. For example, for standard gossip (see Subsection 2.5.1) on a tree,

J = | log(1 � pe)|, where pe is the probability of the link e that is least likely to occur. Further, we give

closed form expressions for J for standard gossip and link failures over a regular graph. For those, we show

that J equals | log p
isol

|, where p
isol

is the probability that an agent is isolated from the rest of the network.

Further, we give simple formulas for J for generic networks and commonly used gossip and link failure

models. For gossip, we show that J = | log(1 � c)|, where c is the min-cut value (or connectivity [16])

of a graph whose links are weighted by the gossip link probabilities; the higher the connectivity c is (the

more costly or, equivalently, less likely it is to disconnect the graph) the larger the rate J and the faster the

convergence are. This is illustrated in Figure 1.1.

Figure 1.1: The rate J for random gossip algorithm is given by J = � log (1�mincut) where mincut

is the minimum over all cuts of the graph with the edge costs equal to the corresponding link activation
probabilities in gossip; it can be seen that for the example in the figure mincut = 0.05.

Similarly, we show that J is computed efficiently via min-cut for link failures on general graphs, with

both independent and correlated fading (failing). Finally, we find easily computable tight approximations

for J for a more general class of gossip-like models including symmetrized broadcast gossip.

Chapter 3: Products of random stochastic matrices: Temporal dependencies and directed networks

We extend the results in Chapter 2 in two ways, by considering: 1) temporally dependent sequences of (sym-

metric) matrices Wk; and 2) temporally i.i.d., asymmetric (not necessarily doubly stochastic) matrices Wk.

1) Temporal dependencies. Our temporally dependent model of the Wk’s associates a state of a Markov

chain to each of the possible realizations Gt of graphs that supports Wt. The distribution of the graphs Gt,

t � 1, is determined by an M ⇥M transition probability matrix P , where M is the number of possible

realizations of Gt. This model subsumes, e.g., the token-based protocols similar to [17], or temporally de-

pendent link failure models, where the on/off state of each link follows a Markov chain. We characterize the
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rate J as a function of the transition probability matrix P . We briefly convey here the general idea behind

the result. The rate J is determined by the most likely way in which the Markov chain stays “trapped” in

a subset of states (graphs) whose union is disconnected. The probability of this event is determined by the

spectral radius of the block in the transition matrix P that corresponds to this most likely subset of states,

and this spectral radius determines the rate J . We illustrate the results on two examples, namely gossip

with Markov dependencies and temporally correlated link failures. The example with temporally correlated

link failures shows that “negative temporal correlations” of the links’ states (being ON or OFF) increase

(improve) the rate J when compared with the uncorrelated case, while positive correlations decrease (de-

grade) the rate. This result is in accordance with standard large deviations results on temporally correlated

sequences, see, e.g., [[18], exercise V.12, page 59].

2) Directed networks – Asymmetric matrices. We study temporally i.i.d. asymmetric matrices Wk,

hence relaxing the symmetricity assumption from Chapter 2. It is well known that, under certain conditions,

rather than converging to J =

1

N 11

>, the product Wk · · ·W1

here converges almost surely to a random

rank-one matrix 1v>. (Here, the vector v 2 RN is random.) A natural measure of the “distance” of the

product Wk...W1

to its limiting space is |�
2

(Wk · · ·W1

)| – the modulus of the second largest (in modulus)

eigenvalue of the product Wk · · ·W1

. Henceforth, a natural counterpart to (1.5) is the following rate:

J
dir

:= lim

k!+1
� 1

k
log P (|�

2

(Wk · · ·W1

)| � ✏) , ✏ 2 (0, 1]. (1.6)

We fully characterize the limit J
dir

and show that, similarly as in the case of symmetric Wk, J
dir

depends on

the distribution of matrices Wk only through their support graphs. More precisely, J
dir

is determined by the

probability of the most likely set of support graphs whose union fails to form a directed spanning tree. Thus,

the characterization of J
dir

exhibits full consistency with the result for symmetric matrices in Chapter 2: for

undirected networks a collection of topologies is jointly tree-free3 if and only if it is disconnected. Thus,

when the matrices are symmetric, the two rates J in (1.5) and J
dir

in (1.6) coincide. Finally, we illustrate

our results on a commonly used broadcast gossip protocol [19] in sensor networks, where (only one) node

u activates at a time with probability pu, and broadcasts its state to all single-hop neighbors. For this model,

the rate J = | log 1� p
min

|, where p
min

is the probability of the most rarely active node.

3We say that a collection of topologies (graphs) is tree-free if the graph that contains the edges of all the graphs in the collection
does not contain a directed spanning tree.
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Chapter 4: Large deviations for distributed inference

We consider algorithms (1.1)–(1.2) for vector innovations Zi,k with generic distributions, hence encompass-

ing distributed vector-parameter estimation in sensor networks. The matrices Wk are assumed i.i.d., but they

may be asymmetric (directed networks). We study the large deviation rates I(E):

P (xi,k 2 E) ⇠ e�k I(E)

for generic sets E ⇢ Rd. We obtain several results, as we outline below.

1) Spatio-temporally i.i.d. innovations and asymmetric Wk’s. For spatio-temporally i.i.d. observations

and asymmetric matrices Wk, we show that performance I(E) of distributed inference (1.1)–(1.2) is always

better (or at worse the same) as the performance of the agents working in isolation. Further,distributed

inference (1.1)–(1.2) is always worse (or at best equal) to the performance of a centralized, fusion-based

inference that has access to all agents’ innovations at all times. The result is intuitive, as it says that coop-

eration cannot “hurt.” Likewise, a distributed system that does not have access to full information cannot

outperform the centralized system with full information. Although very intuitive, the result was surprisingly

difficult to prove.

2) Spatio-temporally i.i.d. innovations and symmetric Wk’s. When the Wk’s are symmetric (and still

i.i.d. in time), we establish tight upper and lower bounds on the large deviations performance I(E). The

results reveal a very interesting interplay between the underlying network and the distribution of the agents’

innovations, which we explain here at a qualitative level. To make our point clear, consider the sets E of

type

E⇠ = {x 2 Rd
: kx� ✓k > ⇠}, ⇠ > 0,

where ✓ is the mean of the innovations Zi,k’s. Hence, requiring that the estimate xi,k /2 E⇠ for a very small

⇠ means requiring a very high estimation precision (high confidence); conversely, a large ⇠ corresponds to

a coarse estimation. Our results show the following nonlinear behavior. Distributed inference (1.1)–(1.2) is

close to the centralized performance for very high precisions (very small ⇠’s) and becomes much worse from

the centralized performance for very coarse precisions. Intuitively, reaching high precisions is intrinsically

difficult even for the centralized system, and hence the network-wide averaging process in (1.1)–(1.2) has

sufficient time to “catch up” with the centralized system. On the other hand, the centralized system reaches

a coarse accuracy very quickly, so that the distributed system cannot “catch up.” The point ⇠? where the

behavior significantly changes depends on the quantity J in (1.5), number of agents N , and distribution of
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the Zi,k’s.

3) Spatio-temporally i.i.d. innovations and regular random networks. When we additionally assume

regular networks, we establish the full large deviations principle (see Chapter 4 for details) for (1.1)–(1.2)

and we characterize explicitly the corresponding rate function. More precisely, for generic sets E and certain

additional conditions, we show that for any node i:

lim

k!1
1

k
log P (xi,k 2 E) = �IJ ,N (E),

where IJ ,N (·) is the same at all nodes. Our result reveal that IJ ,N has a very neat form: IJ ,N is the convex

hull of two functions, I(·) +J and NI(·), where I(·) is the rate function of a node working in isolation, J
is the large deviation rate of consensus in (1.5), and NI(·) is the optimal rate function, i.e., the rate function

of a (fictional) fusion node. Figure 1.2 illustrates I(·) +J , NI(·) and IJ ,N (·) for the case when the nodes’

observations are Gaussian.

Figure 1.2: Illustration of IJ ,N for a network of size N = 3, with J = 5, and Zi,t ⇠ N (0, 1). The more
curved blue dotted line plots NI(x) =

1

2

Nx2, the less curved blue dotted line plots I(x) + J =

1

2

x2

+ J .
The solid red line plots IJ ,N = co (NI(·), I(·) + J ).

4) Spatially different innovations and symmetric Wk’s. We extend the above conclusions to spatially

non-identically distributed observations, hence encompassing distributed Gaussian estimation in sensor net-

works. We show that distributed estimation exhibits qualitatively similar behavior as described above. For

sufficiently high accuracy (sufficiently small ⇠), it achieves the performance of the centralized estimator; for

a very coarse accuracy, distributed estimator can be significantly poorer than the centralized estimator.
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Chapter 5: Large deviations for Distributed detection

We establish the large deviations performance of distributed detection of type (1.1)–(1.2) for random net-

works. Specifically, we consider distributed detector proposed in [1]. This result for distributed detection

may be seen as a counterpart result to the (centralized detection’s) Chernoff lemma [8]. We allow for ran-

dom, symmetric, i.i.d. matrices Wk and generic (non-Gaussian) distributions of the agents’ measurements.

We show that distributed detection exhibits a phase transition behavior with respect to the large deviations

rate of consensus J in (1.5) (network connectivity). If J is above a threshold, then the large deviations

rate of detection error probability with distributed detector equals the Chernoff information–the best pos-

sible rate of the optimal centralized detector. Thus, when the network connectivity is above the threshold,

distributed detection is as good as the optimal centralized detector. When J is below the threshold, we find

what fraction of the centralized detector’s performance can distributed detector achieve.

We demonstrate how the optimality threshold is a function of the logarithmic moment generating func-

tion of the measurements’ log-likelihood ratios and of the number of agents N . This reveals for the perfor-

mance of distributed detection a very interesting interplay between the distribution of the agents’ measure-

ments (e.g., Gaussian or Laplace) and the network connectivity (the value of J ). We show that, for the same

network connectivity (same J ), a distributed detector with given observations distributions, say, Laplace,

may match the optimal asymptotic performance of the centralized detector, while the distributed detector for

Gaussian observations may be suboptimal, even though the centralized detectors for the two distributions,

Laplace and Gaussian, have the same optimal asymptotic performance. (See Figure 1.3 for an illustration.)

This is a very interesting effect with distributed detection that does not have a parallel in the classical, cen-

tralized detection. Figure 1.3 illustrates the dependence of distributed detection’s large deviation rate on J
(network connectivity) and the observations’ distribution. We can see that, at the value J = J ?, further

increase of J does not pay off in terms of detection performance, as we have already reached the best,

centralized detector’s level. Hence, in a sense, the threshold value J ? represents the optimal operating point

of the network. Finally, we address the problem of “targeting” the value J ? when the inter-agent links are

fading, and the fading probabilities depend on the allocated transmission powers. We optimally allocate the

agents’ transmission powers such that the value J ? is achieved with the minimal overall (across agents)

invested power.
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Figure 1.3: Error exponent versus the large deviations rate of consensus J for the Gaussian and Laplace
sensor observations. The saturation level of the error exponent in the figure is the optimal centralized
detector’s error exponent. The centralized Gaussian and Laplace detectors are equivalent, while distributed
detectors are not equivalent: Laplace distributed detector has a lower value of the threshold J ?. Simulated
data are: N = 20, C

ind

= C
ind,L = C

ind,G = 0.005, b
L

= 1, m
L

= 0.2, and m2

G

/�2

G

= 0.04 = 8C
ind

.
(See Section 5.3 for details.)

1.2 Literature review

We now provide a literature review that help us contrast our contributions with existing work. We consider

separately the literature on standard consensus and products of stochastic matrices and the literature on

distributed inference.

Literature on consensus and products of stochastic matrices

There has been a large amount of work on distributed averaging (consensus) algorithms and products of

stochastic matrices. In distributed averaging, each agent has a scalar measurement yi, and the goal is for

all agents to find the global average 1

N

PN
i=1

yi. This task can be done via the consensus algorithm, where

the network-wide state xk = (x
1,k, ..., xN,k)

> updates as xk+1

= Wk xk, and Wk is the weight matrix that

respects the sparsity pattern of the network (as in (1.1)–(1.2)). Early work on consensus includes [20, 21],

and the topic received renewed interest in the past decade [22, 15]. Reference [15] analyzes convergence

of the consensus algorithm under deterministic time-varying matrices Wk. Reference [23] provides a de-

tailed study of the standard gossip model, that has been further modified, e.g., in [24, 25]; for a recent

survey, see [26]. Reference [27] analyzes convergence under random matrices Wk, not necessarily sym-

metric, and ergodic – hence not necessarily independent in time. Reference [28] studies effects of delays,
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while reference [29] studies the impact of quantization. Reference [30] considers random matrices Wk and

addresses the issue of the communication complexity of consensus algorithms. The recent reference [31]

surveys consensus and averaging algorithms and provides tight bounds on the worst case averaging times

for deterministic time varying networks.

Existing works mostly study the products Wk · · ·W1

in the context of (standard) consensus or gossip

algorithms, and not with the consensus and innovations algorithms of type (1.1)–(1.2). Hence, these works

consider certain convergence metrics different than J . In contrast, our main concern are the algorithms of

type (1.1)–(1.2), for which J appears as a natural convergence metric. For example, references [23, 32]

consider the ✏-averaging time, and �
2

(E[W 2

k ]). Further, [33] considers limk!1 1

k log E[kWk...W1

� Jk2].
To our best knowledge, the exact large deviations rate J in (1.5) has not been computed for i.i.d. averaging

matrices Wk, nor for the commonly used sub-classes of gossip and link failure models. From existing

results, one can deduce upper bounds on J , but not the exact rate J . (See [10] for an explanation how this

can be done.)

Products of random matrices appear also in many other fields that use techniques drawn from Markov

process theory. Examples include repeated interaction dynamics in quantum systems [13], inhomogeneous

Markov chains with random transition matrices [34, 13], infinite horizon control strategies for Markov chains

and non-autonomous linear differential equations [12], or discrete linear inclusions [35]. These papers are

usually concerned with proving convergence of the products and determining the limiting matrix. Refer-

ence [13] studies the product of matrices belonging to a class of complex contraction matrices and charac-

terizes the limiting matrix by expressing the product as a sum of a decaying process, which exponentially

converges to zero, and a fluctuating process. Reference [12] establishes conditions for strong and weak

ergodicity for both forward and backward products of stochastic matrices, in terms of the limiting points

of the matrix sequence. Using the concept of infinite flow graph, which the authors introduced in previous

work, reference [34] characterizes the limiting matrix for the product of stochastic matrices in terms of the

topology of the infinite flow graph. For more structured matrices, [36] studies products of nonnegative ma-

trices. For nonnegative matrices, a comprehensive study of the asymptotic behavior of the products can be

found in [14]. A different line of research, closer to our work, is concerned with the limiting distributions of

the products (in the sense of the central limit theorem and large deviations). The classes of matrices studied

are: invertible matrices [37, 38] and its subclass of matrices of determinant equal to 1 [39] and, also, positive

matrices [40]. None of these apply to our case, as the matrices that we consider are not invertible (Wk � J

has a zero eigenvalue, for every realization of Wk) and, also, we allow the entries of Wk to be zero, and

therefore the entries of Wk � J might be negative with positive probability. Furthermore, as pointed out
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in [41], the results obtained in [37, 38, 39] do not provide ways to effectively compute the rates of conver-

gence. Reference [41] improves on the existing literature in that sense by deriving more explicit bounds on

the convergence rates, while showing that, under certain assumptions on the matrices, the convergence rates

do not depend on the size of the matrices; the result is relevant from the perspective of large scale dynamical

systems, as it shows that, in some sense, more complex systems are not slower than systems of smaller scale,

but again it does not apply to our study.

Literature on distributed inference

Distributed inference has been extensively studied, in the context of parallel fusion architectures, e.g., [42,

43, 44, 45, 46, 47, 48], consensus-based inference [49, 50, 51, 52], and, more recently, consensus+innovations

distributed inference, see, e.g., [53, 2, 54, 55, 56] for distributed estimation, and [57, 58, 1, 5, 59, 60, 61]

for distributed detection. Different variants of consensus+innovations distributed detection algorithms have

been proposed; we analyze here the algorithm in [1]. In [62], we considered deterministically time vary-

ing networks, where the union networks over finite time windows are connected. In [63, 64], we study

random networks, where [63] considers Gaussian agents’ measurements, while in [64] we consider generic

agents’ measurements. Reference [65] considers the large deviations performance of a different consen-

sus+innovations detection algorithm when the noise is Gaussian and the communications among sensors are

noisy (additive noise).

Reference [1] considers distributed detection’s asymptotic optimality, but in a framework that is very

different from ours. Reference [1] studies the asymptotic performance of the distributed detector where the

means of the sensor observations under the two hypothesis become closer and closer (vanishing signal to

noise ratio (SNR)), at the rate of 1/
p

k, where k is the number of observations. For this problem, there is

an asymptotic, non-zero, probability of miss and an asymptotic, non-zero, probability of false alarm. Under

these conditions, distributed detector is as efficient as the optimal centralized detector, [66], as long as the

network is connected on average. Here, we assume that the means of the distributions stay fixed as k grows.

We establish the large deviations rate of detection error probability, showing that detection error decays to

zero exponentially fast as k goes to infinity. We show that connectedness on average is not sufficient for

distributed detector to achieve the optimality of centralized detection; rather, phase transition occurs, with

distributed becoming as good as centralized, when the network connectivity (the value of J ), exceeds a

certain threshold.

We now contrast our work with reference [2]. The latter reference considers distributed estimation

algorithms of type (1.1)–(1.2) under very general conditions on the underlying network and the agents’
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measurements; it also allows for the inter-agent additive communication noise and for the nonlinear state

updates. The reference proves convergence of the state xi,k to the true parameter ✓ in the sense of: 1) con-

sistency: xi,k ! ✓, almost surely; 2) asymptotic unbiasedness: E[xi,k] ! ✓; and 3) asymptotic normality:
1p
k
(xi,k � ✓) ! N (0, S) in distribution, where N (0, S) is a Gaussian random variable with zero mean and

covariance matrix S. In contrast, we study the large deviations rates of convergence, in the sense of (1.4).

Among the noted three aspects of convergence studied in [2], the closest study to ours is that of asymptotic

normality; but, the large deviations rate and asymptotic normality are different; see, e.g., [8]. While asymp-

totic normality captures only information about the first and second moments of xi,k, the large deviations

rates capture the information about all moments (full distribution) of xi,k. The two metrics are equivalent

only when xi,k is Gaussian, but, due to randomness of the underlying network (randomness of Wk) assumed

here, xi,k is not Gaussian even when the agents’ measurements are Gaussian.
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Chapter 2

Products of Random Stochastic Matrices:

The Symmetric I.I.D. Case

2.1 Introduction

We study the convergence in probability of products Wk · · ·W1

of (doubly) stochastic symmetric N ⇥ N

matrices Wt, t � 1. These products arise in many contexts; we consider a power allocation application

in distributed detection in Chapter 5. When 1) the matrices Wt are independent and identically distributed

(i.i.d.), 2) the support graph of the expected matrix E[Wt] is connected, and 3) each Wt has positive diago-

nals almost surely, it is well known that these products converge to the average consensus matrix J =

1

N 11

>

almost surely [27], hence in probability. The goal of the current chapter is to study the rate of this conver-

gence in probability – namely, we establish that this convergence in probability is exponentially fast, and we

determine the exact exponential rate of this convergence.

We explain our problem in intuitive terms. Consider the static (deterministic) case Wt = A, for all t � 1,

where A is a (doubly) stochastic symmetric matrix with |�
2

(A)| < 1; let k ·k denote the spectral norm. Then

kWk · · ·W1

� Jk = |�
2

(A)|k, or, in words, the spectral norm of the error matrix Wk · · ·W1

� J = Ak � J

decays exponentially fast with exponent |�
2

(A)|. When the Wk’s are random i.i.d. matrices, a similar

behavior occurs, but now the role of |�
2

(A)| is taken by the Lyapunov exponent � < 1, i.e., the path of

the norm kWk · · ·W1

� Jk, k � 1, behaves as �k [67, 33, 68]1. But, contrary to the deterministic case,

because the Wk’s are random, there are paths of the norm kWk · · ·W1

� Jk, k � 1, that decay slower than

�k, although with vanishing probability as the size k of the product increases. To be specific, consider an

1More precisely, limk!+1 (kWk · · ·W1

� Jk) 1
k

= �, almost surely. We also remark that � is a constant that depends only
on the statistics of the matrices Wk (and not on the particular choice of the sequence realization Wk, ..., W

1

), see also [67].
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arbitrary ✏ 2 (0, 1] and, for large k, the rare event {kWk · · ·W1

� Jk � ✏}. In this chapter, we consider the

probability of such rare events and the rate at which the sequence of these probabilities vanishes with k; in

particular, we show that the following large deviation rate J exists

J = lim

k!1
�1

k
log P (kWk · · ·W1

� Jk � ✏) (2.1)

and we show how it can be computed in terms of network parameters and the statistics of the Wk’s. In fact,

we provide a stronger result on the rate J . We show that the same large deviation rate J holds for the

following events. Let dk, k � 1, be a sequence with a decay rate slower than exponential; e.g., dk =

1

k ,

for k � 1. Similarly to the case when dk ⌘ ✏, consider the rare event {kWk · · ·W1

� Jk � dk}. This is

a rare event because kWk · · ·W1

� Jk ⇠ �k << dk. We show that the large deviation rate at which the

probabilities of these rare events vanish with k is the same as the rate J in (2.1). More precisely, for any

sequence dk, k � 1, dk 2 (0, 1], log dk = o(k),

J = lim

k!1
� 1

k
log P (kWk · · ·W1

� Jk � dk) , (2.2)

and the rate J is the same for any such sequence dk.

Our results reveal that the large deviation rateJ is solely a function of the graphs induced by the matrices

Wk and the corresponding probabilities of occurrences of these graphs. In general, the computation of the

rate J is a combinatorial problem. However, for special important cases, we can get particularly simple

expressions. For example, when the matrices Wk are the weight matrices for gossip consensus on a tree, the

rate J is equal to | log(1� pij)|, where pij is the probability of the link {i, j} that is least likely to occur in

the gossip protocol. Another example is with gossip consensus over a regular graph when pij ⌘ p in which

case we show that the rate J equals | log p
isol

|, where p
isol

= 1�dp is the probability that a node is isolated

from the rest of the network, and d is the degree of a node. For gossip over more general graph structures,

we show that J = | log(1�c)|where c is the min-cut value (or connectivity [16]) of a graph whose links are

weighted by the gossip link probabilities; the higher the connectivity c is (the more costly or, equivalently,

less likely it is to disconnect the graph) the larger the rate J and the faster the convergence are. Similarly,

for consensus algorithms running on networks with link failures on general graphs, the rate is computed by

solving a min-cut problem and is hence computable in polynomial time.

We further establish that for a generic model of Wk’s, calculation of the rate J is equivalent to solving

a generalized min-cut problem. Albeit solving the latter is computationally hard in general, we approximate

the rate J efficiently for a class of gossip-like models that subsumes, e.g., standard pairwise gossip and
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symmetrized broadcast gossip. For this class, we provide easily computable tight approximations of J . We

also explicitly calculate the rate J for the correlated fading. Namely, we show that, with this model, there

is a single critical link that determines the rate; this link marks the transition between the connected and

disconnected regime of network operation. Finally, we give a closed form solution for J for arbitrary type

of averaging that runs on a tree.

The results from this chapter on the rate J are based on our work in [10] and [11].

Chapter organization. Section 2.2 introduces the model for random matrices Wk and defines relevant

quantities needed in the sequel. Section 2.3 states and proves the result on the exact large deviation rate J
of consensus. Section 2.4 formulates a generalized min-cut problem and shows that its solution gives the

rate J . In Section 2.5, we detail gossip and link failure averaging models, and we show how to compute the

rate J for each of the studied models.

Notation. We denote by Aij or [A]ij the entry ij of a matrix A. For N 2 N, we denote by SN the set

of stochastic symmetric N by N matrices; by GN the set of all undirected graphs on the set of vertices

V = {1, ..., N}; by IN the identity matrix of size N ⇥N . For a graph G 2 GN we denote with �F (G) the

Fiedler value of G, i.e., the second smallest eigenvalue of the Laplacian matrix of G; by A(G) the adjacency

matrix of G, defined by [A(G)]ij = 1 if {i, j} belongs to G, and [A(G)]ij = 0 otherwise. U(0, 1) denotes

the uniform distribution on the interval [0, 1]; dxe denotes the smallest integer not less than x. For a finite

set S we denote by
�V

2

�

the set of all two-element subsets of V ; by |S| the cardinality of S.

2.2 Problem setup

Let (⌦,F , P) be a probability space, where ⌦ is the set of outcomes, F is a sigma algebra on ⌦, and P is a

probability measure on (⌦,F). Let Wt : ⌦ 7! SN , t � 1, be a sequence of maps that are (F ,B(RN⇥N
) \

SN
)-measurable, that is, for any B 2 B(RN⇥N

) \ SN , {Wt 2 B} belongs to F , for all t � 1. In other

words, {Wt}t�1

is a sequence of random matrices on (⌦,F , P).

Assumption 2.1 1. Random matrices Wt, t � 1, are independent and identically distributed (i.i.d.);

2. Diagonal entries of Wt are almost surely positive, i.e., for each t, almost surely [Wt]ii > 0 for all

i = 1, ..., N .

Let �(s, t) denote the product of the matrices that occur from time t + 1 until time s, 1  t < s, �(s, t) =

Ws · · ·Wt+1

. Also, let e�(s, t) = �(s, t)� J ; we call e�(s, t) the error matrix from time t until time s.
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To analyze the products �(s, t), we introduce the induced graph operator G : SN 7! GN . For W 2 SN ,

we define G(W ) by

G(W ) =

✓

V,

⇢

{i, j} 2
✓

V

2

◆

: Wij > 0

�◆

. (2.3)

Thus, for a given matrix W , G(W ) is a graph on N nodes, without self-loops, with edges between those

nodes i and j for which the entries Wij’s are positive. As W is symmetric, G(W ) is undirected.

Sequence of induced graphs. Using the induced graph operator, from the sequence {Wt}t�1

, we derive

the sequence of random graphs {Gt}t�1

by assigning Gt = G(Wt), for t = 1, 2, . . .. More precisely,

Gt : ⌦ 7! GN , for t � 1, is defined by Gt(!) = G(Wt(!)), for any ! 2 ⌦. Intuitively, the graph Gt

underlying Wt at some time t � 0 is the collection of all communication links that are active at time t. Note

that, for any t � 1, Gt is (F , 2GN
)-measurable, that is, for any H ✓ GN , the event {Gt 2 H} belongs to F .

As the random matrices Wt, t � 1 are independent, it follows by the disjoint block theorem [69] that

the random graphs Gt, t � 1 are also independent. Furthermore, as Wt are identically distributed, it follows

that, for any H 2 GN , the probability P(Gt = H) = P(G(Wt) = H) is the same at all times. Thus, the

sequence {Gt}t�1

is i.i.d., and each Gt is distributed according to the same probability mass function pH ,

H 2 GN , where

pH = P (G(Wt) = H) .

Further, for a collection H ✓ GN , let pH denote the probability that the induced graph of Wt belongs to H,

that is, pH = P(Gt 2 H). Then, pH =

P

H2H pH . Finally, we collect in the set G all the graphs that occur

with positive probability:

G :=

�

H 2 GN
: pH > 0

 

, (2.4)

and we call G the set of realizable graphs. For example, if H contains a link {i, j} such that P([Wt]ij >

0) = 0, then H /2 G; similarly, if for some {i, j} P([Wt]ij > 0) = 1, then all realizable graphs must

contain this link. The complete graph G =

⇣

V,
�V

2

�

⌘

is obtained whenever Wt has a joint probability

density function that is strictly positive on SN . We next give examples of sequences of random matrices that

satisfy Assumption 2.1 and, for each of the examples, we derive the set of realizable graphs and compute

the distribution of the corresponding induced graphs.

Example 2.2 (Gossip with uniformly distributed weights) Let bG = (V, bE) be an arbitrary connected graph

on N vertices. At each time t � 1 a node in V is chosen independently from the previous choices and

according to the probability mass function ru > 0, u 2 V ,
P

u2V ru = 1. The chosen node then randomly

chooses a neighbor in bG according to the probability mass function quv > 0, {u, v} 2 bE,
P

{u,v}2 bE quv = 1,
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u 2 V . Denote the node chosen at time t and its chosen neighbor by ut and vt, respectively. With gossip

with uniformly distributed weights, averaging occurs only at the edge that is active at time t, {ut, vt}, and

with weight equal to the realization of a uniformly distributed parameter ↵t ⇠ U [0, 1]. Correspondingly, the

weight matrix at time t is Wt = IN �↵t(eut � evt)(eut � evt)
>. We assume that ↵t, t � 1, are independent

random variables, and, also, that ↵t is independent of us, vs, for all s, t, implying that the sequence Wt, t � 1

is i.i.d. Also, since ↵t = 1 with probability zero, diagonal entries of Wt are almost surely positive, and we

conclude that the sequence of random matrices {Wt}t�1

constructed in this way satisfies Assumption 2.1.

By construction, every realization of Wt is of the form IN � ↵(eu � ev)(eu � ev)
>, for some ↵ 2 [0, 1]

and u, v 2 V such that {u, v} 2 bE. Thus, every realization of Gt is of the form: 1) (V, ;), when ↵t = 0;

or 2) (V, {u, v}), for {u, v} 2 bE. Since ↵t = 0 with probability 0, we have that p
(V,;) = 0, and, so, the

potential candidates for realizable graphs are only graphs from the second category. Now, for {u, v} 2 bE,

p
(V,{u,v}) = P(↵t > 0, ut = u and vt = v or ut = v and vt = u). Since ↵t is independent of ut and vt,

it follows that p
(V,{u,v}) = ruquv + rvqvu > 0, showing that (V, {u, v}) is a realizable graph. Summing

up, the set of realizable graphs for gossip with uniformly distributed weights running on bG is the set of all

one-link subgraphs of bG

GGossip

(

bG) =

n

(V, {u, v}) : {u, v} 2 bE
o

. (2.5)

We remark that the same conclusions would be obtained if the uniform distribution, which generates ↵t, was

replaced by an arbitrary distribution µ : B([0, 1]) 7! [0, 1] satisfying µ((0, 1)) = 1.

Example 2.3 (Link failure model with Metropolis weights) Consider a connected network defined by bG =

(V, bE). We assume that, at any time t � 1, only edges in bE can occur, and, also, that occurrence of edge

e 2 bE at time t is modeled as a Bernoulli random variable Ze,t ⇠ Ber(pe), for e 2 bE, where pe 2 (0, 1).

We assume that occurrences of edges are independent across space and in time. For t � 1 and i = 1, .., N ,

let di,t =

P

j: {i,j}2 bE Z{i,j},t, that is, di,t is the degree of node i at time t. The weight matrix at time t

is chosen by [Wt]ij =

1

1+max{di,t,dj,t} , for all {i, j} 2 Et, [Wt]ii = 1 �PN
j=1

[Wt]ij , i = 1, .., N and

[Wt]ij = 0, otherwise. It can be easily shown that, for every realization of Ze,t, e 2 bE, diagonal entries of

Wt are positive. Further, since {Ze,t}e2E are independent (in time), and for any e 2 E, Ze,t for t � 1 are

identically distributed, it follows that random matrices Wt are i.i.d. Thus, the sequence {Wt}t�1

satisfies

Assumption 2.1.

For each time t, let Et collect all the edges that are online at time t, Et = {e : Ze,t = 1}. Then, by

construction of Wt, Gt = (V,Et), for all t. Using this fact, for any H = (V,E) 2 GN such that E ✓ bE,

we get pH = P(Ze,t = 1, e 2 E and Ze,t = 0, e /2 E), which by the independence assumption yields
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pH =

Q

e2E pe
Q

f /2E(1� pf ) > 0. We conclude that the set of realizable graphs for the link failure model

on bG is the set of all subgraphs of bG:

GLink fail.
(

bG) =

n

(V,E) : E ✓ bE
o

. (2.6)

Accumulation graph and disconnected collections. For a collection of graphs H ✓ GN , we denote by

�(H) the union graph which contains all the edges of all the graphs in H:

�(H) := (V,
[

G2H
E(G)), (2.7)

where E(G) denotes the set of edges of a graph G.

Specifically, for any 1  t < s, we denote by �(s, t)2 the random graph that collects the edges from all

the graphs Gr that appeared from time r = t + 1 to r = s, s > t, i.e.,

�(s, t) := �({Gs, Gs�1

, . . . , Gt+1

}),

and we call �(s, t) the accumulation graph from time t until time s.

We next define collections of realizable graphs of certain types that will be important in computing the

rate in (2.2) and (2.1).

Definition 2.4 The collection H ✓ G is a disconnected collection on G if its accumulation graph �(H) is

disconnected.

Thus, a disconnected collection is any collection of realizable graphs such that the union of all of its graphs

yields a disconnected graph. We also define the set of all possible disconnected collections on G:

⇧(G) = {H ✓ G : H is a disconnected collection on G} . (2.8)

Example 2.5 (Gossip model) Consider the gossip algorithm from Example 2.2 when bG is the complete

graph on N vertices. In this case G =

n

(V, {i, j}) : {i, j} 2 �V
2

�

o

, that is, G is the set of all possible one-

link graphs on N vertices. An example of a disconnected collection of G is G \ {(V, {i, j}) : j = 1, . . . N} ,

where i is a fixed vertex, or, in words, the collection of all one-link graphs except of those whose link is adja-

2Graph �(s, t) is associated with the matrix product Ws · · ·Wt+1

going from time t + 1 until time s > t. The notation �(s, t)
indicates that the product is backwards; see also the definition of the product matrix �(s, t) after Assumption 2.1 at the beginning
of this section.
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cent to i. Another example is G \ ({(V, {i, k}) : k = 1, . . . N, k 6= j} [ {(V, {j, l}) : l = 1, . . . N, l 6= i}) ,

where {i, j} is a fixed link.

Example 2.6 (Toy example) Suppose that, for some sequence of random matrices taking values in S5, the set

of realizable graphs is G = {G
1

, G
2

, G
3

}, where graphs Gi, i = 1, 2, 3 are given in Figure 2.1. In this model

each realizable graph is a two-link graph and the supergraph of all the realizable graphs �({G
1

, G
2

, G
3

})
is connected. If we scan over the supergraphs �(H) of all subsets H of G, we see that �({G

1

, G
2

}),

G1 G2 G3

Figure 2.1: Example of a five node network with three possible graph realizations, each realization being a
two-link graph

�({G
2

, G
3

}) and �({G
1

, G
2

, G
3

}) are connected, whereas �({G
1

, G
3

}) and �(Gi) = Gi, i = 1, 2, 3, are

disconnected. It follows that ⇧(G) = {{G
1

}, {G
2

}, {G
3

}, {G
1

, G
3

}}.

2.3 Convergence in probability - exponential rate

This Section states and proves the main result of this chapter, Theorem 2.7. We prove Theorem 2.7 by

proving the corresponding large deviation upper and lower bound; the proof of the lower bound is given in

Subsection 2.3.1, whereas the proof of the upper bound is given in Subsection 2.3.2.

Theorem 2.7 Let dk be a sequence of real numbers such that dk 2 (0, 1] and log dk = o(k). Then:

lim

k!1
1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

= �J ,

where

J =

8

<

:

+1 if ⇧(G) = ;
| log p

max

| otherwise

, (2.9)

and p
max

= maxH2⇧(G)

pH is the probability of the most likely disconnected collection.
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We prove Theorem 2.7, by proving separately the lower bound (2.10) and the upper bound (2.11)3:

lim inf

k!1
1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

� �J (2.10)

lim sup

k!1
1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

 �J . (2.11)

Subsection 2.3.1 proves the lower bound (2.10), and Subsection 2.3.2 proves the upper bound (2.11).

2.3.1 Proof of the lower bound (2.10)

We first show that, for any k � 1, a sufficient condition for the norm
�

�

�

e

�(k, 0)

�

�

�

being above dk is that the

supergraph �(k, 0) is disconnected. In fact, we prove the following stronger claim.

Lemma 2.8 For any fixed ! 2 ⌦ and any k � 1

�(k, 0) is disconnected )
�

�

�

e

�(k, 0)

�

�

�

= 1.

Proof Fix ! 2 ⌦ and k � 1 and suppose that �(k, 0) is not connected. Suppose further (without loss of

generality) that �(k, 0) has exactly two components and denote them by C
1

and C
2

. Then, for all i, j such

that i 2 C
1

and j 2 C
2

, we have {i, j} /2 �(k, 0), and, consequently, {i, j} /2 Gt, for all 1  t  k. By

definition of Gt, this implies that the corresponding entries in the matrices Wt, 1  t  k, are equal to zero,

i.e.,

8t, 1  t  k : [Wt]ij = 0,8{i, j} s.t. i 2 C
1

, j 2 C
2

.

Thus, every matrix realization Wt from time 1 to time k has a block diagonal form (up to a symmetric

permutation of rows and columns, the same for all Wt)

Wt =

2

4

[Wt]C
1

0

0 [Wt]C
2

3

5 ,

where [Wt]C
1

is the block of Wt corresponding to the nodes in C
1

, and similarly for [Wt]C
2

. This implies

that �(k, 0) has the same block diagonal form, which, in turn, proves that
�

�

�

e

�(k, 0)

�

�

�

= 1. 2

3Note that we need to prove the lower bound (2.10) only for the case when ⇧(G) 6= ;, as the bound trivially holds when
J = +1.
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Using the result of Lemma 2.8, we get:

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

� P
⇣

�

�

�

e

�(k, 0)

�

�

�

= 1

⌘

� P (�(k, 0) is disconnected ) . (2.12)

We now focus on computing the probability of the event that �(k, 0) is disconnected. For any fixed k � 1, a

sufficient condition that guarantees that �(k, 0) is disconnected is that every graph realization Gt from time

1 to time k is drawn from some disconnected collection H 2 ⇧(G). More precisely, for every H 2 ⇧(G)

and every k � 1, it holds for all ! 2 ⌦:

Gt 2 H, for 1  t  k ) �(k, 0) is disconnected. (2.13)

This can be easily shown by observing that if {G
1

, ..., Gk} ✓ H, then �(k, 0) = �({G
1

, ..., Gk}) is a

subgraph of �(H), or, in other words, �(k, 0) cannot contain any additional edge beyond the ones in �(H).

Now, since �(H) is disconnected, it must be that �(k, 0) is disconnected as well. Claim in (2.13) implies

that for every H 2 ⇧(G) and every k � 1

P (�(k, 0) is disconnected ) � P(Gt 2 H, for 1  t  k) = pk
H, (2.14)

where the last equality follows by the time independence assumption. Combining the previous bound with

eq. (2.12) and optimizing the bound over H 2 ⇧(G) yields

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

� pk
max

.

Finally, taking the log, dividing by k, and taking the lim inf over k !1, the lower bound (2.10) follows.

2.3.2 Proof of the upper bound (2.11)

To prove the upper bound, we first extend the concept of the induced graph operator to the �-induced graph

operator which accounts only for those entries that are above some given � > 0, i.e., the entries that are

sufficiently important. Using the definition of the �-induced graph, we correspondingly extend the concepts

of the accumulation graph, the set of realizable graphs and the most likely disconnected collection. We

explain this next.

The family of �-induced graph sequences.
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Definition 2.9 For each � > 0 we define the �-induced graph operator G� : SN 7! GN [ {E} by

G�(W ) =

8

<

:

⇣

V,
n

{i, j} 2 �V
2

�

: Wij � �
o⌘

, if Wii � �, 8 i

E, otherwise

. (2.15)

As we can see from the definition, if a matrix has all diagonal entries above �, then its �-induced graph

contains all the edges whose corresponding entries of the matrix are above �. On the other hand, any matrix

that has a diagonal entry below � gets mapped by G� to the symbol E; note that, by doing this, we discard

all the potential edges for such a matrix (no matter how large their corresponding entries are). Intuitively,

�-induced graph operator G�, compared to G, acts as an edge truncator that cuts off all the non-significant

edges and, also, it discards all the matrices with low diagonals by mapping them to E. We will see later in

the analysis that, whenever at some point in the sequence Wt, t � 1, a matrix with a small diagonal entry

occurs, we cannot say much about the continuity of the “information flow” at that point. Thus, we introduce

a special symbol, E, to indicate such matrices that cut (or “erase”) the information flow.

We now use operators G�, � > 0, to construct from {Wt}t�1

new induced graph sequences. For every

� > 0, t � 1, let Gt,� : ⌦ 7! GN [ {E} be defined by Gt,�(!) = G�(Wt(!)), for ! 2 ⌦. Thus, for every �,

Gt,� is the �-induced graph of the matrix Wt, t � 1. Remark that, in contrast with the regular induced graph

Gt, Gt,� can take value E.

Each sequence {Gt,�}t�1

from this family indexed by � is i.i.d., as the sequence {Wt}t�1

is i.i.d. For

any H 2 GN , denote by pH,� the probability that Gt,� is equal to H , i.e., is pH,� = P(Gt,� = H). The

probability that Gt,� takes value E is denoted by pE,� = P(Gt,� = E). We show in Lemma 2.10 that, for each

t, Gt,� converges almost surely to Gt as � ! 0, thus implying the corresponding convergence in distribution.

For convenience, we state the result in terms of the adjacency matrices: for any ! 2 ⌦, t � 1 and � > 0, we

define At(!) = A(Gt(!)), At,�(!) = A(Gt,�(!)), if Gt,�(!) 6= E, otherwise, we assign At,�(!) to be the

N by N matrix of all zeros.

Lemma 2.10 For any t � 1, almost surely At,� ! At, as � ! 0. Hence, for any H 2 GN , lim�!0

pH,� =

pH and also lim�!0

pE,� = 0.

Proof For any t � 1, let ⌦

?
t = {[Wt]ii > 0, 8 i}; note that, by Assumption 2.1, P (⌦

?
t ) = 1. Now, fix

t and ! 2 ⌦

?
t , and consider W = Wt(!). Then, Wii > 0 for all i and let �

0

= mini Wii (note that �
0

> 0

and also that it depends on !). For all � > �
0

, G�(W ) = E, whereas for all � 2 (0, �
0

], G�(W ) 2 GN .

Note that, to prove the claim, it is sufficient to consider only the case when �  �
0

. First, for all {i, j} such

that Wij = 0, we have [At(!)]ij = 0 and also [At,�(!)]ij = 0 for all �  �
0

(in fact, due to the definition
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of At,�, the latter holds for all �), showing that [At,�(!)]ij converges to [At(!)]ij . On the other hand, let ↵

be the minimum over all positive entries of W , ↵ = min{i,j}: Wij>0

Wij and note that ↵  �
0

and ↵ > 0.

Then, for all �  ↵, G�(W ) and G(W ) match, implying that At,�(!) = At(!) for all such �. As ! was an

arbitrary point from ⌦

?
t and since P (⌦

?
t ) = 1, the almost sure convergence follows. The second part of the

claim follows from the fact that almost sure convergence implies the convergence in distribution. 2

Similarly as with the set of realizable graphs, for each � > 0, we define the set of �-realizable graphs

G� =

�

H 2 GN
: pH,� > 0

 

. (2.16)

For a collection of graphsH ✓ GN , we denote by pH,� the probability that Gt,� belongs toH, which is equal

to pH,� =

P

H2H pH,�. Similarly as before, ⇧(G�) denotes the set of all possible disconnected collections

on G�.

For � > 0 such that ⇧(G�) 6= ;, let p
max,� = maxH2⇧(G�)

pH,�; that is, p
max,� is the probability that

Gt,� belongs to the most likely disconnected collection on G�. The following corollary of Lemma 2.10 is

one of the main steps in the proof of the upper bound (2.11). We omit the proof of Corollary 2.11 noting

that it uses the similar arguments as the ones in the proof of Lemma 2.10.

Corollary 2.11 If ⇧(G) 6= ;, then there must exist � > 0 such that ⇧(G�) 6= ; for every 0 < �  �.

Moreover,

lim

�!0

p
max,� = p

max

.

Similarly as with accumulation graph �(s, t) that collects all the edges of the (regular) induced graphs

Gt+1

,...,Gs, for each � > 0, we define the �-accumulation graph ��(s, t) to collect the edges of the �-

induced graphs Gt+1,�,...,Gs,�. In contrast with �(s, t), here we have to take into account that, for some �,

realizations of the �-induced graphs might be equal to E. To handle this, for each � > 0 and t � 1, we

introduce Rt,� : ⌦ 7! N [ {0} which we define by

Rt,�(!) =

8

<

:

0, if Gr,�(!) 6= E, for all 1  r  t

max{1  r  t : Gr,�(!) = E}, otherwise

. (2.17)
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Now, for any 1  t < s and � > 0, we define ��(s, t) to be

��(s, t) =

8

>

>

>

<

>

>

>

:

�({Gs,�, ..., Gt+1,�}), if Rs,�  t

�({Gs,�, ..., GRs,�+1,�}), if t < Rs,� < s

E, if Rs,� = s

. (2.18)

We now explain the intuition behind this construction of ��(s, t). If Rs,�  t, that is, if the interval from

t until s is clear from the realization E, then we assign ��(s, t) to collect all the edges of all the �-induced

graph realizations that occurred from time t + 1 until time s. If, on the other hand, it happens that, starting

from time t we encounter the realization E, i.e., if Gr,� = E for some r > t, we consider this to be a bad event

and we reset the number of collected edges so far to zero (formally, by assigning at time r ��(r, t) = E). We

repeat this until we hit time s. Since the last occurrence of the bad realization E was at time Rs,�, assuming

that Rs,� < s, the �-accumulation graph will contain all the edges of the �-induced graph realizations that

occurred from time Rs,� + 1 until time s.

We have seen in the proof of the lower bound in Lemma 2.8 that, if the accumulation graph �(k, 0) is

disconnected, then the norm of the error matrix is still equal to 1 at time k. Lemma 2.12 is, in a sense,

a converse to this result, as it provides a sufficient condition in terms of ��(s, t) for the norm of the error

matrix to drop on the time interval from t until s.

Lemma 2.12 For any fixed ! 2 ⌦, for all 1  t < s and � 2 (0, 1) such that ��(s, t) 6= E, it holds

�

�

�

e

�(s, t)
�

�

�

2  1� �F (��(s, t)) �2(s�t). (2.19)

Using the fact that the Fiedler value (algebraic connectivity) of a connected graph is positive [70], if ��(s, t)

is connected (and ��(s, t) 6= E), then the squared norm of the error matrix on this interval drops for at least

�F (��(s, t)) �2(s�t) > 0. To get a uniform bound for this drop (that holds for all connected realizations of

�(s, t)), we use the Fiedler value of the path graph on N vertices. This is stated next in Corollary 2.13.

Corollary 2.13 For any fixed ! 2 ⌦, for all 1  t < s, � > 0 such that ��(s, t) 6= E and ��(s, t) is

connected
�

�

�

e

�(s, t)
�

�

�

2  1� cN�2(s�t), (2.20)

where cN = 2(1 � cos

⇡
N ) is the Fiedler value of the path graph on N vertices, i.e., the minimum of

�
F

(H) > 0 over all connected graphs H on N vertices [70].
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We next prove Lemma 2.12.

Proof We first prove Lemma 2.12 for all !, �, s, t such that Rs,�(!)  t. To this end, fix ! 2 ⌦, � > 0

and consider a fixed t, s 1  t < s, for which Rs,�(!)  t. Similarly to the proof of Lemma 1 a), b) in [71],

it can be shown here that: 1) [�(s, t)(!)]ii � �s�t, for all i; and 2)[�(s, t)(!)]ij � �s�t, for all {i, j} 2 E,

where we let E denote the set of edges of the graph ��(s, t)(!).

Notice that
�

�

�

e

�(s, t)
�

�

�

2

is the second largest eigenvalue of �(s, t)>�(s, t), and, thus can be computed as:

�

�

�

e

�(s, t)
�

�

�

2

= max

q>q=1, q?1

q>�(s, t)>�(s, t)q

Since �(s, t)>�(s, t) is a symmetric stochastic matrix, it can be shown, e.g., [15], that its quadratic

form, for a fixed vector q 2 RN , can be written as:

q>�(s, t)>�(s, t)q = q>q �
X

{i,j}

h

�(s, t)>�(s, t)
i

ij
(qi � qj)

2 (2.21)

Now, combining the two auxiliary inequalities from the beginning of the proof, we get that, for all {i, j} 2
E, [�(s, t)>�(s, t)]ij � �2(s�t), where, we recall, E is the set of edges of ��(s, t)(!). Further, since all the

entries of �(s, t) are non-negative (for every t, every realization of Wt is a stochastic matrix, and thus has

non-negative entries), we can upper bound the sum in (2.21) over all {i, j} by the sum over {i, j} 2 E only,

yielding:

q>�(s, t)>�(s, t)q  q>q � �2(s�t)
X

{i,j}2E

(qi � qj)
2 . (2.22)

Finally, minq>q=1, q?1

P

{i,j}2E (qi � qj)
2 is equal to the Fiedler value (i.e., the second smallest eigenvalue

of the Laplacian) of the graph ��(s, t)(!). This completes the proof of Lemma 2.12 for the case when

!, �, s, t are such that Rs,�  t. The claim of Lemma 2.12 for the case when !, �, s, t are such that t <

Rs,�(!) < s essentially follows from the submultiplicativity of the spectral norm, the result of Lemma 2.12

for the case that we just proved (with t0 = Rs,�(!)), and the fact that ��(s, Rs,�(!))(!) = ��(s, t)(!).

2 Lemma 2.12 and Corollary 2.13 say that, for each fixed � > 0, whenever there is an interval in which

the �-accumulation graph is connected, then the norm of the error matrix on this interval improves by some

finite amount (dependent on the interval size). We next introduce, for each � > 0, the sequence of �-stopping

times that registers these times at which we are certain that the error matrix makes an improvement.

Family of the sequences of �-stopping times. For each � > 0, we define the sequence of �-stopping times
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Ti,� : ⌦ 7! N [ {+1}, i = 1, 2, . . . by:

Ti,�(!) = min{t � Ti�1,�(!) + 1 : ��(t, Ti�1

(!)) is connected}, for i � 1, (2.23)

T
0,� ⌘ 0.

By its construction, the sequence {Ti,�}i�1

defines the times that mark the right end point of “clear” in-

tervals, without realization of �-induced graphs equal to E, on which �� is connected. Using the result of

Lemma 2.12, we have that at times Ti,� the norm of e� drops below 1 and the averaging process makes an im-

provement. Let further, for each � > 0 and k � 1, Mk,� : ⌦ 7! N [ {0} count the number of improvements

with respect to the �-stopping times until time k:

Mk,�(!) = max {i � 0 : Ti,�(!)  k} . (2.24)

We now explain how, at any given time k, we can use the knowledge of Mk,� to bound the norm of the

“error” matrix e�(k, 0). Suppose that Mk,� = m. If we knew the locations of all the improvements until

time k, Ti,� = ti, i = 1, . . . ,m then, using Lemma 2.12, we could bound the norm of e�(k, 0). Intuitively,

since for fixed k and fixed m the number of allocations of Ti,�’s is finite, there will exist the one which

yields the worst bound on
�

�

�

e

�(k, 0)

�

�

�

. It turns out that the worst case allocation is the one with equidistant

improvements, thus allowing for deriving a bound on
�

�

�

e

�(k, 0)

�

�

�

only in terms of Mk,�. This result is given

in Lemma 2.14.

Lemma 2.14 For any fixed ! 2 ⌦, � > 0 and k � 1:

�

�

�

e

�(k, 0)

�

�

�


✓

1� cN�
2

k
Mk,�

◆

Mk,�
2

. (2.25)

Proof Fix ! 2 ⌦, � > 0, k � 1. If Mk,�(!) = 0, then the claim holds trivially. Thus, suppose

Mk,�(!) = m � 1, and, suppose further T
1,�(!) = t

1

, T
2,�(!) = t

2

, . . . , Tm,�(!) = tm  k

(Ti,�(!) > k, for i > m, because Mk,�(!) = m). By the construction of the �-stopping times, we

know that ��(ti, ti�1

)(!) is connected for all i = 1, ...,m. Thus, we apply Lemma 2.12 on the intervals

from ti�1

until ti, for i = 1, . . . ,m, to get
�

�

�

e

�(ti, ti�1

)

�

�

�

 �

1� cN�2(ti�ti�1

)

�

1

2 . Combining this with
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submultiplicativity of the spectral norm, yields:

�

�

�

e

�(k, 0)(!)

�

�

�

=

�

�

�

e

�(k, tm)(!)

e

�(tm, tm�1

)(!) · · · e�(t
1

, 0)(!)

�

�

�


�

�

�

e

�(k, tm)(!)

�

�

�

�

�

�

e

�(tm, tm�1

)(!)

�

�

�

· · ·
�

�

�

e

�(t
1

, 0)(!)

�

�

�


m
Y

i=1

⇣

1� cN �2(ti�ti�1

)

⌘

1

2

. (2.26)

Denote �i = ti � ti�1

and note that
Pm

i=1

�i  k. Further, remark that f(�) = log

�

1� cN�2�

�

is a

concave function. Taking the log in (2.26) and applying Jensen’s inequality [72] for equal convex multipliers

↵i =

1

m , i = 1, ...,m, yields

m
X

i=1

↵i log

�

1� cN �2�i
�  log

⇣

1� cN �2(

Pm
i=1

↵i�i)

⌘

= log

⇣

1� cN �
2

m

Pm
i=1

�i

⌘

.

Finally, since f is increasing and
Pm

i=1

�i  k,
Pm

i=1

1

m log

�

1� cN �2(�i)
�  log

⇣

1� cN �
2k
m

⌘

. Multi-

plying both sides of the last inequality with m
2

, and computing the exponent yields (2.25). 2

Lemma 2.14 provides a bound on the norm of the “error” matrix e�(k, 0) in terms of the number of

improvements Mk,� up to time k. Intuitively, if Mk,� is high enough relative to k, then the norm of e�(k, 0)

decays exponentially fast (to see this, just take Mk,� = k in eq. (2.25)) and, thus, it cannot stay above dk,

which decays sub-exponentially as k increases. We show that this is indeed true for all ! 2 ⌦ for which

Mk,� = ↵k or higher, for any choice of ↵ 2 (0, 1]; this result is stated in Lemma 2.15, part 1. On the other

hand, if the number of improvements is less than ↵k, then there must have been long intervals on which

�� was disconnected. The probability that such an interval of length t occurs is essentially determined by

the probability that the sequence of �-induced graphs is “trapped” in some disconnected collection for time

t� 1, and it equals pt�1

max,�. As the number of these intervals until time k is at most ↵k, this yields, in a crude

approximation, the probability of pk�↵k
max,� for the event Mk,�  ↵k; this intuition is formalized in part 2 of

Lemma 2.15.

Lemma 2.15 For any fixed � 2 (0, 1), ↵ 2 (0, 1]:

1. there exists sufficiently large k
0

= k
0

(�,↵, {dk}) such that

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� dk, Mk,� � ↵k
⌘

= 0, 8k � k
0

(�,↵, {dk}); (2.27)
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2. for every � 2 (0,J �)

P (Mk,� < ↵k)  exp(��(k � d↵ke))(1� a�(�))

�d↵ke, (2.28)

where a�(�) = exp(�� J �) < 1 and J � is defined as J � = |log(p
max,� + |⇧(G�)|pE,�)|, for � such

that ⇧(G�) 6= ;, and J � = | log pE,�|, otherwise.

Proof Fix � 2 (0, 1), ↵ 2 (0, 1]. To prove 1, we first note that, by Lemma 2.14 we have:

n

�

�

�

e

�(k, 0)

�

�

�

� dk

o

✓
8

<

:

✓

1� cN�
2

k
Mk,�

◆

Mk,�
2

� dk

9

=

;

. (2.29)

This gives

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� dk, Mk,� � ↵k
⌘

 P

0

@

✓

1� cN�
2

k
Mk,�

◆

Mk,�
2

� dk, Mk,� � ↵k

1

A

=

k
X

m=d↵ke
P

0

@

✓

1� cN�
2

k
Mk,�

◆

Mk,�
2

� dk, Mk,� = m

1

A

=

k
X

m=d↵ke
P
✓

g(k, Mk,�) � log dk

k
, Mk,� = m

◆

,

(2.30)

where g(k,m) :=

m
2k log

⇣

1� cN�2

k
m

⌘

, for m > 0. For fixed k, each of the probabilities in the sum above

is equal to 0 for those m such that g(k, m) < � log dk
k . This yields:

k
X

m=d↵ke
P
✓

g(k, Mk,�) � log dk

k
, Mk,� = m

◆


k
X

m=d↵ke
s(k, m), (2.31)

where s(k, m) is the switch function defined by:

s(k, m) :=

8

<

:

0, if g(k, m) < log dk
k

1, otherwise

Also, as g(k, ·) is, for fixed k, decreasing in m, it follows that s(k, m)  s(k, ↵k) for m � ↵k. Combining

this with eqs. (2.30) and (2.31), we get:

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� dk, Mk,� � ↵k
⌘

 (k � d↵ke+ 1)s(k, ↵k).
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We now show that s(k, ↵k) will eventually become 0, as k increases, which would yield part 1 of Lemma 2.15.

To show this, we observe that g has a constant negative value at (k,↵k):

g(k, ↵k) =

↵

2

log

⇣

1� cN�
2

↵

⌘

.

Since log dk
k ! 0, as k !1, there exists k

0

= k
0

(�,↵, {dk}) such that g(k,↵k) < log dk
k , for every k � k

0

.

Thus, s(k, ↵k) = 0 for every k � k
0

. This completes the proof of part 1.

To prove part 2, we first prove the following result which is the main argument in the proof of part 2.

Lemma 2.16 For any � > 0, t � 1

P(T
1,� > t)  e�J �t. (2.32)

Proof Fix � > 0, t � 1. For the case when ⇧(G�) = ; the claim easily follows by noting that

P (T
1,� > t) = P (Gr,� = E, 1  r  t). (The latter is true because each realization of G� which has a

positive probability of occurrence is either a connected graph or equal to E.) Suppose now that � is such that

⇧(G�) 6= ;. Define Sl, l � 1 to be the (random) locations of the realization E in the sequence of �-induced

graphs and let also Qt be the number of such realizations until time t; for convenience, let also S
0

⌘ 0. By

definition of ��, the event {T
1,� > t} is equivalent to the event that �� is disconnected on each block in the

sequence of Gr,�, 1  r  t that is clear from realizations of E. Partitioning this event over all possible

number of realizations of E on the interval from time 1 until time t, Qt, and, also, over all possible locations

of E, Sl, we get

P (T
1,� > t) =

t
X

L=1

X

1s
1

<...<sLt

P ( Qt = L, Sl = sl,��(sl � 1, sl�1

) is disc., l = 1, ..., L,��(t, sL) is disc. )

=

t
X

L=0

pL
E,�

X

1s
1

<...<sLt

P( ��(t, sL) is disc. )

L
Y

l=1

P( ��(sl � 1, sl�1

) is disc. ), (2.33)

where the last equality follows from the fact that realizations of Gr,� belonging to disjoint blocks are inde-

pendent, and, also, we implicitly assume that the statement ��(sl � 1, sl�1

) is disc. implies that Gr,� 6= E

sl�1

< r  sl. We now fix l, sl, sl�1

and focus on computing P( ��(sl � 1, sl�1

) is disc. ). To this

end, let ⌦

?
� = \t�1

{Gt,� 2 {G� [ {E}}} and note that, since each of the events in the intersection

has probability 1, the event ⌦

?
� also has probability 1. We show that {��(sl � 1, sl�1

) is disc.} \ ⌦

?
� ✓

[H2⇧(G�)

{Gr,� 2 H, sl�1

< r < sl}, or, in words, if �� is disconnected on some interval and all the graph

realizations that occurred during this interval belong to G�, then there must exist a disconnected collection
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on G� to which all the graph realizations belong to; the last claim, since P(⌦

?
�) = 1, would yield

P (��(sl � 1, sl�1

) is disc.) 
X

H2⇧(G�)

p
sl�sl�1

�1

H,�  |⇧(G�)|psl�sl�1

�1

max,� . (2.34)

To prove the claim above, consider fixed ! 2 ⌦

?
� such that ��(sl � 1, sl�1

) is disconnected, and let

Hl = {Gsl�1

+1,�(!), ..., Gsl�1,�(!)}. Since ! 2 ⌦

?
� , and we assume that Gr,�(!) 6= E, then it must

be that Gr,�(!) 2 G�, for all sl�1

< r < sl. On the other hand, since ��(sl � 1, sl�1

)(!) = �(Hl)

is disconnected, it follows that Hl is a disconnected collection on G�, thus proving the claim. Combining

now (2.33) and (2.34) yields (2.32):

P (T
1,� > t) 

t
X

L=0

pL
E,�

X

1s
1

<...<sLt

|⇧(G�)|pt�sL
max,�

L
Y

l=1

|⇧(G�)|psl�sl�1

�1

max,�

=

t
X

L=0

✓

t

L

◆

pL
E,� |⇧(G�)|L+1 pt�L

max,� = (p
max,� + |⇧(G�)|pE,�)

t .

2

Now, notice that we can express the event that Mk,� < ↵k through increments of �-stopping times:

{Mk,� < ↵k} =

�

Td↵ke,� > k
 

=

n

Pd↵ke
i=1

Ti,� � Ti�1,� > k
o

. Applying the exponential Markov inequal-

ity [69] with parameter � > 0

P(Mk,� < ↵k)  exp(��k)E

2

4

exp(

d↵ke
X

i=1

�(Ti,� � Ti�1,�))

3

5

= exp(��k) (E [exp(�T
1,�)])

d↵ke , (2.35)

where the equality follows from the fact that the increments of �-stopping times are i.i.d. We now focus on

computing the expectation in the equation above. Using the result of Lemma 2.16

E [exp(�T
1,�)] =

1
X

t=1

exp(�t)P(T
1,� = t) 

1
X

t=1

exp(�t)P(T
1,� > t� 1)

 exp(�)

1
X

t=1

exp(�(t� 1))(p
max,� + |⇧(G�)|pE,�)

t�1. (2.36)

The sum in the previous equation converges for all � < J � to 1/(1 � a�(�)). Combining this with (2.35)

completes the proof of part 2. 2
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From parts 1 and 2 of Lemma 2.15 it follows that for any fixed ↵ 2 (0, 1], � 2 (0, 1) and � 2 (0,J �):

lim sup

k!1
log

1

k
P
⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

 ��(1� ↵)� ↵ log(1� a�(�)). (2.37)

Now, taking first the infimum over ↵ and then the infimum over � yields:

lim sup

k!+1
1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

 inf

�2(0,J �)

inf

↵2(0,1]

��(1� ↵)� ↵ log(1� a�(�))

= inf

�2(0,J �)

�� = �J �. (2.38)

Finally, if ⇧(G) 6= ;, then, by Lemma 9 and Corollary 10, J � converges to | log p
max

|, as � ! 0. On the

other hand, if ⇧(G) = ;, it can be easily shown that J � goes to +1, as � ! 0. Taking the limit � ! 0 in

eq. (36) yields the upper bound (10).

2.4 Computation of p
max

via generalized min-cut

This section introduces a generalization of the minimum cut (min-cut) problem and shows that computing

p
max

is equivalent to solving an instance of the generalized min-cut. For certain types of averaging, in

which the number of graphs that “cover” an edge is relatively small, we show in Subsection 2.4.1 that the

generalized min-cut can be well approximated with the standard min-cut, and thus can be efficiently solved.

We illustrate this with the broadcast gossip example in Subsection 2.5.1, where we find a 2-approximation

for p
max

by solving two instances of the standard min-cut.

Generalization of the min-cut. Let G = (V,E) be a given undirected graph, with the set of nodes V and

the set of edges E. The generalization of the min-cut problem that is of interest to us assigns a cost to each

set of edges F ✓ E. This is different than the standard min-cut, as with the standard min-cut the costs are

assigned to each edge of E and, thus, where the cost of F is simply the sum of the individual costs of edges

in F . Similarly as with the standard min-cut, the goal is to find F that disconnects G with minimal cost.

More formally, let the function C : 2

E 7! R
+

assign costs to subsets of E, i.e., the cost of F is C(F ), for

F ✓ E. Then, the generalized min-cut problem is

minimize C(F )

subject to F ✓ E : (V,E \ F ) is disconnected
. (2.39)

We denote by gmc(G, C) the optimal value of (2.39). We remark that, when the cost C(F ) is decomposable
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over the edges of F , i.e., when for all F ✓ E, C(F ) =

P

e2F c(e), for some function c : E 7! R
+

, then the

generalized min-cut simplifies to the standard min-cut. For this case, we denote the optimal value of (2.39)

by mc(G, c).

Consider now a general averaging model on the set of nodes V and with the collection of realizable

graphs G. Let G = �(G), where G = (V,E) and E collects all the edges that appear with positive

probability. The following lemma shows that the rate J for the general averaging model can be computed

by solving an instance of the generalized min-cut problem.

Lemma 2.17 Let the cost function C : 2

E 7! R
+

be defined by C(F ) = P([e2F {e 2 E(Gt)}), for F ⇢ E.

Then,

J = � log (1� gmc(G, C)) (2.40)

Proof For each F ✓ E such that (V,E \ F ) is disconnected, define SF by: SF = {H 2 ⇧(G) :

E(�(H)) ✓ E \ F}. Note that SF ✓ ⇧(G), for each F . We show that sets SF cover ⇧(G), i.e., that

[F✓E:(V,E\F ) is disc.SF = ⇧(G). To this end, pick an arbitrary H 2 ⇧(G) and let F ?
:= E \ E(�(H)).

Then, because supergraph �(H) is disconnected, F ? must be a set of edges that disconnects G; if we now

take the set SF ? that is associated with F ?, we have that H belongs to SF ? proving the claim above. Since

we established that [F✓E:(V,E\F ) is disc.SF = ⇧(G), in order to find p
max

, we can branch the search over

the SF sets:

p
max

= max

H2⇧(G)

pH = max

F✓E:(V,E\F ) is disc.
max

H2SF

pH (2.41)

(where, for every empty SF , we define its corresponding value maxH2SF
pH to be 0). Next, pick a fixed set

F for which SF is nonempty and define HF by:

HF = {H 2 G : E(H) ✓ E \ F} ; (2.42)

that is, HF collects all the realizable graphs whose edges do not intersect with F . Note that, by construction

of HF , E(�(HF )) ✓ E \ F , proving that HF 2 SF . Now, for an arbitrary fixed collection H 2 SF , since

any graph H that belongs to H must satisfy the property in (2.42), we have that H ✓ HF and, consequently,

pH  pHF
. This proves that, for every fixed non-empty SF the maximum maxH2SF

pH is attained at HF
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and equals pHF
= P(E(Gt) ✓ E \ F ). Combining the last remark with (2.41), yields:

p
max

= max

F✓E:(V,E\F ) is disc.
P(E(Gt) ✓ E \ F ). (2.43)

Finally, noting that P(E(Gt) ✓ E \ F ) = 1� P ([e2F {e 2 E(Gt)}) completes the proof of Lemma 2.17.

2

Rate J for algorithms running on a tree. When the graph that collects all the links that appear with

positive probability is a tree, we obtain a particularly simple solution for J using formula (2.40). To this

end, let T = (V,E) be the supergraph of all the realizable graphs and suppose that T is a tree. Then, removal

of any edge from E disconnects T . This implies that, to find the rate, we can shrink the search space of the

generalized min-cut problem in (2.40) (see also eq. (2.39)) to the set of edges of the tree:

min

F✓E:(V,E\F ) is disc.
C(F ) = min

e2E
C(e).

Now, C(e) = P(e 2 E(Gt)) can be computed by summing up the probabilities of all graphs that cover e, i.e.,

C(e) =

P

H2G:e2E(H)

pH . The minimum of C(e) is then achieved at the link that has the smallest probability

of occurrence p
rare

= mine2E
P

H2G:e2E(H)

pH . Thus, the rate J is determined by the probability of the

“weakest” link in the tree, i.e., the link that is most rarely online and

J Tree
= � log (1� p

rare

) . (2.44)

2.4.1 Approximation of J by min-cut based bounds

We now explain how we can compute the rate J by approximately solving the instance of the generalized

min-cut in (2.40) via two instances of the standard min-cut. Our strategy to do this is to “sandwich” each

cost C(F ), F ✓ E, by two functions, which are decomposable over the edges of F . To this end, fix F and

observe that

C(F ) = P
 

[

e2F

{e 2 E(Gt)}
!

=

X

H2G:e2E(H), for e2F

pH . (2.45)

By the union bound, C(F ) is upper bounded as follows:

C(F ) 
X

e2F

P(e 2 E(Gt)) =

X

e2F

X

H2G:e2E(H)

pH . (2.46)
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We next assume that for every set of m edges we can find m distinct graphs, say H
1

, . . . ,Hm 2 G, such

that Hi covers ei, i = 1, . . . ,m4. Then, for each e 2 F , we can pick a different graph in the sum in (2.45),

say He, such that e 2 E(He), until all the edges in F have its associated graph He. The sum of the

probabilities of the chosen graphs
P

e2F pHe is then smaller than C(F ). Finally, we can bound each pHe by

the probability of the least likely graph that covers e, thus yielding:

X

e2F

min

H2G:e2E(H)

pH  C(F ).

Motivated by the previous observations, we introduce c, c : E 7! R
+

defined by

c(e) =

X

H2G:e2E(H)

pH , c(e) = min

H2G:e2E(H)

pH . (2.47)

Then, for each F ✓ E, we have:

X

e2F

c(e)  C(F ) 
X

e2F

c(e).

Because the inequality above holds for all F ✓ E, we have that:

mc(G, c)  gmc(G, C)  mc(G, c). (2.48)

Therefore, we can efficiently approximate the rate J by solving two instances of the standard min-cut

problem, with the respective costs c and c. To further simplify the computation of J , we introduce D–

the maximal number of graphs that “covers” an edge e, where the maximum is over all edges e 2 E. We

also introduce p and p to denote the probabilities of the most likely and least likely graph, respectively,

i.e., p = maxH2G pH and p = minH2G pH . Then, the function c can be uniformly bounded by Dp and,

similarly, function c can be uniformly bounded by p, which combined with (2.48) yields5:

p mc(G, 1)  gmc(G, C)  D p mc(G, 1); (2.49)

The expression in (2.49) gives a D p/p-approximation for gmc(G, C), and it requires solving only one

4The case when this is not true can be handled by splitting the probability pH of a graph H into d equal parts, where d is the
number of edges covered by H . The approximation bounds (that are derived further ahead) would then depend on d; we omit the
details here due to lack of space

5We are using here the property of the min-cut with uniform positive costs by which mc(G, ↵1) = ↵mc(G, 1), for ↵ � 0 [73],
where 1 denotes the cost function that has value 1 at each edge
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instance of the standard min-cut, with uniform (equal to 1) costs.

2.5 Examples: randomized gossip and fading model

This section computes the rate J for the commonly used averaging models: randomized gossip and link

failure. Subsection 2.5.1 studies two types of the randomized gossip algorithm, namely pairwise gossip and

symmetrized broadcast gossip and it shows that, for the pairwise gossip on a generic graph G = (V,E), the

corresponding rate can be computed by solving an instance of the standard min-cut; for broadcast gossip, we

exploit the bounds derived in Subsection 2.4.1 to arrive at a tight approximation for its corresponding rate.

Subsection 2.5.2 studies the network with fading links for the cases when 1) all the links at a time experience

the same fading (correlated fading), and 2) the fading is independent across different links (uncorrelated fad-

ing). Similarly as with the pairwise gossip, the rate for the uncorrelated fading can be computed by solving

an instance of a min-cut problem. With the correlated fading, there exists a threshold on the fading coeffi-

cients, which induces two regimes of the network operation, such that if at a time t the fading coefficient is

above the threshold, the network realization at time t is connected. We show that the rate is determined by

the probability of the “critical” link that marks the transition between these two regimes.

2.5.1 Pairwise and broadcast gossip

Min-cut solution for pairwise gossip. Let G = (V,E) be an arbitrary connected graph on N vertices.

With pairwise gossip on graph G, at each averaging time, only one link from E can be active. Therefore,

the set of realizable graphs GGossip is the set of all one link graphs on G:

GGossip
= {(V, e) : e 2 E} .

Now, consider the probability P([e2F {e 2 E(Gt)}), for a fixed subset of edges F ✓ E. Because each re-

alization of Gt can contain only one link, the events under the union are disjoint. Thus, the probability of the

union equals the sum of the probabilities of individual events, yielding that the cost C(F ) is decomposable

for gossip, i.e.,

C(F ) =

X

e2F

p
(V,e)

Therefore, the rate for gossip is given by

J Gossip
= � log

�

1�mc(G, cGossip
)

�

, (2.50)
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where cGossip
(e) = p

(V,e). We remark here that, for pairwise gossip, functions c, c in (2.47) are identical

(each link e has exactly one graph (V, e) that covers it, hence c(e) = c(e) = p
(V,e)), which proves that

bounds in (2.48) are touched for this problem instance. For the case when all links have the same activation

probability equal to 1/|E|, the edge costs cGossip
(e) are uniform and equal to 1/|E|, for all e 2 E and (2.50)

yields the following simple formula for the rate for uniform gossip:

J Gossip
= � log (1� 1/|E|mc(G, 1)) . (2.51)

Gossip on a regular network. Consider the special case when the gossip algorithm runs on a connected

regular graph of degree d, d = 2, ..., N � 1, and the link occurrence probabilities are all equal, p :=

pij =

2

Nd . It can be easily seen that the value of the min-cut is p times the minimal number of edges that

disconnects the graph, which equals pd = 2/N ; this corresponds to cutting all the edges of a fixed node,

i.e., isolating a fixed node. Hence,

p
max

= P (node i is isolated) = 1� 2/N, J = � log(1� 2/N).

Note that the rate J is determined by the probability that a fixed node is isolated, and, also, the rate J does

not depend on the degree d.

2-approximation for broadcast gossip. With bidirectional broadcast gossip on an arbitrary connected

graph G = (V,E), at each time a node v 2 V is chosen at random and the averaging is performed across

the neighborhood of v. Thus, at each time t, the set of active edges is the set of all edges adjacent to the

vertex that is chosen at time t; hence, the set of realizable graphs GB-Gossip is

GB-Gossip
= {(V, {{u, v} : {u, v} 2 E} : v 2 V } .

We can see that each edge e = {u, v} can become active in two ways, when either node u or node v is

active. In other words, each edge is covered by exactly two graphs. This gives D = 2 and using (2.48) we

get the following approximation:

p mc(G, 1)  gmc(G, C)  2p mc(G, 1),

where p and p are the probabilities of the least, resp., most, active node. For the case when all the nodes
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have the same activation probability equal to 1/N , using (2.49) we get a 2-approximation:

1

N
mc(G, 1)  mc(G, C)  2

N
mc(G, 1).

Thus, the rate J for the broadcast gossip with uniform node activation probability satisfies:

J B-Gossip 2 [� log(1� 1

N
mc(G, 1)),� log(1� 2

N
mc(G, 1))]. (2.52)

We now compare the rates for the uniform pairwise and uniform broadcast gossip when both algorithms are

running on the same (connected) graph G = (V,E). Consider first the case when G is a tree. Then, E =

N � 1 and, since all the links have the same occurrence probability 1/(N � 1), the formula for gossip gives

J Gossip
= � log(1�1/(N �1)). To obtain the exact rate for the broadcast gossip, we recall formula (2.44).

As each link in the tree is covered by exactly two graphs, and the probability of a graph is 1/N , we have that

prare

= 2/N . Therefore, the rate for broadcast gossip on a tree is J Gossip
= � log(1�2/N), which is higher

than J Gossip
= � log(1 � 1/(N � 1)). Consider now the case when G is not a tree. Then, the number of

edges |E| in G is at least N and we have J Gossip
= � log(1�1/|E|mc(G, 1))  � log(1�1/Nmc(G, 1)).

On the other hand, by (2.52), J B-Gossip � � log(1 � 1/Nmc(G, 1)). Combining the last two observations

yields that the rate of broadcast gossip is always higher than the rate of pairwise gossip running on the same

graph. This is in accordance with the intuition, as with broadcast gossip more links are active at a time, and,

thus, we would expect that it performs the averaging faster.

2.5.2 Link failure: fading channels

Consider a network of N sensors described by graph G = (V,E), where the set of edges E collects all the

links {i, j} that appear with positive probability, i, j 2 V . To model the link failures, we adopt a symmetric

fading channel model, a model similar to the one proposed in [74] (reference [74] assumes asymmetric

channels). At time k, sensor j receives from sensor i

yij,k = gij,k

s

Sij

d↵
ij

xi,k + nij,k,

where Sij is the transmission power that sensor i uses for transmission to sensor j, gij,k is the channel fading

coefficient, nij,k is the zero mean additive Gaussian noise with variance �2

n, dij is the inter-sensor distance,

and ↵ is the path loss coefficient. We assume that gij,k, k � 1, are i.i.d. in time and that gij,t and glm,s are

mutually independent for all t 6= s; also, the channels (i, j) and (j, i) at time k experience the same fade, i.e.,
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gij,k = gji,k. We adopt the following link failure model. Sensor j successfully decodes the message from

sensor i (link (i, j) is online) if the signal to noise ratio exceeds a threshold, i.e., if: SNR =

Sijg2

ij,k

�2

nd↵
ij

> ⌧ ,

or, equivalently, if g2

ij,k >
⌧�2

nd↵
ij

Sij
:= �ij . Since link occurrences are “controlled” by the realizations of the

fading coefficients, the set of realizable graphs in the link failure model depends on the joint distribution of

{gij,k}{i,j}2E . In the sequel, we study the cases when the fading coefficients at some time k are either fully

correlated or uncorrelated, and we compute the rate J for each of these cases.

Uncorrelated fading. With uncorrelated fading, gij,k are independent across different links for all k. There-

fore, in this model, the indicators of link occurrences are independent Bernoulli random variables, such that

the indicator of link {i, j} being online is 1 if the fading coefficient at link {i, j} exceeds the communica-

tion threshold of {i, j}, i.e., if g2

ij,k > �ij , and is zero otherwise. Due to the independence, each subgraph

H = (V,E0
) of G, E0 ✓ E, is a realizable graph in this model, hence,

GFail-uncorr
=

�

H = (V,E0
) : E0 ✓ E

 

.

Also, the probability of occurrence of H = (V,E0
) 2 GFail-uncorr is

pH =

Y

{i,j}2E0
Pij

Y

{l,m}2E\E0
(1� Plm),

Denote with Pij = P(g2

ij,k > �ij) the probability that link {i, j} is online. We compute the rate J Fail-uncorr

for the uncorrelated link failure using the result of Lemma 2.17. To this end, let F be a fixed subset of E

and consider the probability that defines C(F ). Then,

C(F ) = P
�[{i,j}2F {{i, j} 2 E(Gt)}

�

= 1� P
�\{i,j}2F {{i, j} /2 E(Gt)}

�

= 1�
Y

{i,j}2F

(1� Pij),

where the last equality follows by the independence of the link failures. To compute the rate, we follow
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formula (2.40):

1� min

F✓E:(V,E\F ) is disc.
C(F ) (2.53)

= max

F✓E:(V,E\F ) is disc.

Y

{i,j}2F

(1� Pij)

= exp(� min

F✓E:(V,E\F ) is disc.

X

{i,j}2F

� log(1� Pij)). (2.54)

The optimization problem in the exponent is an instance of the standard min-cut problem with edge costs

cFail-uncorr
({i, j}) = � log(1� Pij). (2.55)

By formula (2.40), the rate is obtained from the expression in line (2.53) by taking the � log, which finally

yields:

J Fail-uncorr
= mc(G, cFail-uncorr

). (2.56)

Regular graph and uniform link failures. Consider now the special case when the underlying graph is

a connected regular graph with degree d, d = 2, ..., N � 1, and the uniform link occurrence probabilities

pij = p. It is easy to see that p
max

and J simplify to:

p
max

= P (node i is isolated) = (1� p)

d,

J = �d log(1� p).

Correlated fading. With the correlated fading, at any time k each link experiences the same fading, i.e.,

gij,k = gk for all {i, j} 2 E and so the realization of the common fading gk sets all the link occurrences

at time k. For instance, if g2

k = ḡ2, then all the links {i, j} with �ij < ḡ2 are online, and the rest of the

links are offline. Therefore, the graph realization corresponding to the fading realization ḡ2 is (V,E0
), where

E0
=

�{i, j} 2 E : �ij < ḡ2

 

. We can see that the higher the ḡ2 is, the more links are online. Also, if we

slide ḡ2 from zero to +1, the corresponding graph realization gradually increases in size by adding one

more link whenever ḡ2 crosses some threshold �ij – starting from the empty graph (ḡ2

= 0), until the full

graph (V,E) is achieved, which occurs when ḡ2 crosses the highest threshold. Therefore, if we order the

links in the increasing order with respect to their thresholds �ij , such that e
1

2 E has the lowest threshold,

�e
1

= min{i,j}2E �ij , and e|E| 2 E has the highest threshold, �e|E| = max{i,j}2E �ij , then the set of all
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realizable graphs with the correlated fading model is

GFail-corr
= {Hl = (V, {e

1

, e
2

, . . . , el}) : 0  l  |E|} ,

where the graph realization corresponding to l = 0 is the empty graph (V, ;). For fixed l, 0  l  |E|, let

pl = P(g2

k > �l) denote the probability that link el is online. Then, the probability pHl
of graph realization

Hl is pHl
= pl � pl+1

= P(�l < g2

k  �l+1

). Let lc be the index corresponding to the link that marks the

connectedness transition of graphs Hl, such that Hl is disconnected for all l < lc, and Hl is disconnected,

for all l � lc. Then, any disconnected collection on GFail-corr is of the form {H
1

, H
2

, . . . ,Hl}, where l < lc.

The most likely one is {H
1

, H
2

, . . . ,Hlc�1

}, and its probability is pH
1

+pH
2

+. . .+pHlc�1

= 1�pcrit, where

we use pcrit to denote the probability of the “critical” link elc (i.e., pcrit
= plc). Therefore, p

max

= 1 � pcrit

and the rate for the correlated fading model is:

J Fail-corr
= � log

�

1� pcrit
)

�

.

40



Chapter 3

Products of Random Stochastic Matrices:

Temporal Dependencies and Directed

Networks

3.1 Introduction

We have seen in Chapter 2 how to find and compute the large deviation rateJ for products of i.i.d. stochastic

symmetric matrices. In this chapter we go beyond the results in Chapter 2 in the following two ways. First,

we generalize Theorem 2.7 for the sequence of temporally dependent random matrices. More specifically,

we associate a state of a Markov chain to each of the topology realizations Gt. The distribution of the

topologies Gt, t � 1, is then determined by a specified M ⇥M transition probability matrix P , where

M is the number of possible realizations of Gt. This model subsumes, e.g., the token-based protocols

similar to [17], or temporally dependent link failure models, where the on/off state of each link follows a

Markov chain. The model that we study is also very similar to the one proposed in [75]. Reference [75]

considers random consensus algorithms where the sequence of switching topologies follows a Markov chain

and derives conditions for almost sure convergence to consensus. Besides the difference in the problems

themselves, we note that the model that we study is more general than the one in [75]. In [75], the consensus

matrices Wt are assigned deterministically once Gt is given: Wt = I � ↵L(Gt), where L(Gt) is the

Laplacian matrix of the topology Gt and ↵ is a sufficiently small constant. Contrary to [75], in our model

we allow each Wt to be chosen randomly from the set of matrices with the sparsity pattern defined by Gt

and, furthermore, the conditional distributions of Wt (conditioned on the realization of Gt) can differ across
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time t.

We characterize the rate J as a function of the transition probability matrix P . We refer to Theorem 3.3

for details, but here we briefly convey the general idea. Namely, the rate J will be determined by the most

likely way the Markov chain stays “trapped” in some subset of states (graphs) whose union is disconnected.

The probability of this event is determined by the spectral radius of the block in the transition matrix P that

corresponds to this most likely subset of states, and the value of this spectral radius will thus determined the

rate J . We illustrate the results on two examples, namely gossip with Markov dependencies and temporally

correlated link failures. The example with temporally correlated link failures shows that “negative temporal

correlations” of the links’ states (being ON or OFF) increase (improve) the rate J when compared with the

uncorrelated case, while positive correlations decrease (degrade) the rate. This result is in accordance with

standard large deviations results on temporally correlated sequences, see, e.g., [[18], exercise V.12, page

59.]

In our second generalization of Theorem 2.7 we remove the assumption that the matrices Wt need to

be symmetric. This is of special importance for distributed algorithms that run on networks in which the

physical communication links can be asymmetric (e.g., at some time, i successfully sends a packet to j, but

the packet that j sends to i drops). When Wt’s are stochastic and with positive diagonal, it is known that

the product Wk · · ·W1

converges almost surely (a.s.) to a random, rank one matrix 1v> (the vector v is

random) [27], under the condition that |�
2

(E[Wk])| is strictly less than one1. Further, the path-wise conver-

gence of Wk · · ·W1

to 1v> is equivalent to the path-wise convergence of |�
2

(Wk · · ·W1

)| to zero. Thus, as

a measure of how far the product at time k is from its limit, we naturally adopt |�
2

(Wk · · ·W1

)|. Similarly

as in Chapter 2, we are interested in characterizing the probability that the convergence of Wk · · ·W1

to

a (random) limit 1v> is subexponential. More precisely, let dk, k � 1, dk 2 (0, 1] be a sequence with a

decay rate slower than exponential, i.e., log dk = o(k). Then, adopting |�
2

(·)| as the metric, we study the

probability of the event that, at some time k, the product �(k, 0) = Wk · · ·W1

is still dk far away from its

limit:

P (|�
2

(Wk · · ·W1

)| � dk) , k = 1, 2, . . . . (3.1)

We show that the sequence of probabilities in (3.1) decays exponentially fast with k. More precisely, for

any sequence dk 2 (0, 1], k � 1, such that log dk = o(k), we show that the following large deviation limit

exists:

J = lim

k!+1
� 1

k
log P (|�

2

(Wk · · ·W1

)| � dk) . (3.2)

1Note that this condition is equivalent to the condition that the topology of the expected matrix E[Wk] contains a directed
spanning tree.
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We fully characterize the limit J and show that it depends on the distribution of matrices only through

their support graphs. More precisely, J is determined by the probability of the most likely set of support

graphs whose union fails to form a directed spanning tree. Thus, the characterization of J that we discover

exhibits full consistency with the result for symmetric matrices in Chapter 2: for undirected networks a

collection of topologies is jointly tree-free if and only if it is disconnected, and thus when the matrices are

symmetric the two rates J in (3.2) and in (2.2) coincide. Finally, to illustrate our results we consider a

commonly used broadcast gossip protocol [19] in sensor networks, where (only one) node u activates at

a time with probability pu, and broadcasts its state to all single-hop neighbors. For this model, the rate

J = | log 1� p
min

|, where p
min

is the probability of the most rarely active node.

Portions of this chapter have been published in conference proceedings [76] and [77]. The results from

this chapter are to be submitted for a journal publication.

Chapter organization. The next paragraph introduces notation that we use throughout the chapter. Sec-

tion 3.2 studies the model with temporal dependencies, and Section 3.3 studies the model with directed

networks.

Notation. We denote by: Aij or [A]ij the entry in ith row and jth column of a matrix A; Al and Al the

l-th row and column, respectively; ⇢(A) the spectral radius of A; I and J := (1/N)11

> the identity matrix,

and the ideal consensus matrix, respectively; 1 and ei the vector with unit entries, and ith canonical vector

(with ith entry equal to 1 and the rest being zeros), respectively. Further, for a vector a, the inequality

a > 0 is understood component wise. Given a selection S ✓ {1, ..., N} of rows and columns of a matrix

A: {Al : l 2 S} and {Al
: l 2 S}, we denote by AS the submatrix of A corresponding to the selection S.

Similarly, if S is a selection of rows, we denote by ASl the part of Al that corresponds to the selection S.

Likewise, for the selection of columns S, we denote by AlS the part of Al that corresponds to S.

3.2 Matrices with Markov dependencies

In Subsection 3.2.1 we explain the random model with temporal dependencies that we address and state

the main result on the large deviation rate J in Theorem 3.3. This result is proved in Subsections 3.2.2

and 3.2.3: in Subsection 3.2.2 we prove the large deviation lower bound, and in Subsection 3.2.3 we prove

the large deviation upper bound. Finally, Subsection 3.2.4 gives examples for the studied model with tem-

poral dependencies and it illustrates through the examples what is the effect of correlations on the rate J .
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3.2.1 Random model and the main result

Graph temporal dependence. Let Gt, t � 1, be a sequence of random graphs that takes realizations in

GN - the set of all undirected graphs on the set of vertices {1, ..., N}. We assume that Gt is defined on a

probability space (⌦,F , P) such that {Gt = H} 2 F for each H 2 GN . Similarly as in Chapter 2, let

G denote the set of all possible graph realizations; that is, G = {H
1

, ...,HM}, where, for each l, P(Gt =

Hl) > 0 for some t � 1 and for every t P (Gt 2 G) = 1.

We assume that the sequence of random graphs Gt follows a Markov chain.

Assumption 3.1 (Markov chain of graphs Gt) There exist a nonnegative matrix P 2 RM⇥M and a nonneg-

ative vector v 2 RM satisfying
PM

m=1

Plm = 1 for all l = 1, . . . ,M and
PM

l=1

vl = 1, such that for all t

and all l
1

, l
2

, . . . , lt 2 {1, . . . ,M}

P (G
1

= Hl
1

, G
2

= Hl
2

, . . . , Gt = Hlt) = vl
1

Pl
1

l
2

· · ·Plt�1

lt .

Thus, each state in this Markov chain corresponds to one realizable graph Hl, and the chain of graph realiza-

tions evolves according to the transition matrix P : assuming that Hl is the current topology, the probability

to switch to topology Hm in the next time is given by the entry l,m of P , Plm.

Suppose that Wt, t � 1, is a sequence of random matrices defined on the same probability space

(⌦,F , P) on which the sequence of graphs Gt is defined, such that, for each t, the corresponding Wt takes

realizations in SN – the set of all symmetric stochastic N by N matrices, and is (F ,B(RN⇥N
) \ SN

)-

measurable. We will further, for each t, assume that Wt has positive diagonal entries a.s. (similarly as in

Chapter 2), and also that there exists a small positive number � such that all positive entries of Wt are a.s.

lower bounded by �. Now, in terms of the joint distribution of the Wt’s, the only assumption that we make

is that at each time t, Wt respects the sparsity pattern of Gt.

Assumption 3.2 (Matrices Wt) 1. G(Wt(!)) = Gt(!), for every t and every !;

2. There exists � > 0 such that the following two conditions are satisfied:

• diagonal entries of Wt are a.s. greater or equal to �; that is, for every t, with probability 1

[Wt]ii � � for all i;

• Whenever positive, the entries [Wt(!)]ij are a.s. greater or equal to �; that is, for every t,

if P ({i, j} 2 Gt) > 0 for some i, j, then, conditioned on {{i, j} 2 Gt}, [Wt]ij � � with

probability 1.
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Thus, we see that Wt’s will be intrinsically dependent between themselves as a result of correlations between

their support graphs: by construction, the sequence Wt, t � 1, is such that the induced graphs G(Wt), t � 1,

follow a Markov chain. However, note that this puts no constraints on the value of the positive elements

of the matrices: once the sparsity pattern of each Wt is set by the sequence Gt, the joint distribution of the

positive entries of {Wt : t � 1} can be arbitrary. For instance, for any t, given the realization of Gt, t � 1,

the positive entries of Wt can be picked as a function of the arbitrary subset of elements of {Wt : t � 1}.

Therefore, the model that we assume for the sequence Wt allows for much stronger and longer ranging

correlations than those of the Markov chain of their induced graphs Gt.

We next illustrate the model with two simple examples. First, the obvious choice for Wt is when Wt

is itself a Markov chain. For example, suppose that Wt is a Markov chain of matrices on the set of states

{A
1

, ..., AM}, such that each Am has positive diagonal entries. Suppose that each Am has a different

support graph 2. Then, defining Gt = G(Wt), and noting that the minimal positive entry among all the

matrices Am is strictly greater than zero (due to finiteness of the set of states) we see that Wt falls in the

class of models that satisfy Assumption 3.2. Note that in this example we have a one-to-one correspondence

between Wt and Gt, for each t.

On the other extreme, we could create a sequence of matrices satisfying Assumption 3.2 in which, at ev-

ery time t, positive entries of Wt are completely independent of Gt. To show how this can be done, define for

every H 2 GN set SH
=

�

S 2 SN
: G(S) = H, Sii � � for i = 1, ..., N, and Sij � � for {i, j} 2 H

 

,

where � is some small positive number; that is, SH is the set of all stochastic symmetric matrices with the

sparsity pattern given by H , and whose diagonal and positive entries are lower bounded by � > 0. Let now

the sequence Wt be defined as follows: for any time t, given Gt = H , Wt is picked uniformly at random

from SH . It is easy to check that Wt satisfies Assumption 3.2. Also, we can see that the distribution of

Wt given Gt depends on Gt only through its sparsity pattern, which we wanted to show. Remark finally

that, instead of the uniform distribution, we could have chosen for each H an arbitrary distribution on SH to

generate Wt given H (e.g., uniform distribution on SH
1 , for the realization Gt = H

1

, and, say, discrete on

SH
2 , for realization Gt = H

2

6= H
1

), and the same conclusions would hold.

Further models that satisfy Assumption 3.2 are given in Subsection 3.2.4.

We assume in the sequel that v > 0.

2Note that we need this assumption because we assumed that each graph in the set of states G, of the graph Markov chain, is
different. In order to address the case when a Markov chain of matrices has matrices (states) with the same sparsity patterns, we
simply modify the model by creating (where necessary) multiple states for the same topology. The rest of the analysis would then
proceed the same.
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Theorem 3.3 Let dk be a sequence of real numbers such that dk 2 (0, 1] and log dk = o(k). Then:

lim

k!1
1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

= �J ,

where

J =

8

<

:

|log ⇢
max

| , if ⇧(G) 6= ;
+1, otherwise

, (3.3)

and ⇢
max

= maxH2⇧(G)

⇢ (PH).

To prove Theorem 3.3, we consider first the case when ⇧(G) = ;. In this case each realization of Gt is

connected (otherwise, ⇧(G) would contain at least this disconnected realization). Applying Corollary 2.13

from Chapter 2 to successive graph realizations (i.e., for s = t + 1) we get that

�

�

�

e

�(k, 0)

�

�

�

 �1� cN�2

�

k
2 . (3.4)

Now, for any given sequence dk 2 (0, 1] satisfying log dk = o(k), for any ✏ > 0, there exists k
1

= k
1

(✏)

such that log dk
k > �✏ for all k � k

1

. Taking ✏ to be the absolute value of the logarithm of the left hand side

of (3.4), we have that, pointwise (and thus with probability 1),
�

�

�

e

�(k, 0)

�

�

�

< dk, for all k � k
1

. Therefore,

the probability from Theorem 3.3 is equal to zero for all k � k
1

, yielding the rate I = 1. This completes

the proof of Theorem 3.3 for the case when ⇧

?
(G) = ;.

We prove Theorem 3.3 for the case when ⇧(G) 6= ; by showing the upper and the lower large deviation

bound:

lim inf

k!1
1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

� log ⇢
max

(3.5)

lim sup

k!1
1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

 log ⇢
max

. (3.6)

Subsection 3.2.2 states some important preliminary results needed later in the proofs of both the upper and

the lower bound, and then it proceeds to prove the lower bound. The proof of the upper bound is because of

its complexity given separately in Subsection 3.2.3.

3.2.2 Preliminary results and the proof of the lower bound (3.5)

Lemma 3.4 is a simple result for Markov chains: if we start from the state Hl at time t, end up in the state

Hm at time s + 1, and we restrict the trajectory (Gr, t + 1  r  s) to belong to a subset of states S, the
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probability of this event occurring is determined by the submatrix PS .

Lemma 3.4 Let Hm and Hl, 1  l,m M be two given states and S ✓ G a given subset of states. Then,

for any 1  t < s (assuming P (Gt = Hl) > 0):

P (Gr 2 S, t + 1  r  s, Gs+1

= Hm |Gt = Hl) = PlS P s�t�1

S PSm. (3.7)

Proof We prove Lemma 3.4 by induction on s� t. Fix l,m,S and s, t such that s� t = 1. We have

P (Gt+1

2 S, Gs+1

= Hm|Gt = Hl) =

X

n:Hn2S
P (Gt+1

= Hn, Gs+1

= Hm|Gt = Hl)

=

X

n:Hn2S
PlnPnm

= PlSIPSm,

which proves that the formula in (3.7) is correct for s� t = 1. Assume now that (3.7) is true for all l,m,S
and all s, t such that s � t = r � 1. Consider now the probability in (3.7) for fixed l,m,S and s0, t0 such

that s0 � t0 = r + 1. Summing out over all realizations of Gs0 that belong to S, we get

P
�

Gt0+1

2 S, . . . , Gs0 2 S, Gs0+1

= Hm|G0
t = Hl

�

=

X

n:Hn2S
P
�

Gt0+1

2 S, . . . , Gs0 = Hn, Gs0+1

= Hm|G0
t = Hl

�

=

X

n:Hn2S
P
�

Gt0+1

2 S, . . . , Gs0 = Hn|G0
t = Hl

�

P (Gs0+1

= Hm|Gs0 = Hn)

=

X

n:Hn2S
PlSP s0�1�t0�1

S PSnPnm

where in the second equality we use the Bayes formula together with the fact that the graph sequence is

Markov, and in the third equality we use the induction hypothesis. Finally, observing that
P

n:Hn2S PSnPnm =

PSm proves the claim. 2

Spectral radius of PH. We can see from Lemma 3.4, that as we let the time interval s � t increase,

the probability to move in a restricted class S ✓ G is essentially determined by the spectral radius of the

submatrix of P corresponding to this restricted class, PS
3. This observation is formalized in Lemma 3.5.

3Reader familiar with the results from Chapter 2 could now guess that the restricted set S that we have in mind here is some
disconnected collection H 2 ⇧(G).
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Lemma 3.5 Let A 2 RN⇥N be a nonnegative matrix. For every & > 0, there exists C& such that for all t � 1

⇢(A)

t  1

>At
1  C& (⇢(A) + &)t . (3.8)

Proof We first observe the following

kAtk
1

 1

>At
1  NkAtk

1

,

where k · k
1

denotes the 1 norm (for a nonnegative matrix equal to the maximum row sum of the matrix).

The left hand side of the inequality (3.8) now easily follows from the fact that spectral radius is a lower

bound for every matrix norm, and for the 1-norm, in particular:

⇢(A)

t
= ⇢(At

)  kAtk
1

.

To prove the right hand side of (3.8), we recall Gelfand’s formula, e.g., [78], which applied to the 1-norm

states that

lim

t!1 kA
tk

1

t
1

= ⇢(A).

The previous equation implies that for every & > 0 there exists t
0

= t
0

(&) such that kAtk
1

 (⇢(A) + &)t for

all t � t
0

. Choosing C& = N max{1,max

1tt
0

kAtk
1

}, proves the right hand side of (3.8) and completes

the proof of Lemma 3.5. 2

Focusing now on the subsets of states S that are disconnected in union, i.e., on S 2 ⇧ (G), from the

upper bound of Lemma 3.5 we derive the following Corollary.

Corollary 3.6 For each & > 0, there exists C& > 0 such that the following holds:

X

H2⇧(G)

1

>P t
H 1  C& (⇢

max

+ &)t . (3.9)
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Proof Fix & > 0. By lemma 3.5, we know that for each H 2 ⇧(G) there exists CH,& such that 1

>P t
H 

CH,& (⇢ (PH) + &)t. Thus, we have:

X

H2⇧(G)

1

>P t
H 1 

X

H2⇧(G)

CH,& (⇢ (PH) + &)t

 |⇧(G)| max

H2⇧(G)

CH,&

✓

max

H2⇧(G)

⇢ (PH) + &

◆t

,

and we see that equation (3.9) is satisfied with the constant C& = |⇧(G)|maxH2⇧(G)

CH,& . 2

Proof of the lower bound (3.5).

We start from the fact, shown in Chapter 2 (see Lemma 2.8 and eq. (2.12))4, that, if �(k, 0) is dis-

connected, then
�

�

�

e

�(k, 0)

�

�

�

� 1, implying further
�

�

�

e

�(k, 0)

�

�

�

� dk. Thus, {�(k, 0) is disconnected} ✓
n

�

�

�

e

�(k, 0)

�

�

�

� dk

o

, and passing to the probabilities,

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

� P (�(k, 0) is disconnected) .

From the claim in eq. (2.13) from Chapter 2, we further have that, for any fixed disconnected collection

H 2 ⇧(G),

P (�(k, 0) is disconnected) � P (Gt 2 H, 1  t  s) .

Computing the probability in the right hand side by partitioning over all possible realizations of the initial

and the final graph G
1

and Gk which belong to H, and applying Lemma 3.4:

P (Gt 2 H, 1  t  k) =

X

l:Hl2H

X

m:Hm2H
P (Gt 2 H, 2  t  k � 1, Gk = Hm |G

1

= Hl) P (G
1

= Hl)

=

X

l:Hl2H

X

m:Hm2H
vlPlHP k�2

H PHm

=

0

@

X

l:Hl2H
vlPlH

1

AP k�2

H

 

X

m:Hm2H
PHm

!

� v
min

1

>P k
H1,

where in the last inequality we used that
�

P

m:Hm2H PHm
�

= PH1 and
P

l:Hl2H vlPlH � v
min

1

>PH.

Combining the previous findings, and applying Lemma 3.5 to the matrix PH, yields

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

� v
min

⇢ (PH)

k . (3.10)

4Note that the claim in Lemma 2.8 holds in the point-wise sense for arbitrary sequence of realizations Wt, t � 1 (irrespective
of the distribution of Wt’s), hence it applies here.
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Computing the logarithm, dividing by k, and passing to the limit:

lim inf

k!+1
1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� dk

⌘

� ⇢ (PH) . (3.11)

Noting that the preceding inequality holds for arbitrary H 2 ⇧(G), and thus for H? such that ⇢ (PH?
) =

⇢
max

, completes the proof.

3.2.3 Upper bound

Similarly as with the i.i.d. case from Chapter 2, the main tools in proving the upper bound will be the se-

quence of stopping times Ti,� and the (random) number of improvements until time k, Mk,�. However, note

that we have a slightly easier case here (modulo the complexity of the Markov chain setup), compared to the

model from Chapter 2: here we assume that positive entries of all the realizations of Wt are bounded away

from zero by some small number � = �
0

, see part 2 of Assumption 3.2. As a result of this simplification,

the proof of the upper bound here will escape from the technicalities from the proof of the corresponding

upper bound in Chapter 2. Here, to prove the upper bound, we need only one member of the family of the

�-stopping times, Ti,� and only one member of the family of �-number of improvements, Mk,�: we take

Ti,�
0

, i � 1, and Mk,�
0

. For simplicity, we will drop the index �
0

in the sequel and use Ti = Ti,�
0

, for

i = 1, ..., N , and Mk = Mk,�
0

, for k � 1.

Following the arguments from Chapter 2, it can be easily checked that part 1 of Lemma 2.15 holds as

well for the model of Wt that we study5. Therefore, to prove the upper bound (3.6), it suffices to show that

lim sup

k!+1
1

k
log P (Mk < ↵k)  �|⇢

max

|. (3.12)

We start from the following result which is the counterpart of part 2 of Lemma 2.15 from Chapter 2.

Lemma 3.7 For every & > 0 and � > 0 such that � < | log(⇢
max

+ &)|,

P (Mk < ↵k)  |G|d↵ke|⇧(G)|d↵keCd↵ke
& e��k

 

e(��|log(⇢
max

+&)|)

1� e(��|log(⇢
max

+&)|)

!d↵ke
, (3.13)

where the constant C& is the constant that verifies Corollary 3.6.

5In fact, part 1 of Lemma 2.15 holds for arbitrary deterministic sequence of stochastic symmetric matrices with positive diagonal.
The reason why this is true is that, for sufficiently large k, there is no sequence of realizations W

1

,..., Wk that satisfies both
�

�

�

e

�(k, 0)

�

�

�

� dk and Mk � ↵k, where ↵ 2 (0, 1) is fixed – i.e., for sufficiently large k,
n

�

�

�

e

�(k, 0)

�

�

�

� dk

o

\ {Mk � ↵k} = ;.
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Proof The key property which allows to derive the result in Lemma 3.7 is the following exponential

bound for the joint probability distribution of the first M stopping times.

Lemma 3.8 For M � 1, 1  t
1

< ... < tM and for every &

P (T
1

= t
1

, ..., TM = tM )  |G|M |⇧(G)|MC
M
& (⇢

max

+ &)tM�2M . (3.14)

Proof Using the definition of the stopping times Tm (see (2.23) in Chapter 2) we have that for every m

the accumulation graph � (Tm�1

� 1, Tm) must be disconnected. Therefore,

P (T
1

= t
1

, . . . , TM = tM )  P (�(tm � 1, tm�1

) is disconnected, m = 1, . . . ,M)


X

Hm2⇧(G),m=1,...,M

P
�

Gtm�1

+1

2 Hm, . . . , Gtm�1

2 Hm, m = 1, . . . ,M
�

.

Now, fix H
1

, ...,HM 2 ⇧(G) and consider the probability in the summation above corresponding to these

fixed collections. Summing out all possible realizations of graphs at times 0, t
1

, ..., tM we get

P
�

Gtm�1

+1

2 Hm, . . . , Gtm�1

2 Hm, m = 1, . . . ,M
�

=

X

Hlm2G, m=0,1,...,M

P
�

G
0

= Hl
0

, Gtm�1

+1

2 Hm, . . . , Gtm�1

2 Hm, Gtm = Hlm , m = 1, . . . ,M
�

Applying the chain rule for probabilities on a fixed term in the previous summation:

P
�

G
0

= Hl
0

, Gtm�1

+1

2 Hm, . . . , Gtm�1

2 Hm, Gtm = Hlm , m = 1, . . . ,M
�

= P (G
0

= Hl
0

)

M
Y

m=1

P
�

Gtm�1

+1

2 Hm, . . . , Gtm�1

2 Hm, Gtm = Hlm |

Gtlm�1

= Hlm�1

, Gtm�1

�1

2 Hm�1

, ..., G
0

= Hl
0

⌘

= P (G
0

= Hl
0

)

M
Y

m=1

P
⇣

Gtm�1

+1

2 Hm, . . . , Gtm�1

2 Hm, Gtm = Hlm |Gtlm�1

= Hlm�1

⌘

,

where the last inequality follows from the Markov property of the graph sequence. Applying the result of
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Lemma 3.4, we get:

P
�

G
0

= Hl
0

, Gtm�1

+1

2 Hm, . . . , Gtm�1

2 Hm, Gtm = Hlm , m = 1, . . . ,M
�

= vl
0

· Pl
0

H
1

P t
1

�2

H
1

PH
1

l
1

· Pl
1

H
2

P t
2

�t
1

�2

H
2

PH
2

l
2

· · · PlMHM+1

P
tM�tM�1

�2

HM
PHM lM

 1

>P t
1

�2

H
1

1 · 1

>P t
2

�t
1

�2

H
2

1 · · · 1

>P
tM�tM�1

�2

HM
1.

Finally, summing over all possible Hlm ,Hm, m = 1, ...,M

P (T
1

= t
1

, . . . , TM = tM )  |G|M
0

@

X

H
1

2⇧(G)

1

>P t
1

�2

H
1

1

1

A · · ·
0

@

X

HM2⇧(G)

1

>P
tM�tM�1

�2

HM
1

1

A ,

and applying Corollary 3.6 to each of the terms in the product above yields the claim. 2

To continue with the proof of Lemma 3.7, note first that {Mk < ↵k} =

�

Td↵ke > k
 

. Hence, from

now on we focus on the probability P
�

Td↵ke > k
�

. Exponential Markov inequality with parameter � � 0

applied to the stopping time Td↵ke yields:

P
�

Td↵ke > k
�  E

h

e�Td↵ke
i

e��k (3.15)

To compute the expected value in (3.15), we consider all different increments �i � 1 of the first d↵ke
stopping times, Ti+1

� Ti = �i, i = 1, ..., d↵ke. Note that for any fixed realization of increments �i,

i = 1, ..., d↵ke, Td↵ke = �

1

+ ... + �d↵ke. Thus,

E
h

e�Td↵ke
i

=

X

�

1

�1,...,�d↵ke�1

e�
(

�

1

+...+�d↵ke)P
�

T
1

= �

1

, T
2

� T
1

= �

2

, ..., Td↵ke � Td↵ke�1

= �d↵ke
�

.

Applying then the bound from Lemma 3.8 to each probability in the sum above, where we note that M from

Lemma 3.8 now equals d↵ke and for any fixed �i, i = 1, . . . , d↵ke, tM equals �

1

+ . . . + �d↵ke, yields

E
h

e�Td↵ke
i


X

�

1

�1,...,�d↵ke�1

e�
(

�

1

+...+�d↵ke)|G|d↵ke|⇧(G)|d↵keCd↵ke
& (⇢

max

+ &)�1

+...+�d↵ke�2d↵ke

= |G|d↵ke|⇧(G)|d↵keCd↵ke
&

X

�

1

�1,...,�d↵ke�1

e
Pd↵ke

i=1

(��|log(⇢
max

+&)|)�i .
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Observe that the last sum can be represented as a product of equal terms, i.e.,

X

�

1

�1,...,�d↵ke�1

e
Pd↵ke

i=1

(��|log(⇢
max

+&)|)�i
=

d↵ke
Y

i=1

0

@

X

�i�1

e(��|log(⇢
max

+&)|)�i

1

A .

Hence, we obtain

E
h

e�Td↵ke
i

 |G|d↵ke|⇧(G)|d↵keCd↵ke
&

0

@

X

�i�1

e(��|log(⇢
max

+&)|)�i

1

A

d↵ke

.

Finally, recognizing that for every fixed � and & such that � < | log(⇢
max

+ &)|

X

�i�1

e(��|log(⇢
max

+&)|)�i
=

e(��|log(⇢
max

+&)|)

1� e(��|log(⇢
max

+&)|) ,

proves (3.13). 2

Having the result of Lemma 3.7, the proof of the upper bound (3.6) is now easy to complete. Computing

the logarithm and dividing by k in both sides of (3.13)

1

k
log P (Mk < ↵k)  d↵ke

k

 

log |G|+ log C✏ � 2 |log (⇢
max

+ &)|+ log

e�(|log(⇢
max

+&)|��)

1� e�(|log(⇢
max

+&)|��)

!

� �.

Taking first the limit as k ! +1, and then the infimum over ↵ > 0 yields

lim

k!+1
1

k
log P (Mk)  ��.

Since the last inequality holds for every � � 0 and & > 0 such that � < |log (⇢
max

+ &)|, we have

lim

k!+1
1

k
log P (Mk)  inf

&>0

inf

0�<|log(⇢
max

+&)|
�� = � |log ⇢

max

| .

This proves (3.12) and thus completes the proof of the upper bound (3.6).

3.2.4 Examples

We now give two instances for the assumed Markov chain model and we compute the rate J for each of the

given examples. The first example is a gossip-type averaging protocol with Markov dependencies, similar

to the protocol in [17] (except that protocol in [17] corresponds to directed graphs). One particular instance
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of this protocol is a random walk of a token along the edges of a given graph, according to a given transition

probability matrix. In the second example, we consider a network with temporal correlations of the link

failures, where we model the correlations by a Markov chain.

Gossip with Markov dependencies. Let G = (V,E) be a connected graph on N vertices. We assume

that at each time t � 0 only one link of G can be active; if e = {u, v} 2 E is active at time t, then

Wt = IN � 1

2

(eu � ev)(eu � ev)
>. Thus, at each time t, the topology realization, Gt, is a one-link graph.

The sequence of one-link graphs, Gt, t � 0, is generated according to a Markov chain:

P(G
0

= (V, e)) = ve, for e 2 E

P(Gt+1

= (V, f)|Gt = (V, e)) = Pef , for e, f 2 E,

where ve > 0, Pef � 0,
P

f2E Pef = 1, for each e 2 E, and
P

e2E ve = 1. The set of states of the Markov

chain is therefore

GGossip

= {(V, e) : e 2 E}

and there are M = |E| states. A disconnected collection on GGossip is of the form {(V, e) : e 2 E \ F}, for

some set of edges F that disconnects G. Thus, the set of all disconnected collections on GGossip is

⇧(GGossip

) = {HF : F disconnects G} .

where HF =:= {(V, e) : e 2 E \ F}, for F ✓ E. By Theorem 3.3, we get the formula for ⇢
max

:

⇢
max

= max

F✓E: F disconnects G
⇢(PHF

).

Computing ⇢
max

for this model is difficult in general, as it involves computing the spectral radius for all

submatrices PHF
of the transition matrix P associated with disconnected collections HF . A simple ap-

proximation for ⇢
max

can be obtained using the row-sum based lower bound for the spectral radius. We

explain this next. For any fixed disconnected collection HF , we denote by c(PHF
) the minimal row sum

of its associated submatrix PHF
: c(PHF

) = mini=1,...,|HF |
P|HF |

j=1

[PHF
]ij We then have, for any HF [78]:

c(PHF
)  ⇢(PHF

), implying

max

F✓E: F disconnects G
c(PHF

)  ⇢
max

. (3.16)

In particular, for gossip on a tree, we get a very simple lower bound on ⇢
max

that involves no computations

(it involves only O(M2

) comparisons of certain entries of the matrix P .) When G = (V,E) is a tree,
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removal of any edge f 2 E disconnects G. Also, for any F 0 ✓ F ✓ E, the matrix PHF
is a submatrix of

PHF 0 , and so c(PHF
)  c(PHF 0 ), i.e., the minimal row sum can only grow as the edges are removed from

F . This implies that we can decrease the space of search in (3.16) to the set of edges of G:

max

F✓E: F disconnects G
c(PHF

) = max

f2E
c(PHf

)  ⇢
max

. (3.17)

Now, for any fixed f 2 E, since P is stochastic, it holds that c(PHf
) = 1 � maxe2E\f Pef ; that is, to

compute the minimal row sum of PHf
, we only have to find the maximal entry of the column P f , with entry

Pff excluded. This finally implies:

⇢
max

� max

f2E
1� max

e2E\f
Pef = 1�min

f2E
max

e2E\f
Pef . (3.18)

We can see an interesting phenomenon in the lower bound on ⇢
max

in eq. (3.18): when maxe2E\f Pef

is high for every link e, that is, when the gossip token is more likely to jump to a different link f 6= e,

rather than to stay on the same link e (Pef >> Pee, for some f 6= e), the bound in eq. (3.18) has a small

value. Assuming that ⇢
max

follows the tendency of its lower bound, we obtain a high rate J for this case

of “negative correlations”. This is in accordance with the intuition: if every link has a low probability Pee

to be repeated (repeating a link is a wasteful transmission in gossip), the convergence of gossip is faster and

thus the rate J is higher.

Link failures with temporal correlations. Let G = (V,E) be a connected graph on N vertices. For each

e 2 E and t � 0, let Ye,t 2 {0, 1} be a random variable that models the occurrence of the link e at time t:

if Ye,t = 1 then e is online at time t, and e is offline otherwise. For each link e, we assume that the failures

of e occur in time according to a Markov chain. Also, the failures of different links are independent. More

precisely, we assume that Ye,t and Yf,s are independent for all t, s � 0 if e 6= f , and, for e 2 E and t � 1:

P(Ye,t+1

= 1|Ye,t = 1) = pe,

P(Ye,t+1

= 0|Ye,t = 0) = qe,

P(Ye,0 = 1) = ve, for some pe, qe, ve 2 (0, 1). In other words, the joint state of all the links in the network

evolves according to the |E| independent Markov chains, where each Markov chain determines the state of

one link. Given the network realization Gt, the averaging matrix Wt can be chosen, e.g., as the Metropolis

or an equal weight matrix [79].

We compute the rate J for this model, following the reasoning in the proof of Theorem 3.3, and exploit-
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ing the decoupled single-link Markov chains. We first find the set of all network realizations at time t. Due

to the independence in space of the link failures, and the fact that each link is on/off at time t with positive

probability, the set of all network realizations at time t is the set of all subgraphs of G:

GLink fail.
=

�

(V,E0
) : E0 ✓ E

 

.

Consider now a fixed disconnected collection H on GLink fail. and let F be �(H) = E \ F ; note that F

disconnects G. Then H is necessarily a subset of the (bigger) collection HF = {(V,E0
) : E0 ✓ E \F} and

thus P(Gt 2 H, 0  t  k)  P(Gt 2 HF , 0  t  k). The latter implies that, in order to find the most

likely H that determines the rate J , we can search over the smaller set {HF : F disconnects G}. Thus, we

focus on the right hand side of the latter inequality:

P(Gt 2 HF , 0  t  k) = P(Ye,t = 0, for e 2 F, 0  t  k)

=

Y

e2F

P(Ye,t = 0, 0  t  k) =

Y

e2F

(1� ve)q
k
e ; (3.19)

the second equality in (3.19) follows by the independence of failures of different links. The rate at which

the probability in (3.19) decays is equal to
P

e2F | log qe|, and thus the rate J equals

J = J ({qe}) = min

F✓E: F disconnects G

X

e2F

| log qe|. (3.20)

Optimization problem in (3.20) is the minimum cut problem [16], with the cost of edge e 2 E equal to

| log qe|. (Recall that qe is the probability that the link e stays offline, given that in the previous time it was

also offline.) Problem (3.20) is a convex problem, and there are efficient numerical algorithms to solve it,

e.g., [16].

To get some intuition on the effect of temporal correlations, we let q = qe = pe, for all e 2 E, i.e., all

the links have the same symmetric 2⇥ 2 transition matrix. Note that q = 1/2 corresponds to the temporally

uncorrelated link failures. When q < 1/2, a link is more likely to change its state (on/off) with respect to its

state in the previous time (“negative correlation”) than to maintain it. From (3.20), the rate J (q) > J (1/2)

for q < 1/2. We conclude that a “negative correlation” increases (improves) the rate. Likewise, a “positive

correlation” (q > 1/2) decreases (degrades) the rate.
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3.3 Rate J for directed networks

In this section we study convergence of products of asymmetric stochastic i.i.d. random matrices Wt. Prob-

lem setup and preliminaries are given in Subsection 3.3.1. The main result on the large deviation limit J
in (3.2) is stated in Theorem 3.13 in Subsection 3.3.2 and subsequently proven in Subsection 3.3.3. Subsec-

tion 3.3.4 then illustrates with examples how to compute the rate J .

3.3.1 Problem setup and preliminaries

Recall that AN and DN denote, respectively, the set of all stochastic matrices of size N by N and the set

of all directed graphs (possibly with self-loops) on the set of vertices V = {1, ..., N}. Let Wt, t � 1,

be a sequence of random matrices on a probability space (⌦,F , P) taking values in AN . We assume the

following on the sequence Wt.

Assumption 3.9 1. Wt, t � 1, are i.i.d.;

2. there exists � > 0 such that the following two conditions are satisfied:

• diagonal entries of Wt are a.s. greater or equal to �; that is, for every t, with probability 1

[Wt]ii � � for all i;

• Whenever positive, the entries [Wt(!)]ij are a.s. greater or equal to �; that is, for every t, if

P ([Wt(!)]ij > 0) > 0 for some i, j, then, conditioned on {[Wt(!)]ij > 0}, [Wt]ij � � with

probability 1.

Similarly as before, for 1  t < s, �(s, t) denotes the product of the matrices that occur from time t + 1

until time s, i.e., �(s, t) = Ws · · ·Wt+1

.

Thus, compared to the random model from Chapter 2, here we allow that matrices Wt have realizations

that are asymmetric. It can also be seen that we make an additional assumption that positive entries of Wt

are bounded away from zero. However, this assumption serves only to simplify the proofs and make them

more intuitive. In particular, the same formula for the rate J holds even when this assumption is relaxed.

We don’t pursue the proof here, but we note that the same technique from Chapter 2 of using the family of

improvements times Ti,� indexed by � (in the place of a single sequence of stopping times Ti), would yield

the result.

Sequence of induced graphs. Introduce a graph operator G : AN 7! DN , and let G be defined by

G(W ) = (V, {(j, i) : Wij > 0}) , (3.21)
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for W 2 AN . Thus, for any W 2 AN , G(W ) is the graph on the set of vertices V = {1, ..., N} with the

set of edges consisting of all (ordered) pairs (j, i) (possibly i = j) for which the corresponding entry Wij is

positive. Let now Gt, t � 1, be the sequence of random graphs such that Gt = G(Wt) for each t, that is, Gt

is the sequence of the induced (or, support) graphs of Wt’s. Note that Gt are i.i.d., the matrices Wt being

i.i.d.. Further, for a graph H 2 DN , let pH denote the probability that an induced graph Gt takes realization

H , pH = P(G(Wt) = H); for a collection of graphs H ✓ DN , we let pH = P(G(Wt) 2 H) =

P

H2H pH .

Set G collects all realizations of an induced graph that occur with positive probability:

G :=

�

H 2 DN
: pH > 0

 

. (3.22)

Accumulation graph �(k, 0) and tree-free collections. For a collection of graphs H ✓ DN , let �(H)

denote the graph that contains all the edges of all the graphs in H, �(H) = (V,[H2HE(H)), where E(H)

denotes the set of edges of a graph H . We call such a graph union graph (of the graphs in H). With a slight

abuse of notation, we use the same symbol � for the union of subsequent realizations of Gr over any given

time window 1  t < s:

�(s, t) =

 

V,
s
[

r=t+1

E(Gr)

!

, (3.23)

in which case we call �(s, t) the accumulation graph from time t until time s. Next paragraph recalls some

concepts from directed graph theory that we will need in our study.

Let H = (V,E) be a given directed graph on the set of vertices V = {1, ..., N}. A directed path in H

is any sequence of nodes (i
0

, i
1

, ..., iL), il 2 V , l = 1, ..., L, L � 1, such that il 6= ik, for all 0  k, l  L,

and, for each l, (il, il+1

2 E; nodes i
0

and iL are then, respectively, called initial and end node. Further, it

is said that H has a directed spanning tree if there exists a node r, called a root node, such that r can reach

every other node j in H . Node i is a neighbor of j in H if (i, j) 2 E. A subset of nodes C ✓ V is called

a strongly connected component of H if for every i, j 2 C both i can reach j in H and j can reach i in

H; following the standard practice in the Markov chain literature, we will use also the term communication

class when referring to a strongly connected component of a graph, see, e.g., [14, 80]. Correspondingly, for

a node i that can reach a node j in H we will say that i can communicate to j in H . Finally, a communication

class C of H (that is, a strongly connected component of H) is called initial if none of the nodes in C has a

neighbor outside of C.

The first step in relating the matrix sequence Wt with the graphs sequence Gt is a simple, but important

relation between �(k, 0) and the induced graph of �(k, 0).
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Lemma 3.10 For every ! 2 ⌦, and every k � 1:

1. �(k, 0) is a subgraph of G(�(k, 0));

2. two nodes communicate in �(k, 0) if and only if they communicate in G(�(k, 0)).

Proof To show 1, suppose that �(k, 0) contains an edge (i, j). Then, it must be that [Wt]ij > 0, for

some 1  t  k. Using the positivity of the diagonal entries, this implies that [�(k, 0)]ij > 0, showing

that (i, j) 2 G(�(k, 0)). TO prove 2 we need to show that for any ordered pair of nodes (i, j), there exists

a directed path from i to j in �(k, 0) if and only if there exists a directed path from i to j in G(�(k, 0)).

Now, from part 1 we know that �(k, 0) is a subgraph of G(�(k, 0)). Thus we only need to prove the

sufficiency part. Fix a pair (i, j) and suppose that there exists a path from i to j in G(�(k, 0)). Then, by

construction of G(�(k, 0)), it must be that [�(k, 0)]ij > 0, implying that there must exist a sequence of

nodes ik ⌘ i, ik�1

,..., i
0

⌘ j such that [Wt]itit�1

> 0, for 1  t  k. By construction of Gt, we then have

(it, it�1

) 2 E(Gt), implying that (it, it�1

) 2 E(�(k, 0)), for all t. This shows that there exists a directed

walk, and thus, a directed path from i to j in �(k, 0), completing the proof of the claim. 2

Note that the induced graph of the product matrix, which contains both one-hop information flows and

their superpositions in time, contains in general more links than the graph �(k, 0) that registers only one-hop

information flows. However, Lemma 3.10 assures that the communication classes of these two graphs are

nevertheless the same. We use this observation to derive the key relation between the product matrix �(k, 0)

and the accumulation graph �(k, 0) which we state in Lemma 3.11.

Lemma 3.11 |�
2

(�(k, 0))| < 1 if and only if �(k, 0) contains a directed tree.

Proof We use (without proof, which can be derived from Lemma (3.20) on page 224 in [80]) the fact

that, for every stochastic matrix W with positive diagonals, |�
2

(W )| < 1 if and only if G(W ) has exactly

one initial class. Combining this with Lemma 3.10, it follows that |�
2

(�(k, 0))| < 1 if and only �(k, 0)

has exactly one initial class. Finally, the last condition is equivalent to the condition that �(k, 0) contains a

directed tree. 2

We say that a collection of directed graphsH ✓ DN is tree-free if the union graph �(H) does not contain

a directed tree. Denote with ⇧(G) the set of all tree-free collections H such that H ✓ G:

⇧(G) = {H ✓ G : �(H) is tree� free} . (3.24)
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We illustrate the introduced concepts of accumulation graph and tree-free collection on the example of

broadcast gossip algorithm.

Example 3.12 (Broadcast gossip) Let bG = (V, bE) be a directed graph that collects all the available com-

munication links in a network. At each time k, a node is chosen at random in V according to the prob-

ability mass function pu > 0, u 2 V ,
P

u2V pu = 1. Denote by uk the node chosen at time k. With

broadcast gossip [19], the weight matrix Wk has the sparsity pattern of a directed star graph centered

at uk and is given by: [Wk]ukv = [Wk]vv = 1/2, for all v such that {uk, v} 2 bE (out-neighbors of

uk), [Wk]vv = 1 otherwise, and the rest of the entries are zero. The graph realization at time k is then

Gk = (V,
n

(uk, v) : v 2 V, (uk, v) 2 bE
o

). Since each node in V has a positive probability of being cho-

sen, we conclude that the collection of realizable graphs with broadcast gossip is the collection of all star

subgraphs of bG centered at its nodes:

GB�gossip

= {Hu : u 2 V } , (3.25)

where Hu =

⇣

V,
n

(u, v) : v 2 V, (u, v) 2 bE
o⌘

.

For concreteness, we consider now a simple case when bG is a four node graph, V = {1, 2, 3, 4}, and

with the set of edges bE = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}, as shown in Figure 3.1 a. We can

Figure 3.1: Example of a broadcast gossip on a 4-node chain; a) bG = (V, bE) is the total budget of commu-
nication links; b) G = {H

1

, H
2

, H
3

, H
4

} is the set of realizable graphs; c) H = {H
1

, H
3

, H
4

} is a tree-free
collection, whereas H0

= {H
2

, H
3

} is not.

see that, for node 1, its only out-neighbor in bG is node 2 – thus, H
1

is the single arc graph (V, (1, 2)),

as shown in Figure 3.1 b. Similarly, node 2 has two out-neighbors in bG, node 1 and node 3, and thus

H
2

= (V, {(2, 1), (2, 3)}). Checking the out-neighborhoods of the remaining two nodes, 3 and 4, we

conclude that the set of all realizable graphs is G = {H
1

, H
2

, H
3

, H
4

}, with Hi as in Figure 3.1 b,

i = 1, ..., 4. To find the tree-free collections on G, we notice first that the removal of the edges of H
2
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and H
3

makes bG tree-free. Thus, any subset of G \ {H
2

} is a tree-free collection, and similarly for

G \ {H
3

}; for example, H = {H
1

, H
3

, H
4

} shown in Figure 3.1 c (left) is one such a collection (it is

easy to see from Figure 3.1 c that �({H
1

, H
3

, H
4

}) does not have a directed spanning tree). On the other

hand, simultaneous removal of edges of H
1

and H
4

“does no harm”, as �({H
2

, H
3

}) still contains a di-

rected spanning tree (in fact, it contains two directed spanning trees, as can be seen from Figure 3.1 c

(right)). Summing up, the set of all tree-free collections on G is ⇧(G) = 2

G\{H
2

} [ 2

G\{H
3

}, where

2

G\{H
2

}
= {;, {H

1

}, {H
3

}, {H
4

}, {H
1

, H
3

}, {H
1

, H
4

}, {H
3

, H
4

}, {H
1

, H
3

, H
4

}} is the power set of

G \ {H
2

}, and similarly for G \ {H
3

}.

3.3.2 Main result

Theorem 3.9 states the main result on the large deviation rate J in (3.2).

Theorem 3.13 Let dk be a sequence of real numbers such that dk 2 (0, 1] and log dk = o(k). Then

lim

k!+1
1

k
log P (|�

2

(�(k, 0))| � dk) = �J (3.26)

where

J =

8

<

:

| log p
max

|, If ⇧(G) 6= ;
+1, otherwise

and p
max

= maxH2⇧(G)

pH.

In the proof of Theorem 3.13, our general approach is to follow the lines of the proof of Theorem 2.7

in Chapter 2, and then focus only on those steps that require a different argument. Compared to the setup

from Chapter 2, we have here an additional difficulty which stems from the fact that the (almost sure) limit

limk!1

Wk · · ·W1

= 1v> is no longer deterministic (vector v is random). If we go back to the proof of

the upper bound (2.11) in Chapter 2, we can see that it was crucial to use the submultiplicativity of the

spectral norm. Because we don’t know the limit 1v>, we can no longer use the spectral norm (nor any

other matrix norm for that matter); on the other hand, |�
2

(·)| is not submultiplicative, i.e. |�
2

(A
1

A
2

)| is

not smaller than |�
2

(A
1

)||�
2

(A
2

)| in general. Therefore, we need some other matrix function which is both

submultiplicative and is able to measure the distance from the set of rank one matrices (to be able to detect

the sequence Wk · · ·W1

approaching to a point 1v> in this set). A class of matrix functions that have these

two properties are ergodicity coefficients [14, 81]; for our purpose it will be convenient to use a specific
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ergodicity coefficient ⌧ , which we define next6

Coefficient of ergodicity ⌧ and scrambling graphs. For A 2 AN , let ⌧ : AN 7! R be defined by

⌧(A) = max

i,j

1

2

N
X

l=1

|Ail �Ajl|. (3.27)

Lemma 3.14, borrowed from [81], asserts that the matrix function ⌧ can indeed both detect a rank one

matrix (see part 2) and has the submultiplicativity property (see part 4). In addition, we have that ⌧ is always

between zero and one (see part 1), and that ⌧ is less than 1 only for (stochastic) matrices that have no two

orthogonal rows. The proof of Lemma 3.14 can be found in [81] and is omitted here.

Lemma 3.14 (Properties of ⌧ , [81]) For any A, A
1

, A
2

2 AN :

1. 0  ⌧(A)  1;

2. rank(A) = 1 if and only if ⌧(A) = 0;

3. ⌧(A) < 1 if and only if A has no two orthogonal rows (“scrambleness”);

4. ⌧(A
1

A
2

)  ⌧(A
1

)⌧(A
2

) (submultiplicativity).

Of special importance in our context is a property of ⌧ by which ⌧ upper bounds all eigenvalues of a matrix

that are different than 1; hence we state this property in a separate lemma.

Lemma 3.15 (Spectral bound using ⌧ , [81]) For any A 2 An

|�|  ⌧(A), for all eigenvalues � of A s.t. � 6= 1. (3.28)

A stochastic matrix whose coefficient ⌧ is strictly smaller than 1 is called scrambling [14]. We can see

from part 2 of Lemma 3.14 that the property of “scrambleness” is a purely topological property: a matrix

A 2 AN is scrambling if for every two rows of A we can find a column in which both rows have a positive

element. Motivated by this, following [82], we introduce the concept of a scrambling graph.

Definition 3.16 (Scrambling graph) A graph H 2 DN is called scrambling if for every i, j 2 V there exists

l 2 V such that the set of edges of H contains both (l, i) and (l, j).

6We note that ⌧ is often referred to as the Dobrushin or Markov-Dobrushin coefficient, see, e.g., [14].

62



In other words, a graph is scrambling if every two nodes in the graph have a common neighbor. Note that if a

graph H has a scrambling subgraph then H must be scrambling. It is also easy to see that a stochastic matrix

A is scrambling if and only if its induced graph G(A) is scrambling. Using the preceding two observations

together with part 1 of Lemma 3.10, it is easy to show that the following lemma holds.

Lemma 3.17 For any ! and s, t, 1  t < s,

if �(s, t) is scrambling then ⌧(�(s, t)) < 1. (3.29)

The property of “scrambleness” of a graph and that of the existence of a directed spanning tree are tightly

related. First, a necessary condition for a graph to be scrambling is that it has a directed spanning tree. On

the other hand, as [82] shows, it turns out that if we take any N � 1 graphs such that each of the graphs has

all the self-loops and contains a directed spanning tree then their union graph will be scrambling. These two

claims are formally stated in Lemma 3.18.

Lemma 3.18 1. Any scrambling graph must contain a directed spanning tree.

2. If A
1

, ..., AN�1

have positive diagonal entries and each of their corresponding induced graphs

G(A
1

), ..., G(AN ) has a directed spanning tree, then their product A
1

· · ·AN�1

is scrambling7.

Proof By the contraposition law, to prove part 1 it suffices to show the following implication: if a graph

H has no directed spanning tree then H is not scrambling. Fix H 2 DN and suppose that H has no directed

spanning tree. Then, H must have (at least) two initial classes, say C
1

and C
2

. Fix i 2 C
1

and j 2 C
2

;

because class C
1

is initial, all neighbors of i are in C
1

, and, similarly for j, all neighbors of j are in C
2

.

Finally, since C
1

\ C
2

= ;, it follows that i and j do not have a common neighbor proving that H is not

scrambling. Since H was arbitrary, we proved part 1.

For the proof of part 2, see the proof of Theorem 5.1 in [82]. 2

We summarize our findings so far. First, by Lemma 3.11 we have that |�
2

(�(k, 0))| = 1 as long as

�(k, 0) is tree-free; in other words, the product �(k, 0) stays put until a directed spanning tree emerges in

�(k, 0). On the other hand, from part 2 of Lemma 3.18, a small step towards the set of rank one matrices

is assured (⌧(�(k, 0)) < 1) each time a directed spanning tree emerges N � 1 in a row. Therefore, we see

that the “improvement” of the product is essentially determined by the number of spanning tree occurrence.

7Note that it is not required here that all the graphs G (An) have the same directed tree; in particular, part 2 of Lemma 3.18
applies (even) in the case when each G (An) has a different spanning tree.
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Now, to close the loop, it only remains to bring the two metrics, k�
2

k and ⌧ , together. The following lemma

does the job.

Lemma 3.19 For any A 2 AN

|�
2

(A)|  ⌧(A). (3.30)

Therefore, an improvement in k�
2

k is always guaranteed by an improvement in ⌧ . It is easy to show

that (3.30) holds: first, for any A 2 AN such that �
2

(A) 6= 1 the inequality in (3.30) is true by Lemma 3.15.

Pick now A such that �
2

(A) = 1. Then A must have (at least) two initial classes, and therefore, G(A) has

no directed spanning tree. But then, by part 1 of Lemma 3.18), G(A) is not scrambling, implying ⌧(A) = 1

and inequality (3.30) trivially holds as an equality: |�
2

(A)| = ⌧(A) = 1.

Having the above tools at hand we are now ready to prove Theorem 3.13.

3.3.3 Proof of Theorem 3.13

We first prove Theorem 3.13 for the case ⇧(G) 6= ; by proving separately the corresponding large deviation

upper and the lower bound:

lim inf

k!1
1

k
log P (|�

2

(�(k, 0))| � dk)  log p
max

(3.31)

lim sup

k!1
1

k
log P (|�

2

(�(k, 0))| � dk) � log p
max

. (3.32)

Proof of the lower bound (3.32). If all induced graphs Gt from time t = 1 until time t = k belong to some

tree-free collection on G, then it must be that �(k, 0) = �(G
1

, ..., Gk) is tree-free. In other words, for any

H 2 ⇧(G), the following inclusion relation holds between the two events:

{G
1

2 H, ..., Gk 2 H} ✓ {�(k, 0) is tree� free} .

Computing now the probabilities of the events above and using the fact that Gt, 1  t  k, are i.i.d., it

follows

P (�(k, 0) is tree� free) � pk
H. (3.33)

Since equation (3.33) holds for every H 2 ⇧(G), it also holds for the tree-free collection H? 2 ⇧(G) that

has the highest probability pH?
= p

max

, and therefore:

P (�(k, 0) is tree� free) � pk
max

. (3.34)
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To relate pk
max

and the probability of our event of interest {|�
2

(�(k, 0))| � dk}, we observe that, because

dk 2 (0, 1]:

P (|�
2

(�(k, 0))| � dk) � P (|�
2

(�(k, 0))| = 1) . (3.35)

Using now Lemma 3.11 (the “only-if” part) to link (3.35) and (3.34) yields

P (|�
2

(�(k, 0))| � dk) � pk
max

.

Taking the log, dividing by k and taking the lim infk!+1, the large deviation lower bound follows.

Proof of the upper bound (3.31). We start from the following intuitive observation: since � Assumption 3.9

guarantees a minimal “flow of information” in each realization of Wt, then we must be able to find a minimal

improvement in ⌧ over all products �(s, t) = Ws · · ·Wt+1

of (any) fixed size s� t. Lemma 3.20 confirms

that this is true.

Lemma 3.20 For any !, s, t, 1  t < s, if �(s, t) is scrambling, then

⌧(�(s, t))  1� �s�t. (3.36)

Proof Fix !, s, t such that �(s, t) is scrambling. The proof is complete if we show that: 1) positive

entries of �(s, t) bounded below by �s�t; and 2) for a scrambling matrix A, ⌧(A)  1 � a, where a is the

minimum over all positive entries of A. It is easy to show that 1) holds: if for some i, j [�(s, t)]ij > 0

then there must existed a sequence of nodes it+1

⌘ j, it+2

, ..., is ⌘ i such that [Wr]ir+1

ir > 0 for all r

between t + 1 and s. But, then, because all positive entries of Wt+1

,..., Ws are by assumption greater than

�, it must be that [Wr]ir+1

ir > � for all r between t + 1 and s; finally, claim 1) follows by noting that

[�(s, t)]ij � [Ws]iis [Ws]is�1

is�2

· · · [Ws]it+2

j � �s�t. To prove 2), we use the fact that for any stochastic

matrix A

⌧(A) = 1�min

i,j

N
X

l=1

min {Ail, Ajl} , (3.37)

see [14]. Thus, fix a stochastic matrix A and suppose that it is scrambling; then for any i, j there exists

l? = l?(i, j) such that both Ail? and Ajl? are positive. If a is the value of the minimal positive entry of

A, then min {Ail? , Ajl?} � w
min

and thus
PN

l=1

min {Ail, Ajl} � min {Ail? , Ajl?} � a. Since the last

inequality holds for all pairs i, j, the minimum of the sum
PN

l=1

min {Ail, Ajl} over all i, j, see (3.37), is

also greater than a and the claim in 2) follows. 2

Motivated by the result of Lemma 3.20, we introduce the sequence of stopping times Si that registers
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the times when �(s, t) becomes scrambling. For ! 2 ⌦ define Si : ⌦ 7! N[{+1}, i = 1, 2, . . . is defined

by

Si(!) = min{t � Si�1

(!) + 1 : �(t, Si�1

)(!) is scrambling}, for i � 1, (3.38)

S
0

⌘ 0.

We observe that, for every i, �(Si, Si�1

) is scrambling, which by submultiplicativity of ⌧ implies ⌧ (�(Si, 1)) 
⌧ (�(Si�1

, 1)) < 1; therefore, at each new time Si an improvement is guaranteed with respect to the previ-

ous time Si�1

. For each k � 1, we then introduce Mk : ⌦ 7! {1, ..., k} to count the number of improve-

ments made until time k:

Mk(!) = max {i � 0 : Si(!)  k} . (3.39)

The following lemma derives a bound on the coefficient of ergodicity of the product at time k in terms

of Mk. We can see that this result counterparts Lemma 2.14 from Chapter 2.

Lemma 3.21 For any fixed ! 2 ⌦ and k � 1,

⌧(�(k, 0))  �1� �Mk
�Mk . (3.40)

Proof Fix an outcome ! and time k � 1. Let m = Mk(!), si = Si(!), for i = 1, ...,m. Note first that

⌧(�(k, 0)) = ⌧(�(k, sm)�(sm, 0)) is, by the submultiplicativity of ⌧ , bounded by ⌧(�(k, sm))⌧(�(sm, 0)).

Further, because ⌧ is always between zero and one (see property 1 in Lemma 3.14), the last number is

further bounded by ⌧(�(sm, 0)). Thus, we have ⌧(�(k, 0))  ⌧(�(sm, 0)). We now focus on comput-

ing ⌧(�(sm, 0)). By the construction of the sequence Si, �(si, si�1

) is scrambling for each i. Applying

Lemma 3.20 to each of the intervals (si�1

, si], i = 1, ...,m yields the set of inequalities ⌧(�(si, si�1

)) 
1 � �si�si�1 , i = 1, ...,m. Submultiplicativity of ⌧ , applied to the consecutive disjoint intervals (si�1

, si],

used together with the derived set of inequalities yields

⌧(�(sm, 0)) = ⌧ (�(sm, sm�1

) · · ·�(s
2

, s
1

)�(s
1

, 0))

 �1� �sm�sm�1

� · · · �1� �s
2

�s
1

�

(1� �s
1

) . (3.41)

To complete the proof, it only remains to consider the logarithm of both sides in (3.41) and then apply the

Jensen’s inequality to the function f(�) = log

�

1� ��

�

at the set of points �i = si � si�1

and the set
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of convex multipliers ↵i =

1

m , i = 1, ...,m; for details, we refer the reader to the proof of Lemma 2.14 in

Chapter 2. 2

Continuing with mimicking the arguments from Chapter 2, Lemma 2.15 in particular, we can see

that if the number of improvements Mk is big enough (i.e., greater than ↵k, for some ↵ 2 (0, 1), as in

Lemma 2.15), the coefficient of ergodicity of the products ⌧(�(k, 0)) cannot stay above dk (recall here that

dk satisfies log dk = o(k)– thus, dk decays slower than exponential). More precisely, it can be shown that

there exists k
0

= k
0

(↵, {dk}) such that for all k greater than k
0

the two events below are disjoint:

{Mk,� � ↵k}
\

{⌧(�(k, 0)) � dk} = ;. (3.42)

The proof of (3.42) is omitted, as it is the same as the proof of part 1 of Lemma 2.15 from Chapter 2. Relation

in (3.42) together with the fact that ⌧ upper bounds |�
2

|, see eq. (3.30), implies that for all k sufficiently

large

P (|�
2

(�(k, 0))| � dk, Mk � ↵k) = 0, (3.43)

and thus

P (|�
2

(�(k, 0))| � dk) = P (|�
2

(�(k, 0))| � dk, Mk � ↵k) + P (|�
2

(�(k, 0))| � dk, Mk < ↵k)

 P (Mk < ↵k) ,

for all k sufficiently large. We can see from the preceding inequality that that to prove 3.31 it suffices to

prove

lim sup

k!+1
1

k
log P (Mk < ↵k)  log p

max

. (3.44)

Thus, from now on we focus on computing the probability of the event {Mk < ↵k}. To do this, it will prove

useful, in addition to recording the emergence of a scrambling graph in �(s, t), to record also the times when

a directed spanning tree emerges in �(s, t). For this purpose we use the sequence Ti : ⌦ 7! N [ {+1},

i � 1, i � 1, defined by

Ti(!) = min{t � Ti�1

(!) + 1 : �(t, Ti�1

(!)) has a directed spanning tree}, for i � 1, (3.45)

T
0

⌘ 0,

for ! 2 ⌦. Note that in each of the two sequences the increments, Ti+1

�Ti and Si+1

�Si, i � 0, are i.i.d..

We have the following relations between the two sequences of times, the key behind which is Lemma 3.18.
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Lemma 3.22 For any ! and t � 1:

1. if T
1

(!) > t then S
1

(!) > t;

2. if S
1

(!) > t then TN�1

(!) > t.

Proof To prove Lemma 3.22, note first that S
1

 t is equivalent to G(�(t, 0)) being scrambling. Part 1

then says that the necessary condition for G(�(t, 0)) to be scrambling is that it has a directed spanning tree.

But, from part 1 of Lemma 3.18, we know that having a directed spanning tree is a necessary condition for

any graph to be scrambling, thus the claim follows. To prove part 2, suppose that for some fixed ! and t

TN�1

 t. Then, a directed spanning tree emerged at least N � 1 times until time t, i.e., there exist times

tn, 0 ⌘ t
0

 t
1

 ...  tN�1

 t, such that �(tn, tn�1

). Then, by Lemma 3.10 each G (�(tn, tn�1

))

must also have a directed spanning tree. Denote An = �(tn, tn�1

), n � 1; note that each An has positive

diagonal entries and, thus, we are in the setup of Lemma 3.18. Observing that �(t, 0) = AN�1

· · ·A
1

and

applying part 2 of Lemma 3.18 proves the claim. 2

Passing to probabilities yields a neat “sandwiching” relation:

P (T
1

> t)  (S
1

> t)  P (TN�1

> t) (3.46)

Next lemma provides an exponential bound in t for the probability of the event {TN�1

> t} in the right

hand side of (3.46). As we explain below, Lemma 3.23 is the last piece that was missing to prove the upper

bound (3.31).

Lemma 3.23 For all t � 2(N � 1)

P (TN�1

> t)  (N � 1)

✓

t

N � 1

◆

|⇧(G)|N�1pt�(N�1)

max

. (3.47)

To simplify further the right hand side in (3.47), note that for any ✏ > 0 we can find a sufficiently large

constant C✏ such that
� t
N�1

�

e�t| log p
max

|  C✏e�t(| log p
max

|�✏) for all t. Therefore, for every ✏ > 0 and

t � 1,

P (S
1

> t)  (N � 1)|⇧(G)|N�1p�(N�1)

max

C✏e
�t(| log p

max

|�✏). (3.48)

Now, observe that, by definition of Mk, {Mk < ↵k} = {S↵k > k}; recall that for times Ti,� from

Chapter 2 we had an analogous relations with Mk,�, {Mk,� < ↵k} = {T↵k,� > k} (see the paragraph

before (2.35) in Chapter 2). Further, note the similarity between (3.48) with (2.32) from Chapter 2: they
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both provide an exponential bound in t for the probabilities that the corresponding improvement times S
1

and T
1,� are greater than t. Finally, both sequences Si and Ti,� have independent increments. It is easy to

check that the proof of part 2 of Lemma 2.15 relied only on the the three listed features of the sequence Ti,�.

Therefore, we can derive a counterpart to part 2 of Lemma 2.15 for Mk,� = Mk and Ti,� = Si by simply

reusing all the arguments of the corresponding proof: in all the formulas we only need to replace J � with

| log p
max

|� ✏. This will finally result in the bound below:

lim sup

k!+1
1

k
log P (Mk < ↵k)  �(| log p

max

|� ✏).

Passing to the limit lim✏!0

, (3.44) follows. To complete the proof of the upper bound (3.31), it only remains

to prove Lemma 3.23.

Proof [Proof of Lemma 3.23] Remark that {TN�1

> t} occurs if and only if one of the following disjoint

events occurs: {T
1

> t}, {T
1

 t and T
2

> t} ,..., {TN�2

 t and TN�1

> t}. Thus,

P (TN�1

> t) = P
 

N�2

[

l=1

{Tn  t and Tn+1

> t}
!

=

N�2

X

l=1

P (Tn  t and Tn+1

> t) . (3.49)

For fixed n, we compute the probability P (Tn  t and Tn+1

> t) by considering all different realizations

of T
1

, . . . , Tn. Suppose T
1

= s
1

,...,Tn = sn. Then, it must be that �(sl � 1, sl�1

), l = 1, ..., n, are all tree-

free; also, because Tn+1

> t it must be that �(t, sn) is tree-free. Using the fact that the graph realizations

from disjoint time intervals are independent, we get

P (T
1

= t
1

, ..., Tn = tn)  P (�(t, sl) is tree� free, and �(sl � 1, sl�1

) is tree� free, for l = 1, ..., n)

 P (�(t, sl) is tree� free)

n
Y

l=1

P (�(sl � 1, sl�1

) is tree� free) . (3.50)

Now, we can show (similarly as in the proof of Lemma 2.16 in Chapter 2) that, up to a set of probability zero,

�(sl � 1, sl�1

) is tree� free implies that all graph realizations in the time window (sl�1

, sl � 1] belong to

some tree-free collection H 2 ⇧(G); thus,

P (�(sl � 1, sl�1

) is tree� free) 
X

H2⇧(G)

p
sl�1�sl�1

H  |⇧(G)|psl�1�sl�1

max

. (3.51)

Using the preceding bound in (3.50) (for each of the factors indexed by l = 1, ..., n and also for the first
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factor corresponding to the interval (sl, t]) we get:

P (T
1

= t
1

, ..., Tn = tn, Tn+1

> t)  |⇧(G)|pt�sn
max

n
Y

l=1

|⇧(G)|psl�1�sl�1

max

= |⇧(G)|n+1pt�n
max

.

The preceding bound holds for arbitrary choice of the realization t
1

,...,tn, and since there in total
� t
n

�

such

possible choices, we have

P (Tn  t and Tn+1

> t) =

X

1t
1

...tnt

P (T
1

= t1, ..., Tn = tn, Tn+1

> t)


✓

t

n

◆

|⇧(G)|n+1pt�n
max

.

Going back to the probability in (3.49):

P (TN�1

> t) 
N�2

X

n=1

✓

t

n

◆

|⇧(G)|n+1pt�n
max

;

bounding each factor in the product on the right hand side by its maximal value for n between 1 and N � 2

yields (3.47) 2

3.3.4 Computation of J

In this subsection we illustrate computation of rate J with two random models: leader following with link

failures and broadcast gossip.

Leader following with link failures. Let T = (V,E) be a directed tree on N nodes and let r denote

the root node in T . We assume that each link e in T may fail with probability 1 � pe and also that links

fail independently in time and in space. With leader following algorithm on T , every node in T at each

time k transmits its state to all of its children; however, due to link failures, some if its children may not

receive the sent information. The corresponding matrix of interactions Wk is then given by [Wk]utu = ↵

and [Wk]uu = 1 � ↵ if the node u received the information from its parent denoted by tu (that is, if the

link (u, tu) 2 E was online at time k) and [Wk]utu = 0 and [Wk]uu = 1, otherwise; remark also that

[Wk]uv = 0 with probability one for all v 6= tu. Using the fact that the links fail independently, we get

that each subgraph of T occurs with positive probability and thus the collection of realizable graphs is the

collection of all subgraphs of T :

GLeader

=

�

(V,E0
) : E0 ✓ E

 

. (3.52)
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Now, since T = (V,E) is a directed tree, the easiest way to make T tree-free is to remove an arbitrary arc

from T . Thus, a candidate for the most likely tree-free collection on GLeader has to be of the following form:

{(V,E0
) : E0 ✓ E \ e}, for some e 2 E. The probability of such a collection equals 1� pe, e 2 E. Thus,

the one with the highest probability is the one for which pe is minimal. We conclude that

pLeader

max

= 1� pe? , J Leader

= | log(1� pe?
)|,

where e? is the “weakest” link in T that has the lowest probability of occurrence.

Broadcast gossip on a tree. In the previous example we explained the broadcast gossip algorithm running

on a generic network that is defined by graph bG = (V, bE). We consider now the case when bG is a symmetric

tree (the undirected graph of bG is a tree and for every arc in bG its inverted arc also belongs to bG). Note that

the four node graph from the example in Figure 3.1 is of this type. Similarly as in the case of the four node

graph, we can see that inhibition of any internal node (non-leaf node) u 2 V yields a tree-free network,

that is, �(G \ {Hu}) is tree-free. Thus, it suffices to remove just one graph of this type from GB�gossip, and

therefore the most likely tree-free collection must be of the form G \{Hu}, where u is some internal node in

bG. The probability of such a collection is 1�pu, and the most likely one is the one for which pu is minimal:

pB�gossip

max

= 1� min

u2V :u is internal

pu

J B�gossip

=

�

�

log pB�gossip

max

�

� .

For the simplest case when all the nodes have the same probability of activation, equal to 1

N , the rate

J B�gossip

=

�

�

log

�

1� 1

N

�

�

� ⇠ 1

N , for large N .
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Chapter 4

Large Deviations for Distributed Inference

4.1 Introduction

In this chapter, we establish large deviations upper and lower bounds for distributed inference algorithms

over random networks (see ahead equations (4.3)–(4.4)) for d-dimensional nodes’ vector observations, and

arbitrary subsets of Rd. Further, for regular networks, we establish the full large deviation principle in the

sense of [8].

We explain distributed inference and our results in general terms; for specific applications we refer

to Chapter 5. Suppose that each node i in an N -node network observes the samples Zi,t 2 Rd from an

unknown distribution µ. The goal is for all nodes to estimate the mean Z of the distribution µ. For example,

in linear estimation, Zi,t = ✓ + ni,t, where ✓ 2 Rd is an unknown deterministic parameter, ni,t is the zero-

mean noise, and Z = ✓. To motivate our analysis, we briefly describe three types of inference: isolated,

centralized, and distributed.

(1) Isolated inference. Node i is isolated from the rest of the network and estimates Z through the

sample mean of its own observations:

x(iso)

i,k =

1

k

k
X

t=1

Zi,t. (4.1)

(2) Centralized inference assumes a (usually impractical) fusion node that collects the samples from

all nodes, at all times, and computes:

x(cen)

k =

1

N k

k
X

t=1

N
X

i=1

Zi,t. (4.2)

(3) Distributed inference. Each node i updates its estimate xi,k by communicating only with its imme-
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diate neighbors in the network, via the following recursive algorithm:

bxi,k =

X

j2Oi,k

Wij,k xj,k�1

(4.3)

xi,k = bxi,k � 1

k
(bxi,k � Zi,k) . (4.4)

Here, Oi,k is node i’s neighborhood at time k (including), bxi,k is an auxiliary variable, and the Wij,k’s are

positive weights such that at any time k
P

j2Oi,k
Wij,k = 1 for each i. Distributed inference of type (4.3)–

(4.4) has been recently extensively studied in the literature and proved useful in many contexts, numerous

references are listed in Chapter 1. The scheme (4.3)–(4.4) has several favorable features: 1) it processes

data in real-time, recursively; 2) it utilizes only inter-neighbor communication and avoids the fusion-node

bottleneck; and 3) exhibits resilience to inter-node communication failures. The focus of our analysis is on

distributed inference.

With all the three types of inference (isolated, centralized, and distributed), full characterization of per-

formance requires knowledge of the full distribution of the random estimate (e.g., x(iso)

i,k ). Even for the

simplest, isolated inference, this is usually an intractable task. Hence, one typically resorts to asymptotic

measures, like consistency, asymptotic normality, and large deviations. For sample means, hence for the

centralized and the isolated inference, all three measures (and, in particular, large deviations) have been

studied in the literature and are well understood. Regarding distributed inference, consistency and asymp-

totic normality have been extensively studied [2]. However, large deviations analysis has not been addressed

before. Our focus here is on the large deviations analysis. Specifically, consider a (measurable) set E ⇢ Rd

that does not contain Z. For consistent estimators, the probability P (xi,k 2 E) converges to zero as k !1.

Here, we find the exponential decay rate (the large deviation rate) I(E) of this convergence:

P (xi,k 2 E) ⇠ e�k I(E). (4.5)

That is, we find the function I(E) for any set E 2 Rd, and we quantify I(E) in terms of the system pa-

rameters – the distribution of the Zi,k’s, and the underlying network statistics. We achieve this for randomly

varying networks, the case which is highly relevant, e.g., with wireless sensor networks, where the packet

dropouts may occur at random times.

We give here qualitative explanation of our results, while quantitative statements are in Theorems 4.15

and 4.19. We discover interesting interplay between network and observations that arise from the large

deviations approach, and which are not visible through the existing approaches of asymptotic normality
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in [2]. First, we show that the performance of distributed inference (4.3)–(4.4) is always (equal or) better

than isolated inference and is always worse than (or at best equal to) centralized inference. While the result

is highly intuitive, it is technically very involved to prove it. Second, more interestingly, we show a highly

nonlinear behavior of distributed inference. To make our point clear, consider the sets E of type

E� = {x 2 Rd
: kx� Zk > ⇠}, ⇠ > 0.

Hence, requiring that the estimate xi,k /2 E⇠ for a very small ⇠ means requiring a very high estimation

precision (high confidence); conversely, a large ⇠ corresponds to a coarse estimation. Our results show

the following nonlinear behavior. Distributed inference is close to centralized performance for very high

precisions (very small ⇠’s) and becomes much worse from the centralized performance for very coarse

precisions. Intuitively, reaching high precisions is intrinsically difficult even for the centralized system,

and hence the network-wide averaging process in (4.3)–(4.4) has sufficient time to “catch up” with the

centralized system. On the other hand, the centralized system reaches a coarse accuracy very quickly, so

that the distributed system cannot “catch up.” The point ⇠? where the behavior significantly changes depends

on the connectivity of the underlying network, number of nodes, and distribution of Zi,k’s. We explicitly

quantify this interplay between network and observations in Theorem 4.19.

Notation. We denote by RN the N -dimensional real coordinate space; 1N the vector of all ones in RN ; IN

the identity matrix of size N ⇥N ; ei the i-th canonical vector of RN ; and k · k the Euclidean (respectively,

spectral) norm of its vector (respectively, matrix) argument; B �Rd
�

the Borel �-algebra on Rd; �N the unit

simplex in RN : �N =

n

↵ 2 RN
:

PN
i=1

↵i = 1, ↵i � 0 for i = 1, . . . , N
o

; and 1A the indicator of event

A. Further, for a set E ✓ Rd, Eo and E are, respectively, the interior and the closure of E. For a function

f : Rd ! R [ {+1}, we denote its domain by Df :=

�

x 2 Rd
: f(x) < +1 . We use notation Bx

0

,�

for the closed ball Bx
0

,� := {x 2 Rd
: kx� x

0

k  �}.

4.2 Model and distributed inference algorithm

In this section, we detail the distributed inference algorithm (4.3)–(4.4) and the network and observation

models.

Distributed inference algorithm. Let xi,k denote the state of node i at time k. The state xi,k is im-

proved over time two-fold: 1) the nodes’ states are exchanged and averaged across the neighborhoods to

form an intermediate state update x̂i,k; and 2) the new observations Zi,k are incorporated into the states.
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Mathematically, the algorithm is given by (4.3)–(4.4), where we recall that Oi,k is the (random) neighbor-

hood of node i at time k (including i), and Wij,k is the weight that node i at time k assigns to the state of its

neighboring node j 2 Oi,k. We assume that the weights are nonnegative at all times. Also, at each node, and

at each time, they form a convex combination, i.e.,
P

j2Oi,k
Wij,k = 1. For each k, collect all the weights

Wij,k in an N ⇥N matrix Wk, such that the entry (i, j) of Wk, [Wk]ij , takes value of the weight Wij,k for

j 2 Oi,t, and equals 0 otherwise.

Unwinding the recursion in (4.3)-(4.4), we rewrite the algorithm in a more compact form:

xi,k =

1

k

k
X

t=1

N
X

j=1

[�(k, t)]ij Zj,t, (4.6)

where �(k, t) = Wk · · ·Wt+1

, for 1  t < k, and �(k, k) is the identity matrix (of size N ).

We next state our assumptions on the joint distribution of the Wt’s and the Zi,t’s.

Assumption 4.1 (Network and observations model) We assume the following:

1. Observations Zi,t, i = 1, . . . , N , t = 1, 2, . . . are independent, identically distributed (i.i.d.), both

across nodes and in time;

2. Random matrices Wt, t = 1, 2, . . . are i.i.d.;

3. Random matrix Wt takes values in the set of stochastic matrices1;

4. Wt and Zi,s are independent for all i, s, t.

Model 4.1 on matrices Wt is very general. For example, we do not require here that the Wt’s are doubly

stochastic, nor do we require connectedness (in some sense) of the underlying network that supports the

Wt’s. Of course, to guarantee high benefits of inter-agent cooperation, we shall assume more structure on

the Wt’s; this is considered in Section 4.5.

4.3 Preliminaries

This section gives preliminaries by introducing certain large deviation tools needed in the sequel. Sub-

section 4.3.1 introduces the logarithmic moment generating function and its properties. Subsection 4.3.2

defines the large deviation principle and the Fenchel-Legendre transform. Finally, Subsection 4.3.3 gives

the large deviation principle for centralized and isolated inference.
1With a stochastic matrix, rows sum to one, and all the entries are nonnegative
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4.3.1 Logarithmic moment generating function

To analyze the large deviation performance of algorithm (4.3)–(4.4), we use the well-known tools, namely,

the logarithmic moment generating function and Fenchel-Legedre transform. We first introduce the loga-

rithmic moment generating function ⇤ : Rd ! R [ {+1}, of the observations Zi,t:

⇤(�) = log E
h

e�>Zi,t

i

, � 2 Rd. (4.7)

In general, function ⇤ can assume values in R [ {+1}. We illustrate how to compute ⇤ when Zi,t is a

discrete random vector.

Example 4.2 (Function ⇤ for a discrete random vector) Suppose that Zi,t is a discrete random vector that

takes values in the set A = {a
1

, ..., aL}, al 2 Rd, for l = 1, ..., L, according to the probability mass

function p 2 �L. Then, for any � 2 Rd, the value ⇤(�) is computed by

⇤(�) = log

 

L
X

l=1

ple
�>al

!

. (4.8)

It can be shown similarly that the logarithmic moment generating function of a d-dimensional Gaussian

vector of mean vector m and covariance matrix S is the quadratic function Rd 3 � 7! 1/2(��m)

>S(��
m).

We assume that function ⇤ is finite on whole Rd.

Assumption 4.3 D
⇤

:=

�

� 2 Rd
: ⇤(�) < 1 = Rd, i.e., ⇤(�) < +1 for all � 2 Rd.

Assumption 4.3 holds for Gaussian vectors and arbitrary discrete random vectors (as we have just shown),

but also for many other commonly used distributions; we refer the reader to Chapter 5 for examples beyond

the ones here for which D
⇤

= Rd.

Logarithmic moment generating function has many nice properties, like convexity and smoothness.

They are listed in Lemma 4.4, for future reference.

Lemma 4.4 ([18]) The logarithmic moment generating function ⇤ of arbitrary random vector Z satisfies:

1. ⇤(0) = 0 and r⇤(0) = E[Z];

2. ⇤(·) is convex;

3. ⇤(·) is C1, i.e., it has continuous derivatives of all orders.
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Proposition 4.5 states one implication of convexity of ⇤(·) which is important for our analysis and which

we frequently use in the sequel.

Proposition 4.5 Let ↵i, 1  i  N , be an arbitrary N -tuple of convex multipliers, i.e., the ↵i’s satisfy

↵i � 0, for each i and
PN

i=1

↵i = 1. Then, for every � 2 Rd:

N⇤ (1/N�) 
N
X

i=1

⇤(↵i�)  ⇤(�). (4.9)

Proof We prove first the right hand side inequality in (4.9). To this end, fix ↵ 2 [0, 1] and recall that

⇤(0) = 0. Then, by convexity of ⇤(·),

⇤(↵�) = ⇤(↵� + (1� ↵)0)  ↵⇤(�) + (1� ↵)⇤(0) = ↵⇤(�).

Plugging ↵ = ↵i, i = 1, ..., N , and summing out the left hand sides and the right hand sides of the

resulting i inequalities yields the claim. To prove the left hand side inequality in (4.9), consider the function

g : RN 7! R, g(�) =

PN
i=1

⇤(�i�), for � = (�
1

, ...,�N ) 2 RN . Function g is is a sum of convex

functions RN 3 � 7! ⇤(�i�) = ⇤(e>i ��) and this convex (note that each of these functions is convex

as a composition of the linear map e>i �, for the corresponding i, and the convex function ⇤). Therefore,

we prove the left hand side inequality in (4.9) if we show that the minimum of g(·) over the unit simplex

�N := {a 2 Rd
:

Pd
i=1

ai = 1, ai � 08i} is attained at 1/N1N = (1/N, . . . , 1/N). We show this

by verifying that there exists a multiplier ⌫ 2 R such that the pair (1/N1N , ⌫) satisfies the Karush-Kun-

Tucker (KKT) conditions [83]. Let L(�, ⌫) = g(�) + ⌫(1

>
N� � 1). Then

@�i
L(�, ⌫) = �>rg(�i) + ⌫.

Taking ⌫ = ��>⇤(1/N) proves the claim. 2

4.3.2 Rate function, the large deviation principle, and Cramér’s theorem

In this Subsection, we review some concepts from large deviations theory. We start by the rate function I and

the large deviation principle. We first informally introduce them and then give formal definitions. Consider

a sequence of random vectors {Yk} and their measures µk : B(Rd
) ! [0, 1], µk(E) := P (Yk 2 E),

and suppose that Yk ! Y , in probability, where Y is a constant vector. Under certain conditions, for a
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measurable set E that does not contain Y , the probability mass vanishes from E exponentially fast, i.e.:

µk(E) ⇠ e�k bI(E), (4.10)

where bI(E) is a nonnegative function that can further be expressed as: bI(E) = infx2E I(x), for some

function I : Rd ! [0,1]. The large deviation principle (LDP) formalizes (4.10) in the following two

definitions.

Definition 4.6 (Rate function I) Function I : Rd 7! [0,+1] is called a rate function if it is lower semicon-

tinuous, or, equivalently, when its level sets are closed.

Definition 4.7 (The large deviation principle) A sequence of measures µk on
�

Rd,B �Rd
��

, k � 1, is said

to satisfy the large deviation principle with rate function I if the following two conditions hold:

• For any closed set E ✓ Rd,

lim sup

k!+1
1

k
log µk(E)  � inf

x2E
I(x); (4.11)

• For any open set F ✓ Rd,

lim inf

k!+1
1

k
log µk(F ) � � inf

x2F
I(x). (4.12)

A set E ⇢ Rd for which infx2Eo I(x) = infx2E I(x) is called an I continuity set.

Cramér’s theorem gives a canonical way to establish LDP and find the rate function I , when Yk is

a sample mean of i.i.d. random vectors Zt, i.e., Yk :=

1

k

Pk
t=1

Zt. (Note that this is precisely the case

with isolated (4.1) and centralized inference (4.2), but it is not the case with distributed inference (4.3)–

(4.4).) Namely, the Cramér’s theorem states that (the measures of) {Yk} satisfy LDP with the following rate

function

I(x) = sup

�2Rd

�>x� ⇤(�), x 2 Rd, (4.13)

where ⇤ is the logarithmic moment generating function of Zt; hence, the rate function I is the Fenchel-

Legendre transform (conjugate) of ⇤.

The Fenchel-Legendre transform I has several interesting properties that are relevant for our study. We

state them here for future reference (proofs can be found in [8].)

Lemma 4.8 (Properties of I , [8]) Let I be the Fenchel-Legendre transform of the logarithmic moment gen-

erating function of a random vector Z with mean Z. Then:
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1. I is nonnegative;

2. I
�

Z
�

= 0;

3. I is lower semicontinuous; if 0 2 D0

⇤

, then I has compact level sets.

4. I is convex.

Finally, a reader familiar with convex analysis will notice that I is (in the language of convex analysis) the

conjugate of ⇤, see, e.g., Chapter E in [72]. We will use both terms interchangeably.

4.3.3 Large deviation principle: Isolated and centralized inference

We now turn to the three inference algorithms from the introduction: x(iso)

i,k (isolated), x(cen)

k (centralized),

and xi,k (distributed). We apply Cramér’s theorem to establish the large deviation performance of the former

two, while we analyze distributed inference is Sections 4.4 and 4.5.

(1) Isolated inference. Applying Cramér’s theorem [8] to the sample mean in (4.1), we obtain that the

sequence of measures E 7! P
⇣

x(iso)

i,k 2 E
⌘

satisfies the large deviation principle with the rate function I

given by (4.13): Therefore, for a node working in isolation, its large deviations performance is fully char-

acterized by the Fenchel-Legendre transform I of the logarithmic moment generating function ⇤ associated

with its local samples Zi,t.

(2) Centralized inference. Consider now the sample mean at the fusion node in (4.2). To apply

Cramér’s theorem to the sequence x(cen)

k , we start from a simple observation that x(cen)

k is the sample mean

of k samples of the random vector 1/N
PN

i=1

Zi,t. Now, the logarithmic moment generating function of

1/N
PN

i=1

Zi,t is � 7! N⇤ (1/N�) (this can be easily shown using the independence of Zi,t, i = 1, ..., N ),

and its Fenchel-Legendre transform is given by:

sup

�2Rd

�>x�N⇤(1/N�) = N sup

�2Rd

(1/N�)

> x� ⇤(1/N�) = NI(x), x 2 Rd.

Applying Cramér’s theorem to x(cen)

k , we obtain that the sequence of measures E 7! P
⇣

x(cen)

i,k 2 E
⌘

,

E 2 B �Rd
�

, satisfies the large deviation principle with the rate function N I(·), where I is given in (4.13).

The advantage of the fusion node over an isolated node in terms of large deviations is now obvious:

for any “deviation” set E, Z /2 E, the probability that the sample mean of the fusion node falls in E,

P
⇣

x(cen)

k 2 E
⌘

, decays at an N times higher rate with time k than the corresponding probability for x(iso)

k .

To explain important practical implications of the conclusion above, suppose that we are a given a target

accuracy for the estimates of Z defined in terms of a Borel set S ✓ Rd containing Z, so that we are satisfied
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if, say, with probability pconf

= 0.95, our estimate belongs to S. (We allow S to be an arbitrary Borel set

that contains Z.) We now exploit the conclusions from above for the Borel set E = Rd \S = Sc. Recall the

definition of the large deviation principle in (4.7) and, with slight abuse of notation, let I(E) = infx2E I(x).

Then, assuming that I is continuous on E2 and ignoring the factors that are slower than exponential3, we

have:

P
⇣

x(iso)

k /2 S
⌘

⇡ e�kI(Sc

), (4.14)

and

P
⇣

x(cen)

k /2 S
⌘

⇡ e�kNI(Sc

). (4.15)

The earliest time when the estimate x(iso)

k meets the accuracy requirements is the minimal integer k for

which

P
⇣

x(iso)

k /2 S
⌘

 1� pconf .

Denote this number by T iso

pconf

. Then, exploiting (4.14), we have

T iso

pconf

=

l

� log(1� pconf

)/I(Sc

)

m

.

Computing the corresponding time for x(cen)

k ,

T cen

pconf

=

l

� log(1� pconf

)/NI(Sc

)

m

.

Therefore, the fusion node hits the target set S with high probability pconf N times sooner than an isolated

node:

T cen

pconf

=

1

N
T iso

pconf

.

Moreover, the same ratio between the two times holds for arbitrary design parameters (S, pconf

).

(3) Overview of the large deviation results for distributed inference (4.3)–(4.4). Having the LDP

with the rate function I(·) for isolated inference and the LDP with the rate function N I(·) for a fusion node,

it is natural to ask if the LDP, or at least an exponential decay, occurs also with distributed inference (4.3)–

(4.4). We answer the above question affirmatively. We detail the results in Sections 4.4 and 4.5, while

here we summarize our findings. First, Section 4.4 shows that the performance of distributed inference is

2Note that this is satisfied for any E ✓ D0

I .
3To be more precise, in each of the two equations there exists a constant Ck multiplying the exponential function; how-

ever, this constant goes to zero on the exponential scale, limk!+1 log Ck, and it can be therefore neglected for large k; i.e.,
log P

⇣

x
(iso)

k /2 S
⌘

= log Ck � kI(Sc

) ⇡ kI(Sc

), for k large enough, and similarly for P
⇣

x
(cen)

k /2 S
⌘
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always bounded between the performance of isolated and centralized algorithms. Although highly intuitive,

this result was surprisingly difficult to prove. We remark that this conclusion holds for arbitrary sequence

of stochastic matrices Wt, t � 1, for example, with arbitrary correlations among the Wt’s, and/or when,

e.g., Wt’s are permutation matrices. We address the case of more structured Wt’s in Section 4.5. Under a

“balanced” exchange of information, where each node gives a positive weight to its own opinion, and the

matrices are doubly stochastic, cooperation guarantees much larger gains in performance. First, for regular

networks, we establish the LDP with (4.3)–(4.4), and we provide a closed form formula for the rate function.

The formula shows that the rate depends only on the number of nodes N , a single node’s rate function I ,

and the probability that a node is isolated. Further, when the algorithm runs on a graph with i.i.d. random

link failures, the LDP holds for every leaf node and, moreover, each leaf node has the same rate function. To

explain our third finding, we recall from Chapter 2 the large deviation rate J for the products Wk · · ·W1

.

Now, we show that, whenever J equals log |pi?,isol

|, for some node i?, where p
i

?,isol

is the probability that

node i? has no neighbors, then the probability distribution of this node’s estimate xi?,k satisfies the LDP.

For more general cases, we establish tight bounds Ii and Ii on the exponential decay of the sequence of

measures E 7! P (xi,k 2 E), E 2 B �Rd
�

:

lim sup

k!+1
1

k
log (xi,k 2 E)  �Ii(E) (4.16)

lim inf

k!+1
1

k
log (xi,k 2 E) � �Ii(E), (4.17)

and we explicitly characterize these bounds in terms of the number of nodes N , the single node’s rate

function I , and the statistics of the graphs that support Wt’s.

4.4 Large deviations rate for distributed inference: Generic matrices Wt

The main result of this section, Theorem 4.15, asserts that, for any Borel set E, the bounds in (4.16)

and (4.17) hold with Ii ⌘ NI and Ii ⌘ I . Before giving Theorem 4.15, we state and prove the key

technical lemma behind this result, Lemma 4.9.

Lemma 4.9 Consider a family of random vectors Zi,t satisfying Assumptions 4.1 and 4.3. Let ↵t =

(↵
1,t, . . . ,↵N,t), t � 1 be a given sequence of sets of N convex multipliers, i.e., ↵t 2 �N for all t.

Then, the following holds for the sequence xk =

1

k

Pk
t=1

PN
i=1

↵i,tZi,t, k � 1:
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1. (No worse than isolation) For any closed set E ✓ Rd:

lim sup

k!+1
1

k
log P (xk 2 E)  � inf

x2E
I(x); (4.18)

2. (No better than centralization) For any open set F ✓ Rd:

lim inf

k!+1
1

k
log P (xk 2 F ) � �N inf

x2F
I(x). (4.19)

4.4.1 Proof of the “no worse than isolation” bound

To prove (4.18), it suffices to show that for any open ball G 2 Rd:

P (xk 2 G)  e�k infx2G(

�>x�⇤(�)

). (4.20)

The upper bound (4.18) can then be established by applying the standard “finite cover” argument for the

case of compact E (see, e.g., the proof of the Cramer’s theorem in Rd, [8]), combined with the exponential

tightness of the sequence of measures E 7! P (xk 2 E).

The proof of (4.20) is based on two key arguments: exponential Markov inequality [69], and the property

of ⇤(·), proven in Proposition 4.5, that for any �, and any set of convex multipliers ↵ 2 �N , ⇤(�) upper

bounds
PN

i=1

⇤ (↵i�).

Fix an arbitrary measurable set G ✓ Rd. Then, for any � 2 Rd, the following statement holds point-wise

1xk2G  ek�>xk�k infx2G �>x
; (4.21)

taking the expectation, yields

P (xk 2 G)  e�k infx2G �>xE
h

ek�>xk

i

. (4.22)

We now focus on the right hand side of (4.22). Using the fact that the Zi,t’s are independent, together with

the definition of the logarithmic moment generating function of Zi,t in (4.7),

E
h

ek�>xk

i

= E
h

e
Pk

t=1

PN
i=1

↵i,t�>Zi,t

i

= e
Pk

t=1

PN
i=1

⇤(↵i,t�), (4.23)

82



and applying the upper bound from Proposition 4.5, yields (4.20):

P (xk 2 G)  e�k
(

infx2G �>x�⇤(�)

). (4.24)

4.4.2 Proof of the “no better than centralization” bound

We prove part 2 of Lemma 4.9 following the general lines of the proof of the Gärtner-Ellis theorem lower

bound, see [8]. However, as we will see later in this proof, we encounter several difficulties along the

way which force us to depart from the standard Gärtner-Ellis method and use different arguments. The

main reason for this is that the sequence of the (scaled) logarithmic moment generating functions of xk

(see ahead (4.26)) does not have a limit in general (that is, for any sequence ↵t of convex multipliers).

Nevertheless, with the help of Proposition 4.5, we will be able to “sandwich” each member of this sequence

between ⇤(·) and N⇤ (1/N ·). This is the key ingredient that allows us to derive the lower bound in (4.19).

First, remark that to prove (4.19), it suffices to show that for any z 2 DI ,

lim

�!0

lim inf

k!+1
1

k
log P (xk 2 Bz,�) � �NI(z). (4.25)

To see this, observe that for an open set F and a point z 2 F we can find a small neighborhood Bz,�
0

that is

fully contained in F . Then, for all �  �
0

P (xk 2 F ) � P (xk 2 Bz,�) ,

implying

lim inf

k!+1
1

k
log P (xk 2 F ) � lim

�!+1
lim inf

k!+1
1

k
log P (xk 2 Bz,�) .

Using now (4.25) to bound the righthand side of the preceding inequality,

lim inf

k!+1
1

k
log P (xk 2 F ) � �NI(z),

and taking the supremum over all z 2 F , proves that (4.25) is a sufficient condition for (4.19) to hold. Thus,

from now on we focus on proving (4.25).

We introduce a normalized logarithmic moment generating function ⇤k : Rd 7! R [ {+1} of xk,
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defined by:

⇤k(�) :=

1

k
log E

h

ek�>xk

i

, � 2 Rd4. (4.26)

Using independence of the Zi,t’s, we have that, for any �,

⇤k(�) =

1

k

k
X

t=1

N
X

i=1

⇤ (↵i,t�) . (4.27)

We now depart from the standard Gärtner-Ellis method and use a regularization of xk with a Gaussian

variable of vanishing probability, see Exercise 2.3.20 in [8] 5. To this end, introduce a standard multivariate

Gaussian variable V independent of the observations Zi,t. Fix M > 0 and define yk = xk + V/
p

Mk for

k � 1. Introduce the normalized logarithmic moment generating function of yk:

⇤k,M (�) :=

1

k
log E

h

ek�>yk

i

.

Using that the logarithmic moment generating function of a Gaussian vector of zero mean and covariance

matrix ⌃ is 1

2

�>⌃�, after simple algebraic manipulations, we obtain:

⇤k,M (�) = ⇤k(�) +

k�k2
2M

. (4.28)

Thus, we can see that adding a small Gaussian noise V/
p

Mk to xk brings a quadratic term to the (nor-

malized) logarithmic moment generating function ⇤k. We note that both ⇤k,M and ⇤k are convex and

differentiable functions, and with continuous gradients. In addition, ⇤k,M is strictly convex.

The first step towards proving (4.25) is to show its counterpart (4.29) for the regularized sequence yk.

For each k, let µk denote the distribution of yk: µk(E) = P (yk 2 E), E 2 B �Rd
�

.

Lemma 4.10 For any z 2 DI ,

lim

�!0

lim inf

k!+1
1

k
log µk (Bz,�) � �NI(z). (4.29)

Proof Introduce the conjugate Ik,M of ⇤k,M ,

Ik,M (x) = sup

�2Rd

�>x� ⇤k(�)� k�k2
2M

(4.30)

4Note that ⇤k(�) =

1

k
fk(k�), where fk is the logarithmic moment generating function of xk.

5The reason for this regularization is to be able to handle the case when z 2 DI is not an exposed point of Ik, as will be clear
from later parts of the proof.
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for x 2 Rd. Exploiting that, for each t,
PN

i=1

↵i,t = 1, and applying the lower bound from Proposition 4.5

to
PN

i=1

⇤ (↵i,t�) in (4.27) for each t, yields, for each �,

⇤k(�) � N⇤ (1/N�) ,

and thus

Ik,M (x)  sup

�2Rd

�>x� ⇤k(�)  sup

�2Rd

�>x�N⇤ (1/N�) = NI(x). (4.31)

Note that the preceding inequality holds for all x, k and M > 0. In particular, it follows that DI ✓ DIk,M
.

The result of the next lemma makes clear the benefit of the regularization: the quadratic term in (4.30)

assures that the infimum in (4.30) has a maximizer �k = �k(x) for any given x. This in turn implies that

every point x 2 Rd is an exposed point of Ik,M , which is what we need in our proof6. Note that we could

not guarantee this property for the conjugate of ⇤k.

Lemma 4.11 For any x 2 Rd and any k � 1, there exists �k = �k(x) 2 Rd such that Ik,M (x) = �k
>x �

⇤k,M (�k). Moreover, the pair (x, �k) satisfies x = r⇤k,M (�k).

Proof Fix x 2 Rd and define gx(�) := �>x� ⇤k,M (�), � 2 Rd; note that

Ik,M (x) = sup

�2Rd

gx(�). (4.32)

If we show that gx has compact level sets, this would imply that gx has a global maximizer (see, e.g.,

Proposition 1.1.3. (Weierstrass theorem) in [84]), which in turn would prove that �?
k(x) exists. We now

show that gx has compact level sets.

First, observe that ⇤k is convex as a sum of convex functions � 7! 1/k⇤ (↵i,t�), i = 1, ..., N , t =

1, ..., k. Therefore, ⇤k is minorized by its linear approximation at 0:

⇤k(�) � ⇤k(0) +r⇤k(0)

>�, 8� 2 Rd. (4.33)

Computing the gradient of ⇤k at zero, and using the fact that, for all t, the coefficients ↵i,t satisfy
PN

i=1

↵i,t =

1, we obtain

r⇤k(0) =

1

k

k
X

t=1

N
X

i=1

↵i,tr⇤ (↵i,t0) =

1

k

k
X

t=1

N
X

i=1

↵i,tZ = Z.

6See the paragraph before Lemma (4.14) to appreciate the importance of this result
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Further, it is easy to see that ⇤k(0) = 0. Thus, from (4.33) we get

⇤k(�) � Z
>
�,

for every �, implying

gx(�) = �>x� ⇤k,M (�)  �>(x� Z)� k�k2
2M

.

Since � 7! �>(y � x) � k�k2
2M which majorizes gx has compact level sets, it implies that gx has bounded

level sets. Finally, using that gx is continuous on Rd (which follows by the continuity of ⇤ on Rd) we prove

that gx has compact level sets. Thus, we proved the existence of �k = ⇤k(x) corresponding to our chosen

x. To show the last part of the claim of Lemma 4.11, we observe that, because �k is a minimizer of gx, there

holds that 0 = rgx (�k) = x�r⇤k,M (�k). Finally, noting that x was arbitrary completes the proof. 2

Although we use the result of the following lemma later in the proof, it is convenient to state it now

because of its relation with the preceding lemma, Lemma 4.11.

Lemma 4.12 Let x be an arbitrary point 2 Rd. Consider the sequence �k, k � 1, where, for each k, �k is a

maximizer of (4.30). Then, for all k:

k�kk  M kx� zk ,

or, equivalently, {�k : k � 1} ✓ B
0,Mkx�zk.

Proof Fix x 2 Rd. Fix k � 1 and consider the point �k from the setup of the lemma. We prove the

claim by showing that �k cannot go too far in neither direction.

Suppose that 1

k�kk�k = v for some v 2 Rd, kvk = 1. Denote by ⇢v the norm of �k, ⇢v = k�kk. We

show that ⇢v cannot be greater than Mv>(x� Z). Starting from the identity x = r⇤k,M (�k),

x =

1

k

k
X

t=1

N
X

i=1

↵i,tr⇤ (↵i,t⇢vv) + 1/M⇢vv, (4.34)

and multiplying both sides with v>, yields

v>x =

1

k

k
X

t=1

N
X

i=1

↵i,tv
>r⇤ (↵i,t⇢vv) + 1/M⇢v. (4.35)

where, to get the right-most term, we used that kvk = 1. Now, since ⇤ is convex, it has non-decreasing
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slopes in any direction, and thus along the line ⇢v, ⇢ > 0 as well; hence,

v>r⇤ (↵i,t⇢vv) � v>r⇤(0) = v>Z, 8i, t.

(Note that we use here that ↵i,t is nonnegative). Combining the preceding inequality with (4.35), we get

v>x � v>Z + 1/M⇢v, (4.36)

and we conclude that ⇢v  Mv>(x � Z). Repeating this argument for all directions v, and computing the

supremum supv2Rd,kv=1kMv>(x� Z) = Mkx� Zk, proves the claim. 2

Now, fix z 2 DI and fix � > 0. Then, by Lemma 4.11, there exists a point ⌘k such that Ik,M (z) =

⌘>k z � ⇤k,M (⌘k); note the subscript k which indicates the dependence of this point on k. For any k we use

the ⌘k to change the measure on Rd from µk to eµk through:

deµk

dµk
(x) = e k ⌘>k x� k ⇤k,M (⌘k), x 2 Rd. (4.37)

x 2 Rd. Note that, in contrast with the standard method of Gärtner-Ellis Theorem where the change

of measure is fixed (once z is given), here we have a different change of measure for each k7 8 Using

the transformation of measure above, it is easy to show that the logarithmic moment generating function

associated with eµk is given by e⇤k,M := ⇤k,M (� + ⌘k)� ⇤k,M (⌘k). Fix � > 0 and consider µk (Bz,�) (for

the fixed z and �). Expressing this probability through eµk, for each k, we have:

1

k
log µk (Bz,�) = ⇤k,M (⌘k)� ⌘>k z +

1

k
log

Z

x2Bz,�

ek⌘>k (z�x)deµk(x) (4.38)

� ⇤k,M (⌘k)� ⌘>k z � � k⌘kk+

1

k
log eµk (Bz,�) . (4.39)

The first term in the equation above equals ⇤k,M (⌘k)� ⌘>k z = �Ik,M (z), and since Ik,M (·)  NI(·) (see

eq. (4.31)) it follows

1

k
log µk (Bz,�) � �NI(z)� � k⌘kk+

1

k
log eµk (Bz,�) . (4.40)

7The obvious reason for this alteration of the standard method is the fact that our sequence of functions ⇤k,M does not have a
limit.

8It can be shown that all distributions eµk, k � 1, have the same expected value z; we do not pursue this result here, as it is not
crucial for our goals.
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Letting now k ! +1 and then � ! 0

lim

�!0

lim inf

k!+1
1

k
log µk (Bz,�) � �NI(z)� lim

�!0

� lim sup

k!+1
k⌘kk+ lim

�!0

lim inf

k!+1
1

k
log eµk (Bz,�) . (4.41)

Applying now Lemma 4.12 to the sequence ⌘k, we have that lim supk!+1 k⌘kk  M
�

�z � Z
�

�, and,

thus, the second term in (4.41) vanishes:

lim

�!0

� lim sup

k!+1
k⌘kk = 0.

To prove the claim of Lemma 4.10 it remains to show that the third term in (4.41) vanishes as well.

Recall that the logarithmic moment generating function associated with eµk is e⇤k,M := ⇤k,M (� + ⌘k)�
⇤k,M (⌘k), and let eIk,M denote the conjugate of e⇤k,M . It can be shown that

lim sup

k!+1
eµk

�

Bc

z,�

�  � lim inf

k!+infty
inf

w2Bc

z,�

eIk,M (w). (4.42)

If we show that the right hand side in (4.42) is strictly negative, that would imply eµk (Bz,�) ! 1, as

k ! +1, which in turn yields that the third term in (4.41) vanishes. Thus, from now on we focus on

proving that the the right hand side in (4.42) is strictly negative.

Consider

inf

w2Bc

z,�

eIk,M (w). (4.43)

Now, from the fact that D
e

⇤k,M
= Rd, we can show that eIk,M has compact level sets (note that eIk,M is lower

semicontinuous). Thus, the infimum problem in (4.43) has a solution. Denote a solution by wk and let ⇣k be

a point for which wk = re⇤k,M (⇣k) (= r⇤k,M (⇣k + ⌘k)) (such a point exists by Lemma 4.11).

We now show that kwkk is uniformly bounded for all k, which, combined with Lemma 4.12, in turn

implies that ⌘k + ⇣k is uniformly bounded.

Lemma 4.13 For any fixed � > 0 and M > 0, there exists R = R(z, �, M) < +1 such that, for all k,

1. kwkk  R, implying {wk : k � 1} ✓ B
0,R;

2. k⇣k + ⌘kk  M supw2B
0,R

�

�w � Z
�

�.
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Proof Fix M > 0, � > 0. Define fM and f
M

as

fM (x) = sup

�2Rd

�>x�N⇤ (1/N�)� k�k2
2M

, f
M

(x) = sup

�2Rd

�>x� ⇤(�)� k�k2
2M

.

x 2 Rd. Note that both fM , f
M

are lower semicontinuous, finite for every x and have compact level sets.

Let c = infx2Bc

z,�
fM 2 R, and define Sc =

n

x 2 Rd
: f

M
(x)  c

o

.

Fix arbitrary k � 1. It can be shown with the help of Proposition (4.5) that for any x 2 Rd,

f
M

(x)  Ik,M (x)  fM (x). (4.44)

Observe now that Ik,M (wk) = infx2Bc

z,�
Ik,M (x)  infx2Bc

z,�
fM (x)  c. On the other hand, taking

in (4.44) x = wk, yields f
M

(wk)  Ik,M (wk), and it thus follows that wk belongs to Sc.

Finally, as Sc is compact, we can find a ball of some radius R = R(z, M, �) > 0 that covers Sc, implying

wk 2 B
0,R. Since k was arbitrary, the claim in part 1 follows.

We now prove part 2. Fix k = k
0

� 1 and consider the pair wk
0

, ⇣k
0

+ ⌘k
0

for which wk
0

=

r⇤k
0

,M (⇣k
0

+ ⌘k
0

). Applying Lemma 4.12 for for z = wk
0

we have that k⇣k
0

+ ⌘k
0

k  M
�

�wk
0

� Z
�

�.

Using now part 1 of this lemma (which asserts that for any k wk 2 B
0,R, and thus for k = k

0

) we have

wk
0

2 B
0,R. Combining the two preceding conclusions,

k⇣k
0

+ ⌘k
0

k  M
�

�wk
0

� Z
�

�  M sup

w2B
0,R

�

�w � Z
�

� . (4.45)

Since k
0

was arbitrary, the proof of Lemma 4.13 is complete. 2

Observe now that

eIk,M (wk) = ⇣>k wk � ⇤k,M (⇣k + ⌘k) + ⇤k,M (⌘k)

By strict convexity of ⇤k,M (recall the quadratic term 1/2Mk�k in ⇤k,M ), we have

⇤k,M (⌘k) > ⇤k,M (⇣k + ⌘k) +r⇤k,M (⇣k + ⌘k)
>

(⌘k � (⇣k + ⌘k))

and using that r⇤k,M (⇣k + ⌘k) = wk, finally yields

⇤k,M (⌘k) > ⇤k,M (⇣k + ⌘k)� w>k ⇣k.

Therefore, we obtain that eIk,M (wk) is strictly positive. Note also that, since k was arbitrary, the same
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conclusion holds for all k. However, we need a stronger claim for our purpose: each member of the sequence

of values eIk,M (wk) be bounded away from zero. The next lemma asserts that this is indeed the case.

Lemma 4.14 For any fixed z 2 Rd, � > 0, and M > 0, there exists ⇠ = ⇠(z, �, M) > 0 such that, for all k,

eIk,M (wk) � ⇠.

Proof Fix z, � and M and define r
1

= M
�

�z � Z
�

�, r
2

= supw2B
0,R

M
�

�w � Z
�

�, where R is the

constant that verifies Lemma 4.13. Fix now k � 1 and recall that ⌘k, ⇣k and wk are chosen such that z =

r⇤k,M (⌘k), eIk,M (wk) = infx2Bc

z,�
, and wk = r⇤k,M (⌘k + ⇣k). Now, by Lemma 4.12 and 4.13 we have

for ⌘k and ⇣k, k⌘kk  r
1

, k⌘k + ⇣kk  r
2

. We will now show that there exists some positive constant r
3

(>

0) independent of k such that k⌘kk � r
3

. Consider the gradient map � 7! r⇤k,M (�), and note that it is con-

tinuous, and hence uniformly continuous on every compact set. Note that k⌘kk , k⌘k + ⇣kk  max{r
1

, r
2

}.

Suppose now for the sake of contradiction that k⌘kk ! 0, as k ! +1. Then, k(⌘ + ⇣k)� ⌘kk ! 0, and

thus, by the uniform continuity of r⇤k,M (·) on B
0,max{r

1

,r
2

} we have

kr⇤k,M (⌘k)�r⇤k,M (⌘k + ⇣k)k ! 0, as k !1.

Recalling that z = r⇤k,M (⌘k), wk = r⇤k,M (⌘k), yields

kwk � zk ! 0.

This contradicts with wk 2 Bc

z,�. Thus, we proved the existence of r
3

independent of k such that

k⌘kk � r
3

, for all k.

Now, let

⌥ =

n

(⌘, ⇣) 2 Rd ⇥ Rd
: k⌘k  r

1

, k⌘ + ⇣k  r
2

, k⇣k � r
3

o

,

and introduce f : Rd ⇥ Rd 7! R,

f(⇣, ⌘) = ⇤k,M (⌘)� ⇤k,M (⇣ + ⌘) +r⇤k,M (⇣ + ⌘)

>⇣. (4.46)

By strict convexity of ⇤k,M (·), we see that for any ⌘ and ⇣ 6= 0, the value f(⌘, ⇣) is strictly positive. Further,
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note that since ⇤k,M and r⇤k,M are continuous, the function f is also continuous. Consider now

⇠ := inf

⌥

f(⌘, ⇣). (4.47)

Because ⌥ is compact, by the Weierstrass theorem, the problem in (4.47) has a solution, that is, there exists

(⌘
0

, ⇣
0

) 2 S, such that f(⌘
0

, ⇣
0

) = ⇠. Finally, because f is strictly positive at each point in ⌥ (note that

⇣ 6= 0 in ⌥), we conclude that ⇠ = f(⌘
0

, ⇣
0

) > 0.

Returning to the claim of Lemma 4.14, for every fixed k, (⌘k, ⌘k + ⇣k) belongs to ⌥, and, thus,

eIk,M (wk) = ⇤k,M (⌘k)� ⇤k,M (⇣k + ⌘k) +r⇤k,M (⇣k + ⌘k)
>⇣k = f (⌘k, ⇣k) � ⇠.

This completes the proof of Lemma 4.14. 2

We now establish that the third term in (4.41) vanishes. From (4.42), and the existence of ⇠ > 0 from

Lemma 4.14, we have

lim sup

k!+1
1

k
log eµk

�

Bc

z,�

�  � lim inf

k!+1
eIk,M (wk)  �⇠ < 0.

This implies that for any fixed � > 0

µk (Bz,�) ! 1, as k ! +1,

which finally yields:

lim

�!0

lim inf

k!+1
log eµk (Bz,�) = 0.

Thus, the third term in (4.41) vanishes, establishing (4.29). 2

Having (4.29), it is easy to establish (4.25). Recall that xk = yk � V/k
p

M . Then,

P (xk 2 Bz,2�) � P
⇣

yk 2 Bz,�, V/k
p

M 2 Bz,�

⌘

� P (yk 2 Bz,�)� P
⇣

V/
p

kM /2 Bz,�

⌘

. (4.48)

From (4.29), the rate for the probability of the first term above is at most NI(z). On the other hand, the

probability that the norm of V is greater than
p

kM� decays exponentially with k with the rate M�2/2,

lim

k!+1
1

k
log P

⇣

V/
p

kM 2 Bz,�

⌘

= �M�2

2

. (4.49)

Observing that, for any fixed �, for all M large enough such that NI(z) < M�2

2

, the rate of the difference
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in (4.48) is dominated by the rate of the first term, NI(z). This finally establishes (4.25), and proves the

lower bound 4.19.

4.4.3 Large deviations for distributed inference: Generic matrices Wt

We are now ready to state and prove Theorem 4.15.

Theorem 4.15 Consider distributed inference algorithm (4.3)–(4.4) under Assumptions 4.1 and 4.3. Then,

for each node i:

1. (No worse than isolation) For any closed set E:

lim sup

k!+1
1

k
log P (xi,k 2 E)  � inf

x2E
I(x) (4.50)

2. (No better than centralization) For any open set F :

lim inf

k!+1
1

k
log P (xi,k 2 F ) � �N inf

x2F
I(x). (4.51)

Proof of the “No worse than isolation” bound. Fix W
1

, . . . ,Wk and consider the conditional proba-

bility P (xi,k 2 E|W
1

, · · · , Wk). Let G be an arbitrary measurable set in Rd. Then, similarly as in Subsec-

tion 4.4.1 we obtain,

P (xi,k 2 G|W
1

, . . . ,Wk)  e�k infx2E(

�>x�⇤(�)

),

which further, by monotonicity of the expectation, yields:

P (xi,k 2 G) = E [P (xi,k 2 E|W
1

, . . . ,Wk)]  e�k
(

�>x�⇤(�)

).

From here, the proof proceeds analogously to the proof of the upper bound (4.18).

Proof of the “No better than centralization” bound. We now prove the lower bound (4.51). Consider

again a fixed realization of W
1

,...,Wk.

Similarly as in the preceding proof, applying Lemma 4.9, now the lower bound (4.19), to the sequence

xi,k (given W
1

,..., Wk), yields

lim inf

k!+1
1

k
log P (xi,k 2 F |W

1

, . . . ,Wk) � �N inf

x2F
I(x). (4.52)
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Applying Fatou’s lemma [69] to the sequence of random variables Rk =

1

k log P (xi,k 2 F |W
1

, . . . ,Wk),

k = 1, 2, . . .,

lim inf

k!+1
E


1

k
log P (xi,k 2 F |W

1

, . . . ,Wk)

�

� E


lim inf

k!+1
1

k
log P (xi,k 2 F |W

1

, . . . ,Wk)

�

,

and then using the monotonicity of the expectation in (4.52), yields

lim inf

k!+1
E


1

k
log P (xi,k 2 F |W

1

, . . . ,Wk)

�

� �N inf

x2F
I(x). (4.53)

Now, by concavity of the logarithm:

1

k
log P (xi,k 2 F ) =

1

k
log E [P (xi,k 2 F |W

1

, . . . ,Wk)] � E


1

k
log P (xi,k 2 F |W

1

, . . . ,Wk)

�

.

Finally, passing to lim infk!+1, and using (4.53), completes the proof. 2

4.5 Large deviations for distributed inference: Doubly stochastic matri-

ces Wt

This section shows that if an additional structure is assumed in cooperation, namely double-stochasticity of

the Wt’s, the performance guarantees under cooperation significantly improve.

4.5.1 Model, assumptions, and graph-related objects

To state the corresponding result, we first need to introduce certain concepts.

Definition 4.16 (Convex hull of a function, [72]) Let f : Rd 7! R [ {+1} be minorized by an affine func-

tion. Consider the closed convex hull co epi f of the epigraph of f , epif =

�

(x, r) : r � f(x), x 2 Rd
 

.

The closed convex hull of f , denoted by cof(·), is defined by:

cof(x) := inf{r : (x, r) 2 co epi f}. (4.54)

The convex hull cof(x) of the function f is constructed by first finding the convex hull of the epigraph of

f , and then defining cof(x) to be the function whose epigraph is co epi f . Intuitively, cof(x) is the best

convex approximation of f .
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We recall from Chapter 2 some objects related with random matrices Wt. The induced graph of Wt,

Gt = G(Wt), is the graph that collects all the edges corresponding to positive entries of Wt. Set G is then

the set of all possible realizations of Gt, i.e., G is the minimal set for which P (Gt 2 G) = 1. For a collection

of graphs H ✓ G on the same set of vertices V , �(H) denotes the graph that collects all the edges of all the

graphs in H, i.e., �(H) is the union graph of graphs in H. For a given collection of graphs H, we introduce

– what we call – the clique of a node i in H.

Definition 4.17 (The clique of node i in the set of graphs H) LetH be a collection of graphs, and let C
1

, ..., CM

be the components of the union graph �(H). Then, for any node i, Ci,H is the component of �(H) that con-

tains i, i.e., if i 2 Cm, then Ci,H = Cm, and call it the clique of node i in H; thus,

Ci,H = {j 2 V : there exists a path in �(H) from i to j} . (4.55)

We explain the intuition behind this definition. Suppose that the sequence of induced graphs Gt takes

realizations in a fixed collection of graphs H = {H
1

, ...,HL} ⇢ G, Hl 2 GN . Consider the union graph

�(H); note that, because Ci,H is by construction a component of �(H), there are no edges in �(H) between

the nodes in Ci,H and the rest of the network V \Ci,H). Now, because each Hl is a subgraph of �(H) (�(H)

being the union graph of the Hl’s), there cannot be any edges between Ci,H and V \Ci,H in the Hl’s as well.

Thus, none of the realizations along the sequence of graphs Gt can connect Ci,H with the remaining nodes,

implying that Ci,H is the only part of the network that node i can “see”, i.e., communicate with over time.

To explain why we call Ci,H a clique, imagine that, along the sequence Gt, each realization Hl, l = 1, ..., L

occurs infinitely often (note that this happens with probability 1). Then, after a finite time, loosely, “the

information from every node in Ci,H has reached every other node in Ci,H”9 We end this Subsection by

stating an additional Assumption on the matrices Wt.

Assumption 4.18 The random matrices Wt are symmetric and have positive diagonals, with probability one.

4.5.2 Large deviations rate, corollaries, and interpretations

We are now ready to state and prove our main result of this chapter, Theorem 4.19.

Theorem 4.19 Consider distributed inference algorithm (4.3)–(4.4) under Assumptions 4.1, 4.3, and 4.18.

Then, for each node i:
9To make this statement more precise, note that if each Hl occurs infinitely often, then, if the Wt’s have positive diagonal

entries, the product matrix Wk · · ·W1

has all the entries strictly positive after a finite time.
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1. For any closed set E:

lim sup

k!+1
1

k
log P (xi,k 2 E)  � inf

x2E
IJ ,N (x), (4.56)

IJ ,N (x) = co inf {I(x) + J , NI(x)} ; (4.57)

2. For any open set F :

lim inf

k!+1
1

k
log P (xi,k 2 F ) � � inf

x2F
Ii(x), (4.58)

Ii(x) = inf

H✓G
co {|Ci,H|I(x) + | log pH|, NI(x)} . (4.59)

Before proving Theorem 4.5, we first give the interpretation of the upper bound function IJ ,N , and then

we state some important corollaries of Theorem 4.5.

As we can see from part 1 Theorem 4.5, function IJ ,N gives an upper bound on the exponential decay

rate for the large deviation probabilities of each node i in the network. We provide an illustration for IJ ,N

in Figure 4.1. We consider an instance of the inference algorithm (4.3)-(4.4) running on a N = 3-node

network, with the rate of the matrix products J = 5, and where the observations Zi,t are standard Gaussian

(zero mean and variance equal to one); it can be shown that, for this case, I(x) =

1

2

x2. The more curved

blue dotted line plots the function NI(x) =

1

2

Nx2, the less curved blue dotted line plots the function

I(x) +J =

1

2

x2

+J , and the solid red line plots IJ ,N . Observing the figure, we can identify three regions

that define IJ ,N . First, there exists a region around the mean value (equal to zero) in which IJ ,N matches

the optimal rate NI . On the other hand, for all values of x that are sufficiently large, IJ ,N follows the

slower rate, I(·) + J . Finally, for the range of values of x that are in between the preceding two regions,

function IJ ,N is linear; this linear part is the tangent line that touches both the epigraph of NI and the

epigraph of I + J , and Intuitively, the linear part is responsible for the “convexification” (recall that co

of two functions is defined through the convex hull of their corresponding epigraphs) of the point-wise

maximum max {I(·) + J , NI(·)}.

The first corollary of Theorem 4.19 asserts that if every realization of the network topology is connected,

then the sequence xi,k satisfies the large deviation principle at each node i in the network and with the best

possible rate function, NI(·).

Corollary 4.20 Assume that the induced graph Gt is connected with probability 1. Then, for each i =

1, . . . , N the sequence of states of node i, xi,k, satisfies the large deviation principle with rate function NI .
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Figure 4.1: Illustration of IJ ,N for a network of size N = 3, with J = 5, and Zi,t ⇠ N (0, 1). The more
curved blue dotted line plots NI(x) =

1

2

Nx2, the less curved blue dotted line plots I(x) + J =

1

2

x2

+ J .
The solid red line plots IJ ,N = co (NI(·), I(·) + J ).

Proof If the induced graph Gt is connected with probability 1, then by Theorem 2.7 from Chapter 2 we

have J = +1, and so for any x, IJ ,N (x) = NI(x). Combining this with the lower bound Theorem 4.15

which asserts that, for any open set F , the exponential rate of the probabilities P (xi,k 2 F ) is at most

infx2F NI(E), the claim follows. 2

In particular, it follows that any deterministic cooperation algorithm such that, with probability 1, Wt ⌘
A, and |�

2

(A)| < 1 satisfies the large deviation principle with the optimal rate function NI(·).
Consider now a situation when there exists a node i such that J = |log pi,isol

|, where pi,isol

is the

probability that i has no neighbors at some time t. This means that the most likely disconnected collection

(recall the definition from Chapter 2) is the one which consists of all the topology realizations that isolate i:

H?
= {H 2 G : Ci,H = i}, hence,

p
max

= pH?
=

X

H2G:Ci,H=i

pH . (4.60)

Thus, for H?, Ci,H?
= i and so |Ci,H? | = 1. Consider now the lower bound in (4.58) where, instead of the

(tighter) infimum bound we use the looser bound co {NI(x), I(x) + |log pH? |}. Now, simply noting that

|log pH? | = J , we see that the two functions in the upper and the lower bound coincide, thus implying the

large deviation principle for node i. This is formally stated in the next corollary.

Corollary 4.21 (LDP for a critical node) Suppose that for some i, J = |log pi,isol

|. Then, the sequence of
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measures E 7! P (xi,k 2 E), E 2 B �Rd
�

, satisfies the large deviation principle with the rate function

co {NI(x), I(x) + |log pi,isol

|}.

Further important corollaries along the same line of thought are the two corollaries below: LDP for regular

networks and the LDP for leaf nodes in a graph.

Corollary 4.22 (LDP for leaf nodes) Suppose that algorithm (4.3)–(4.4) runs on a network
⇣

V, bE
⌘

, where

bE collects all the links that have positive probability of occurrence. Further, assume that all links in bE have

the same probability p of being online. Then, for every leaf node i, the corresponding sequence of measures

satisfies the LDP with the rate function co {NI(x), I(x) + |log(1� p)|}.

Corollary 4.23 (LDP for regular networks) Suppose that algorithm (4.3)–(4.4) runs on a regular network of

degree d in which each link has the same probability p of being online. Then, for every node i, the corre-

sponding sequence of measures satisfies the LDP with the rate function co {NI(x), I(x) + d |log(1� p)|}.

The next two subsections prove Theorem 4.19; Subsection 4.5.3 proves the upper bound (4.56) and

Subsection 4.5.4 proves the lower bound (4.58).

4.5.3 Proof of the upper bound in (4.56)

For k � 1, let Sk be defined by

Sk =

8

<

:

max 1  s  k : k�(k, s)� Jk < 1

k , if �(k, 0) < 1

k

0, otherwise

. (4.61)

To prove (4.56), it suffices to show that for any open ball G and any ✏ > 0

P (xi,k 2 G)  C✏e
�k

(

infx2G �>x�max{⇤(�)�(J�✏),N⇤(�/N)}
), (4.62)

where the constant C✏ is the constant that verifies

P
✓

kWk · · ·W1

� JNk � 1

k

◆

 C✏e
k(J�✏).

The claim in (4.56) can then be established by the standard “finite cover” argument, combined with the

exponential tightness of G 7! P(xi,k2G), and the fact that the conjugate of max {⇤(�)� J , N⇤ (�/N)} is

the convex hull of the conjugates of ⇤(�)�J and N⇤(�/N), respectively, given by I(x) +J and NI(x).
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By the law of total probability:

P (xi,k 2 G) =

k
X

s=0

P (xi,k 2 G|Sk = s) P (Sk = s) . (4.63)

Consider a fixed realization of W
1

, . . . ,Wk. Similarly as in the proof of Lemma 4.9, see eq. (4.23), by the

independence of the terms [�(k, t)]ijZj,t (given W
1

, ...,Wk), j = 1, ..., N , t = 1, ..., k, we have

P (xi,k 2 G|W
1

, . . . ,Wk)  e�k infx2G �>x+

Pk
t=1

PN
j=1

⇤([�(k,t)ij�]). (4.64)

Suppose now that, for this fixed realization of the random matrices, Sk = s, i.e., k�(k, s)� Jk < 1

k and

k�(k, s + 1)� Jk � 1

k . Then, [�(k, t)]ij 2 [

1

N � 1

k , 1

N +

1

k ], for all 1  t  s. By the convexity of ⇤(·),
and the fact that ⇤(0) = 0, this implies

⇤ ([�(k, t)]ij�)  ⇤

✓✓

1

N
+

1

k

◆

�

◆

(4.65)

, for each t between 1 and s, and for each j. Therefore, summing out over all j’s for a fixed t, 1  t  s,

yields
N
X

j=1

⇤ ([�(k, t)]ij�)  N⇤

✓✓

1

N
+

1

k

◆

�

◆

. (4.66)

On the other hand, t greater than s, we cannot say much about the entries of �(k, t), so we use the “worst

case” bound from Proposition 4.5,

N
X

j=1

⇤ ([�(k, t)]ij�)  ⇤ (�) . (4.67)

Consider now the sum in the exponent in (4.64). Applying (4.66) to the first s terms (i.e., the terms for

which 1  t  s) and (4.67) to the remaining k � s terms,

k
X

t=1

N
X

j=1

⇤ ([�(k, t)ij�])  sN⇤

✓✓

1

N
+

1

k

◆

�

◆

+ (k � s)⇤(�). (4.68)

Since the preceding bound holds for any realization of W
1

,...,Wk for which Sk = s, computing the condi-

tional expectation in (4.64) over the event {Sk = s} yields

P (xi,k 2 G|Sk = s)  e�k infx2G �>x+sN⇤

((

1

N
+

1

k )

�
)

+(k�s)⇤(�). (4.69)
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We next consider probability of the event {Sk = s}:

P (Sk = s) = P
✓

k�(k, s)� Jk <
1

k
and k�(k, s + 1)� Jk � 1

k

◆

(4.70)

 P
✓

k�(k, s + 1)� Jk � 1

k

◆

. (4.71)

By Theorem 2.7 from Chapter 2, the probability in the right hand side of (4.70) decays exponentially with

k � s and with the rate equal to J defined in (2.2). In particular, for any ✏ > 0, there exists a constant C✏

such that for each k

P
✓

k�(k, s + 1)� Jk � 1

k

◆

 C✏e
�(k�s)J ,

implying

P (Sk = s)  C✏e
�(k�s)(J�✏). (4.72)

Combining (4.72) and (4.69) in (4.63)

P (xi,k 2 G) 
k
X

s=0

C✏e
�k infx2G �>x+sN⇤

((

1

N
+

1

k )

�
)

+(k�s)⇤(�)e�(k�s)(J�✏) (4.73)

 kC✏e
�k infx2G �>xemax

1sk sN⇤

((

1

N
+

1

k )

�
)

+(k�s)(⇤(�)�(J�✏)) (4.74)

 ke�k infx2G �>xek max{N⇤

((

1

N
+

1

k )

�
)

,(⇤(�)�(J�✏))}. (4.75)

We next prove the lower bound (4.58).

4.5.4 Proof of the lower bound (4.58)

Fix a collection H ✓ G and consider the following sequence of events

E✓
H,k =

⇢

Gt 2 H, , d✓ke+ 1  t  k,
�

�

�

[�(k, k � d
p

ke)]Ci,H � JM

�

�

�

<
1

k
,

�

�

�

�(d✓ke, d✓ke � d
p

ke)� JN

�

�

�

<
1

k

�

, (4.76)

k � 1, where ✓ 2 [0, 1] and M = |Ci,H|. We explain the motivation behind this construction. Fix k, ✓ and

an outcome ! 2 E✓
H,k, and denote At = Wt(!), t � 1

10. Let T
1

, T
2

, T
3

and T
4

denote the four disjoint

10We see from the definition of E✓
H,k that we don’t need to consider the realizations At of all Wt’s but only of those until time k.
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intervals according to which E✓
H,k is defined,

T
1

=

n

t 2 [1, k] : 1  t  d✓ke � d
p

ke
o

T
2

=

n

t 2 [1, k] : d✓ke � d
p

ke+ 1  t  d✓ke
o

T
3

=

n

t 2 [1, k] : d✓ke+ 1  t  k � d
p

ke
o

T
4

=

n

t 2 [1, k] : k � d
p

ke+ 1  t  k
o

.

Note that T
1

, ..., T
4

constitute a partition of the discrete time interval [1, k].

Lemma 4.24 For any ! 2 E✓
H,k,

1. for t 2 T
3

[ T
4

, [�(k, t)(!)]i,j = 0 for all j /2 Ci,H;

2. for t 2 T
3

, [�(k, t)(!)]i,j 2 [1/ |Ci,H|� 1/k, 1/ |Ci,H|+ 1/k] for all j 2 Ci,H

3. for t 2 T
1

, [�(k, t)(!)]i,j 2 [1/N � 1/k, 1/N + 1/k] for all j(= 1, ..., N).

where �(k, k)(!) ⌘ IN , and �(k, t)(!) := Wk(!) · · ·Wt+1

(!), for 1  t < k.

Proof Fix ! 2 E✓
H,k and denote At = Wt(!), for t = 1, ..., k. To prove part 1, note that, because

!E✓
H,k, all At’s in the interval T

3

[ T
4

have their induced graphs, G(At), in H. Therefore, node i over this

time interval can only communicate with the nodes in Ci,H. Let M = |Ci,H|. Without loss of generality11,

suppose that Ci,H = {1, ...,M}. Hence, for any t 2 T
3

[ T
4

At has the following block diagonal form

At =

2

4

[At]Ci,H 0M⇥(N�M)

0M⇥(N�M)

[At]V \Ci,H

3

5 ,

where [At]Ci,H is the (M ⇥ M ) submatrix of At that corresponds to the nodes in Ci,H, 0M⇥(N�M)

is

the M ⇥ (N � M) matrix of all zeros, and similarly for the two remaining blocks. It follows that each

�(k, t) = Ak · · ·At, t 2 T
3

[ T
4

, has the same sparsity pattern, and thus

�(k, t) =

2

4

[�(k, t)]Ci,H 0M⇥(N�M)

0M⇥(N�M)

[�(k, t)]V \Ci,H

3

5 ,

proving part 1.

11We can always find a permutation matrix that reduces At into a block diagonal form.
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To prove part 2, consider the second property of the At’s:
�

�

�

[�(k, k �
lp

k
m

)]Ci,H � JM

�

�

�

< 1

k . Due

to the following monotonicity: kAD � JMk  kA � JMk that holds for any A and D of size M that are

doubly stochastic, we have here that for all t 2 T
3

�

�

[�(k, t)]Ci,H � JM

�

� <
1

k
.

Finally, exploiting the property of the spectral norm by which for any matrix D |Dij |  kDk, for all

entries i, j of D, completes the proof of part 2.

To prove part 3, note that that for all t 2 T
1

(in fact for all t < k)

�(k, t) = � (k, d✓ke) �

⇣

d✓ke, d✓ke � d
p

ke
⌘

�

⇣

d✓ke � d
p

ke, t
⌘

.

Using now the fact that kADC�JNk  kD�JNk for doubly stochastic A, D and C of size N , applied

to the product of the three matrices above,

k�(k, t)� JNk  �

⇣

d✓ke, d✓ke � d
p

ke
⌘

<
1

k
, (4.77)

which holds for all t 2 T
1

.

Similarly as in part 2, it follows that [�(k, t)]ij 2 [1/N � 1/k, 1/N + 1/k], for each entry i, j of

[�(k, t)], completing the proof of part 3 and the proof of Lemma 4.24. 2

Define now the probability distribution ⌫k : B �Rd
�! [0, 1] by

⌫k(E) =

P
⇣

{xi,k 2 E} \
n

E✓
H,k

o⌘

P
⇣

E✓
H,k

⌘ , (4.78)

that is, ⌫k is the conditional probability distribution of xi,k on E✓
H,k; we remark that P

⇣

E✓
H,k

⌘

> 0 for k

sufficiently large, as we show later in this proof, see Lemma 4.26. Let ⌥k be the (normalized) logarithmic

moment generating function associated with ⌫k defined by

⌥k(�) =

1

k
log E

h

ek�>xi,k |E✓
H,k

i

, (4.79)

for � 2 Rd.

Using the properties of the entries of �(k, t) in intervals T
1

, ..., T
4

, we establish in Lemma 4.25 that the

sequence of functions ⌥k has a point-wise limit, which will allow us to apply the Gärtner-Ellis Theorem to
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get a large deviations lower bound for the sequence ⌫k. We first state and prove Lemma 4.25.

Lemma 4.25 For any � 2 Rd:

lim

k!+1
⌥k(�) = (1� ✓)M⇤ (1/M�) + ✓N⇤ (1/N�) . (4.80)

Proof Starting from the expected value in (4.79):

E
h

ek�>xi,k |E✓
H,k

i

=

1

P
⇣

E✓
H,k

⌘E
h

1E✓
H,k

ek�>xi,k

i

=

1

P
⇣

E✓
H,k

⌘E
h

E
h

1E✓
H,k

ek�>xi,k |W
1

, ...,Wk

ii

(4.81)

=

1

P
⇣

E✓
H,k

⌘E
h

1E✓
H,k

E
h

ek�>xi,k |W
1

, ...,Wk

ii

(4.82)

where in the last equality we used that, given W
1

, ...,Wk, the indicator 1E✓
H,k

is a constant.

Now, fix an outcome ! 2 E✓
H,k, and let At = Wt(!), t = 1, .., k; focusing on the conditional expectation

in the preceding equality for Wt = At, t = 1, ..., k, and using the independence of the Zi,t’s

E
h

ek�>xi,k |W
1

= A
1

, ...,Wk = Ak

i

= e
Pk

t=1

PN
j=1

⇤([�(k,t)]ij�), (4.83)

where �(k, t) = Ak · · ·At+1

, for t = 1, ..., k. We split the sum in the exponent of (4.83) over the

disjoint intervals T
1

, ..., T
4

that cover [1, k], and analyze each of the obtained summands separately. First,

for each � 2 Rd, define

hk(�) := max

�2[1/M�1/k,1/M+1/k]

⇤ (��) hk(�) := min

�2[1/M�1/k,1/M+1/k]

⇤ (��) ,

and

gk(�) := max

�2[1/N�1/k,1/N+1/k]

⇤ (��) g
k
(�) := min

�2[1/N�1/k,1/N+1/k]

⇤ (��) ,

for � 2 Rd. Note that hk, hk ! ⇤ (1/N ·), as k ! +1 pointwise (for every �); likewise, gk, gk
!

⇤ (1/M ·), as k ! +1, pointwise.
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Then, by part 2 of Lemma 4.24,

Mhk(�) 
X

j2Ci,H

⇤ ([�(k, t)]ij�)  Mhk(�), for each t 2 T
3

,

and, similarly, by part 3 of Lemma 4.24

Ng
k
(�) 

N
X

j=1

⇤ ([�(k, t)]ij�)  Ngk(�), for each t 2 T
1

.

As for the summands in the intervals T
2

and T
4

, we apply Proposition 4.5 to get

M⇤ (1/M�) 
X

j2Ci,H

⇤ ([�(k, t)]ij�)  ⇤(�), for each t 2 T
4

,

and

N⇤ (1/N�) 
N
X

j=1

⇤ ([�(k, t)]ij�)  ⇤(�), for each t 2 T
2

.

Noting that |T
1

| = d✓ke � dpke, |T
3

| = k � d✓ke � dpke, and |T
2

| = |T
4

| = dpke, and summing out

the upper and lower bounds over all t’s in the preceding four inequalities yields:

k⌥k (�) 
k
X

t=1

N
X

i=1

⇤ ([�(k, t)]i,j)  k⌥k (�) , (4.84)

where

⌥k (�) =

d✓ke � dpke
k

Ng
k
(�) +

dpke
k

(N⇤ (1/N�) + M⇤ (1/M�)) +

k � d✓ke � dpke
k

Mhk(�),

and

⌥k(�) =

d✓ke � dpke
k

Ngk(�) +

dpke
k

(N⇤ (1/N�) + M⇤ (1/M�)) +

k � d✓ke � dpke
k

Mhk(�).

Since the preceding inequality holds for any fixed ! 2 E✓
H,k, it follows that

1E✓
H,k

ek⌥k(�)  1E✓
H,k

E
h

ek�>xi,k |W
1

, ...,Wk

i

 1E✓
H,k

ek⌥k(�). (4.85)
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Finally, by the monotonicity of the expectation:

P
⇣

E✓
H,k

⌘

ek⌥k(�)E
h

1E✓
H,k

E
h

ek�>xi,k |W
1

, ...,Wk

ii

 P
⇣

E✓
H,k

⌘

ek⌥k(�),

which combined with (4.81) implies

ek⌥k(�)  E
h

ek�>xi,k |E✓
H,k

i

 ek⌥k(�) (4.86)

Now, taking the logarithm and dividing by k,

⌥k(�)  ⌥k (�)  ⌥k(�),

and noting that

lim

k!+1
⌥k(�) = lim

k!+1
⌥k(�) = (1� ✓)M⇤ (1/M�) + (✓)N⇤ (1/N�) ,

the claim of Lemma 4.25 follows by the sandwiching argument. 2

Now, remark that the limiting function � 7! limk!⌥k(�) is finite everywhere. By the Gärtner-Ellis

theorem it follows then that the sequence of measures ⌫k satisfies the large deviation principle12. Therefore,

we have that for every open set F ✓ Rd,

lim

k!+1
1

k
log P

⇣

xi,k 2 F |E✓
H,k

⌘

= � inf

x2E
sup

�2Rd

�> � (1� ✓)M⇤ (1/N�)� ✓N⇤ (1/N�) . (4.87)

We next turn to computing, more precisely, tightly approximating, the probability of the event E✓
H,k, P

⇣

E✓
H,k

⌘

.

Lemma 4.26 For any ✓ 2 (0, 1),

1

4

pk�d✓ke
H  P

⇣

E✓
H,k

⌘

 pk�d✓ke
H , (4.88)

12We use here the variant of the Gärtner-Ellis theorem that claims the (full) LDP for the case when the domain of the limiting
function is the whole space Rd; see Exercise 2.3.20 in [8] for the proof of this result.
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Proof To start with, by the disjoint blocks theorem [69] applied to the matrices in the two disjoint

intervals T
1

[ T
2

, and T
3

[ T
4

:

P
⇣

E✓
H,k

⌘

= P
✓

Gt 2 H, for all t 2 T
3

[ T
4

,
�

�

�

[�(k, k � d
p

ke)]Ci,H � JM

�

�

�

<
1

k

◆

·

P
✓

�

�

�

�(✓k, ✓k � d
p

ke)� JN

�

�

�

<
1

k

◆

. (4.89)

Conditioning in the first factor on the event {Gt 2 H, for all t 2 T
3

[ T
4

} (the probability of which equals

pk�d✓ke
H and thus is non-zero),

P
✓

Gt 2 H, for all t 2 T
3

[ T
4

,
�

�

�

[�(k, k � d
p

ke)]Ci,H � JM

�

�

�

<
1

k

◆

(4.90)

= P
✓

�

�

�

[�(k, k � d
p

ke)]Ci,H � JM

�

�

�

<
1

k
|Gt 2 H, for all t 2 T

3

[ T
4

◆

P (Gt 2 H, t 2 T
3

[ T
4

)

= P
✓

�

�

�

[�(k, k � d
p

ke)]Ci,H � JM

�

�

�

<
1

k
|Gt 2 H, t 2 T

3

[ T
4

◆

pk�d✓ke
H . (4.91)

Computing the probability through the complement

P
✓

�

�

�

[�(k, k � d
p

ke)]Ci,H � JM

�

�

�

<
1

k
|Gt 2 H, for all t 2 T

3

[ T
4

◆

=

1� P
✓

�

�

�

[�(k, k � d
p

ke)]Ci,H � JM

�

�

�

� 1

k
|Gt 2 H, for all t 2 T

3

[ T
4

◆

, (4.92)

and we recognize in the righthand side the familiar event from Chapter 2:
n

�

�

�

[�(k, k � dpke)]Ci,H � JM

�

�

�

� 1

k

o

.

Using the results from Chapter 2, we can show that the probability in the righthand side goes to zero expo-

nentially fast as k ! 0. Therefore, we can find k
0

such that for all k � k
0

, this probability is smaller than
1

2

, which combined with (4.92) shows that the probability of the first factor in (4.89) is bounded between
1

2

pk�k�d✓ke
H and pk�k�d✓ke

H for all k � k
0

. Similarly as with the first factor, we can show that the probability

of the second factor in (4.89) is between 1

2

and 1. The result follows by summarizing the preceding findings.

2

To bring the two key arguments together, namely, Lemma 4.26 and the lower bound (4.87), we start

from the simple relation

P (xi,k 2 F ) � P
⇣

{xi,k 2 F} \ E✓
H,k

⌘

.
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Passing to the limit, and exploiting (4.88) and (4.87)

lim inf

k!+1
1

k
log P (xi,k 2 F ) � lim

k!+1
1

k
log ⌫k(F ) + lim

k!+1
1

k
log P

⇣

E✓
H,k

⌘

= � inf

x2F
sup

�2Rd

�>x� (1� ✓)M⇤ (1/M�)� ✓N⇤ (1/N�)� (1� ✓)| log pH|.

Since ✓ is an arbitrary number in [0, 1]), we optimize the last bound over ✓ 2 [0, 1]:

lim inf

k!+1
1

k
log P (xi,k 2 F ) �

� inf

✓2[0,1]

inf

x2F
sup

�2Rd

�>x� (1� ✓)M⇤ (1/M�)� ✓N⇤ (1/N�)� (1� ✓)| log pH|

= inf

x2F
inf

✓2[0,1]

sup

�2Rd

�>x� (1� ✓)M⇤ (1/M�)� ✓N⇤ (1/N�)� (1� ✓)| log pH|.

Fix x 2 F and consider the function f(✓,�) := �>x�(1�✓)M⇤ (1/M�)�✓N⇤ (1/N�)�(1�✓)| log pH|.
Function f is convex in ✓ and concave in � for every fixed ✓ 2 [0, 1]. Also, sets [0, 1] and Rd are convex and

set [0, 1] is compact. Thus, we can apply the Sion’s Minimax theorem [85] to obtain inf sup f = sup inf f :

inf

✓2[0,1]

sup

�2Rd

�>x� (1� ✓)M⇤ (1/M�)� ✓N⇤ (1/N�)� (1� ✓)| log pH| =

sup

�2Rd

inf

✓2[0,1]

�>x� (1� ✓)M⇤ (1/M�)� ✓N⇤ (1/N�)� (1� ✓)| log pH|

= sup

�2Rd

�>x�max {M⇤ (1/M�)� | log pH|,⇤ (1/N�)} .

Similarly as in the proof of the upper bound, using properties of conjugation (the conjugate of the maximum

of two functions is the convex hull of their respective conjugates,

sup

�2Rd

�>x�min {M⇤ (1/M�)� | log pH|,⇤ (1/N�)} = co (NI(x), MI(x) + | log pH|) , (4.93)

and thus,

lim inf

k!+1
1

k
log P (xi,k 2 F ) � � inf

x2F
co (NI(x), MI(x) + | log pH|) . (4.94)

Optimizing now over all H ✓ G, yields the lower bound. This completes the proof of the lower bound and

the proof of Theorem 4.19.
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4.6 Distributed estimation

Consider distributed estimation where each agent i acquires over time t scalar measurements yi,t with:

yi,t = a>i ✓ + ni,t. (4.95)

Here, ai 2 Rd is a deterministic vector known to agent i, ✓ 2 Rd is the unknown parameter to be estimated,

and ni,t is the zero mean additive Gaussian, spatio-temporally uncorrelated noise, with variance equal to 1.

Centralized estimator. For benchmarking purpose, we consider the minimum variance unbiased esti-

mator based on k measurements from all N agents:

b✓ML,k =

 

N
X

i=1

aia
>
i

!�1

 

1

k

k
X

t=1

N
X

i=1

aiyi,t

!

. (4.96)

Distributed estimator. The estimator assumes that all agents beforehand know the matrix A :=

PN
i=1

aia>i . For example, the matrix A can be computed by a consensus algorithm (with N(N + 1)/2-

dimensional variables). Each agent i updates its estimate xi,k of the parameter ✓ as follows:

xi,k+1

=

k

k + 1

X

j2Oi,k

[Wk]ijxj,k +

1

k + 1

NA�1aiyi,k+1

. (4.97)

Large deviations performance. We are interested in the inaccuracy rates [9]:

bI(⇠) := lim

k!1
�1

k
log P (k✓k � ✓k � ⇠) , ⇠ > 0, (4.98)

where ✓k is the estimator after k per-agent samples are processed; e.g., ✓k =

b✓ML,k for the centralized

estimator (4.96), and ✓k = xi,k for the distributed estimator (4.97). It can be shown that the inaccuracy rate

for the centralized estimator (4.96) is given by:

bI(cen)

(⇠) =

⇠2

2

�
min

(A) ,

where �
min

(·) denotes the minimal eigenvalue.

In Theorem 4.27 we derive an upper bound for the inaccuracy rate of the distributed estimation algo-

rithm 4.97. We omit the proof of Theorem 4.27, but we remark that the proof exploits the same techniques

as in the proof of the upper bound of Theorem 4.19.
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Theorem 4.27 For any node i, for any ⇠ � 0

lim sup

k!+1
1

k
log P (kxi,k � ✓k � ⇠)  � inf

x2Rd
: kx�✓k�⇠

co

⇣

I
1

(x) + J , . . . , IN (x) + J , I(cen)

(x)

⌘

(4.99)

where, for j = 1, . . . , N , Ij(x) = sup�2Rd �>x � N2

2

�

�>A�1aj
�

2 � N�>A�1aja>j ✓, and I(cen)

(x) =

1

2

(x� ✓)>A (x� ✓).
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Chapter 5

Large Deviations for Distributed Detection

In this chapter, we analyze the large deviations performance of distributed detection where agents in a

network decide between the two alternative hypothesis H
1

versus H
0

. Each agent i improves its (scalar) state

xi,k over time k through a distributed detection algorithm of type (4.3)-(4.3), and makes its local decision

by comparing xi,k with a zero threshold.1 Detection performance at agent i and time k is characterized by

the probability of false alarm, probability of miss, and average error probability, respectively given by:

↵i,k = P ( xi,k � 0 | H
0

) = P ( xi,k 2 [ 0,1) | H
0

) (5.1)

�i,k = P ( xi,k < 0 | H
1

) = P ( xi,k 2 (�1, 0) | H
1

) (5.2)

P e

i,k = ⇡
0

↵i,k + ⇡
1

�i,k, (5.3)

where ⇡
1

and ⇡
0

are the prior probabilities. Conditioned on, say, H
1

, the state xi,k (under appropriate

conditions) converges in probability to a positive number �
1

, so that the probability mass “escapes” from the

set (�1, 0), and thus �i,k converges to zero. Likewise, conditioned on H
0

, xi,k converges in probability to

a negative number �
0

and the mass “escapes” from the set [ 0,1), thus implying ↵i,k ! 0. In the language

of large deviations from Chapter 4, the sets (�1, 0) and [ 0,1) are deviation sets. In this Chapter, our goal

is to find the large deviation rates:

↵i,k = P ( xi,k 2 [ 0,1) | H
0

) ⇠ e�k I↵,i (5.4)

�i,k = P (xi,k 2 (�1, 0) | H
1

) ⇠ e�k I�,i , (5.5)

1For simplicity of introductory explanation, we take here a zero threshold, but the chapter analyzes generic thresholds �.
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and to ultimately determine the decay rate of the average error probability:

P e

i,k ⇠ e�k Ii . (5.6)

We refer to rate Ii as the asymptotic performance of agent i.

We quantify the asymptotic performance in terms of the agents’ observations and the underlying ran-

dom network. Our results reveal a nonlinear, phase transition type behavior with respect to the network

connectivity, measured by the quantity J in (2.1) from Chapter 22. When the network connectivity J is

above a threshold, then the distributed detector is asymptotically optimal at each agent i, i.e., asymptotically

equivalent to the optimal centralized detector that collects the observations of all agents. When J is below

the threshold, we quantify what fraction of the centralized performance distributed detector can achieve.

Hence, there exists a “sufficient” connectivity J ?, such that asymptotic detection performance saturates at

the optimal (centralized) value for any J � J ?. Translated in practical terms, once J ? is achieved, e.g., by

increasing the amount of invested resources, further increase does not pay off. In this chapter, we address the

design problem of “targeting” the point J ? in a wireless sensor network, where the inter-agent probabilities

(and hence, J ) of successful communication depend on the invested transmission power. We optimize the

agents’ transmission powers, such that connectivity J ? is achieved with the minimal overall investment.

We discover a very interesting interplay between the distribution of the agent observations (e.g., Gaus-

sian or Laplace) and the connectivity J of the network. For a network with the same connectivity, a dis-

tributed detector with say, Laplace observations distributions, may match the optimal asymptotic perfor-

mance of the centralized detector, while the distributed detector for Gaussian observations may be subopti-

mal, even though the centralized detectors for the two distributions, Laplace and Gaussian, have the same

optimal asymptotic performance.

For distributed detection, we determine the range on the detection threshold � for which each agent

achieves exponentially fast decay of the error probability (strictly positive error exponent), and we find the

optimal � that maximizes the error exponent. Above the critical (phase transition) value for the network

connectivity J , the optimal detector threshold is �?
= 0, mimicking the (asymptotically) optimal threshold

for the centralized detector. Below the critical connectivity, the optimal distributed detector threshold may

be non zero.

We remark that the results presented in this chapter are based on our work in [63, 64, 62, 86].

Brief review of the literature. A large body of work on distributed detection considers fusion center (FC)-

2For convenience, in this chapter, we refer to quantity J simply as the network connectivity.
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based architectures, e.g., [43, 44, 45, 46, 47, 42], and, recently, e.g., [48, 87, 88, 89]: [48, 87, 88] consider

the problem of selecting a subset of agents that optimizes detection performance at the FC; and [89] op-

timizes the local linear pre-coding of the agents’ messages to the FC, to optimize detection performance

subject to a transmit power constraint. References [49, 50, 51, 52] study consensus-based detection. Con-

sensus+innovations estimation is considered by references [53, 2, 54, 55, 56], while several mutually dif-

ferent variants of consensus+innovations detection are studied in [57, 58, 1, 5, 59, 60, 61]. We analyze here

running consensus, the variant in [1].

Reference [1] considers asymptotic optimality of running consensus, but in a framework that is very

different from ours. Reference [1] studies the asymptotic performance of the distributed detector where the

means of the agent observations under the two hypothesis become closer and closer (vanishing signal to

noise ratio (SNR)), at the rate of 1/
p

k, where k is the number of observations. For this problem, there is

an asymptotic, non-zero, probability of miss and an asymptotic, non-zero, probability of false alarm. Under

these conditions, running consensus is as efficient as the optimal centralized detector, [66], as long as the

network is connected on average. Here, we assume that the means of the distributions stay fixed as k grows.

We establish, through large deviations, the rate (error exponent) at which the error probability decays to

zero as k goes to infinity. We show that connectedness on average is not sufficient for running consensus to

achieve the optimality of centralized detection; rather, phase transition occurs, with distributed becoming as

good as centralized, when the network connectivity, measured by J , exceeds a certain threshold.

Chapter outline. Section 5.1 introduces the network and agent observations models and presents distributed

detector. Section 5.2 presents and proves our main results on the asymptotic performance of the distributed

detector. For a cleaner exposition, this section proves the results for (spatially) identically distributed agent

observations. Section 5.3 illustrates our results on several types of agent observation distributions, namely,

Gaussian, Laplace, and discrete valued distributions, discussing the impact of these distributions on dis-

tributed detection performance. Section 5.4 provides elaborate simulation results for the setup of corre-

lated Gaussian observations and a generic random network. Section 5.5 extends our main results to non-

identically distributed agents’ observations. Finally, Section 5.6 addresses the problem of optimal power

allocation for distributed detection.

Notation. We denote by: Aij the (i, j)-th entry of a matrix A; ai the i-th entry of a vector a; I , 1, and

ei, respectively, the identity matrix, the column vector with unit entries, and the i-th column of I; J the

N ⇥N ideal consensus matrix J := (1/N)11

>; k · kl the vector (respectively, matrix) l-norm of its vector

(respectively, matrix) argument; k · k = k · k
2

the Euclidean (respectively, spectral) norm of its vector

(respectively, matrix) argument; µi(·) the i-th largest eigenvalue; E [·] and P (·) the expected value and
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probability operators, respectively; IA the indicator function of the event A; ⌫N the product measure of

N i.i.d. observations drawn from the distribution with measure ⌫; h0(z) and h00(z) the first and the second

derivatives of the function h at point z.

5.1 Problem formulation

This section introduces the agent observations model, reviews the optimal centralized detector, and presents

the distributed detector. The section also reviews relevant properties of the log-moment generating function

of a agent’s log-likelihood ratio that are needed in the sequel.

5.1.1 Agent observations model

We study the binary hypothesis testing problem H
1

versus H
0

. We consider a network of N agents where

Yi,t is the observation of agent i at time t, where i = 1, . . . , N , t = 1, 2, . . .

Assumption 5.1 The agents’ observations {Yi,t} are independent and identically distributed (i.i.d.) both in

time and in space, with distribution ⌫
1

under hypothesis H
1

and ⌫
0

under H
0

:

Yi,t ⇠
8

<

:

⌫
1

, H
1

⌫
0

, H
0

, i = 1, . . . , N, t = 1, 2, . . . (5.7)

Here ⌫
1

and ⌫
0

are mutually absolutely continuous, distinguishable measures. The prior probabilities ⇡
1

=

P(H
1

) and ⇡
0

= P(H
0

) = 1� ⇡
1

are in (0, 1).

By spatial independence, the joint distribution of the observations of all agents

Yt := (Y
1,t, . . . , YN,t)

> (5.8)

at any time t is ⌫N
1

under H
1

and ⌫N
0

under H
0

. Our main results in Section III are derived under Assump-

tion 5.1. Section V extends them to non-identical (but still independent) agents’ observations.
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5.1.2 Centralized detection, logarithmic moment generating function, and optimal error

exponent

The log-likelihood ratio of agent i at time t is Li,t and given by

Li,t = log

f
1

(Yi,t)

f
0

(Yi,t)
,

where, fl(·), l = 0, 1, is 1) the probability density function corresponding to ⌫l, when Yi,t is an absolutely

continuous random variable; or 2) the probability mass function corresponding to ⌫l, when Yi,t is discrete

valued.

Under Assumption 5.1, the log-likelihood ratio test for k time observations from all agents, for a thresh-

old � is: 3

Dk :=

1

Nk

k
X

t=1

N
X

i=1

Li,t

H
1

?
H

0

�. (5.9)

Logarithmic moment generating function.

Let ⇤l (l = 0, 1) denote the logarithmic moment generating function for the log-likelihood ratio under

hypothesis Hl:

⇤l : R �! (�1,+1] , ⇤l(�) = log E
h

e� L
1

(1) |Hl

i

. (5.10)

In (5.10), L
1

(1) replaces Li,t, for arbitrary i = 1, ..., N , and t = 1, 2, ..., due to the spatial and temporal

identically distributed observations, see Assumption 5.1. Recall that we already studied logarithmic moment

generating functions in Chapter 4, and gave several properties of these functions. Here, we are interested

in the logarithmic moment generating functions for log-likelihood ratios; these functions enjoy additional

properties with respect to those in Chapter 4, as we state below. (We repeat here the convexity property for

convenience.)

Lemma 5.2 Consider Assumption 5.1. For ⇤

0

and ⇤

1

in (5.10) the following holds:

(a) ⇤

0

is convex;

(b) ⇤

0

(�) 2 (�1, 0), for � 2 (0, 1), ⇤

0

(0) = ⇤

0

(1) = 0, and ⇤

0
l(0) = E [L

1

(1)|Hl], l = 0, 1;

(c) ⇤

1

(�) satisfies:

⇤

1

(�) = ⇤

0

(� + 1), for � 2 R. (5.11)
3In (5.9), we re-scale the spatio-temporal sum of the log-likelihood ratios Li,t by dividing the sum by Nk. Note that we can do

so without loss of generality, as the alternative test without re-scaling is:
Pk

t=1

PN
i=1

Li,t

H1
?
H0

�0, with �0 = Nk�.
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Proof For a proof of (a) and (b), see [18]. Part (c) follows from the definitions of ⇤

0

and ⇤

1

, which

we show here for the case when the distributions ⌫
1

and ⌫
0

are absolutely continuous (the proof for discrete

distributions is similar):

⇤

1

(�) =log E
h

e�L
1

(1)|H
1

i

= log

Z

y2R

✓

f
1

(y)

f
0

(y)

◆�

f
1

(y)dy =log

Z

y2R

✓

f
1

(y)

f
0

(y)

◆

1+�

f
0

(y)dy =⇤

0

(1 + �).

2

We further assume that the logarithmic moment generating function of a agent’s observation is finite

(just like we assumed in Chapter 4).

Assumption 5.3 ⇤

0

(�) < +1, 8� 2 R.

In the next two remarks, we give two classes of problems when Assumption 5.3 holds.

Remark I. We consider the signal+noise model:

Yi,t =

8

<

:

m + ni,t, H
1

ni,t, H
0

.
(5.12)

Here m 6= 0 is a constant signal and ni,t is a zero-mean additive noise with density function fn(·) supported

on R; we rewrite fn(·), without loss of generality, as fn(y) = c e�g(y), where c > 0 is a constant. It can be

shown that Assumption 5.3 holds under the following mild technical condition: either one of (5.13) or (5.14)

and one of (5.15) or (5.16) hold:

lim

y!+1
g(y)

|y|⌧+ = ⇢
+

, for some ⇢
+

, ⌧
+

2 (0,+1) (5.13)

lim

y!+1
g(y)

(log(|y|))µ
+

= ⇢
+

, for some ⇢
+

2 (0,+1), µ
+

2 (1,+1) (5.14)

lim

y!�1
g(y)

|y|⌧� = ⇢�, for some ⇢�, ⌧� 2 (0,+1) (5.15)

lim

y!�1
g(y)

(log(|y|))µ� = ⇢�, for some ⇢� 2 (0,+1), µ� 2 (1,+1). (5.16)

In (5.14) and (5.16), we can also allow either (or both) µ
+

, µ� to equal 1, but then the corresponding ⇢

is in (1,1). Note that fn(·) need not be symmetric, i.e., fn(y) need not be equal to fn(�y). Intuitively,

the tail of the density fn(·) behaves regularly, and g(y) grows either like a polynomial of arbitrary finite

order in y, or slower, like a power y⌧ , ⌧ 2 (0, 1), or like a logarithm c(log y)

µ. The class of admissible

densities fn(·) includes, e.g., power laws cy�p, p > 1, or the exponential families e✓ �(y)�A(✓), A(✓) :=
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log

R

+1
y=�1 e✓�(y)�(dy), with: 1) the Lebesgue base measure �; 2) the polynomial, power, or logarithmic

potentials �(·); and 3) the canonical set of parameters ✓ 2 ⇥ = {✓ : A(✓) < +1}, [90].

Remark II. Assumption 5.3 is satisfied if Yi,k has arbitrary (different) distributions under H
1

and H
0

with

the same, compact support; a special case is when Yi,k is discrete, supported on a finite alphabet.

Centralized detection: Asymptotic performance. We consider briefly the performance of the centralized

detector that will benchmark the performance of the distributed detector. Denote by �l := E [L
1,1|Hl],

l = 0, 1. It can be shown [8] that �
0

< 0 and �
1

> 0. Now, consider the centralized detector in (5.9) with

the constant thresholds �, for all k, and denote by:

↵k(�) = P (Dk � �|H
0

) , �k(�) = P (Dk < �|H
1

) , : P e

k (�) = ↵k(�)⇡
0

+ �k(�)⇡
1

, (5.17)

respectively, the probability of false alarm, probability of miss, and Bayes (average) error probability. In this

chapter, we adopt the minimum Bayes error probability criterion, both for the centralized and later for our

distributed detector, and, from now on, we refer to it simply as the error probability. we relate the quantity

�k(�) with large deviation metric in Chapter 4. (Similar relations can be made for ↵k(�) and P e

k (�) as

well.) To this end, note that E [Dk |H1

] = �
1

, 8k. Further, by the law of large numbers, Dk converges to �
1

in probability. Hence, for � < �
1

, the set (�1, �) is a deviation set, i.e., the “probability mass” vanishes

from this set exponentially fast. Therefore, the analysis of �k(�) reduces to the large deviation analysis for

the set E := (�1, �).

We restrict the threshold � to lie in (�
0

, �
1

). It can be shown that, for any � 2 (�
0

, �
1

), P e

k (�) converges

to zero exponentially fast as k !1. On the other hand, for � /2 (�
0

, �
1

), P e

k (�) does not converge to zero

at all. To see this, assume that H
1

is true, and let � � �
1

. Then, by noting that E[Dk|H1

] = �
1

, for all k, we

have that �(k, �) = P(Dk < �|H
1

) � P(Dk  �
1

|H
1

) ! 1

2

as k !1, by the central limit theorem.

Denote by Il(·), l = 0, 1, the Fenchel-Legendre transform of ⇤l(·):

Il(z) = sup

�2R
�z � ⇤l(�), z 2 R. (5.18)

It can be shown [8] that Il(·) is nonnegative, strictly convex (unless L
1

(1) is an almost sure constant),

Il(�l) = 0, for l = 0, 1, and I
1

(z) = I
0

(z) � z, [8]. We now state the result on the centralized detector’s

asymptotic performance.

Lemma 5.4 Let Assumptions 5.1-5.5 hold, and consider the family of centralized detectors (5.9) with the
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constant threshold � 2 (�
0

, �
1

). Then, the best (maximal) error exponent:

lim

k!1
�1

k
log P e

k (�)

is achieved for the zero threshold � = 0 and equals NC
ind

, where C
ind

= I
0

(0).

The quantity C
ind

is referred to as the Chernoff information of a single agent observation Yi,t. Lemma 5.4

says that the centralized detector’ error exponent is N times larger than an individual agent’s error expo-

nent. We remark that, even if we allow for time-varying thresholds �k = �, the error exponent NC
ind

cannot

be improved, i.e., the centralized detector with zero threshold is asymptotically optimal over all detectors.

We will see that, when a certain condition on the network connectivity holds, the distributed detector is

asymptotically optimal, i.e., achieves the best error exponent NC
ind

, and the zero threshold is again op-

timal. However, when the network connectivity condition is not met, the distributed detector is no longer

asymptotically optimal, and the optimal threshold may be non zero.

Proof [Proof of Lemma 5.4] Denote by ⇤

0,N the logarithmic moment generating function for the log-

likelihood ratio
PN

i=1

Li,t for the observations of all agents at time t. Then, ⇤

0,N (�) = N⇤

0

(�), by the

i.i.d. in space assumption on the agents’ observations. The lemma now follows by the Chernoff lemma

(Corollary 3.4.6, [8]):

lim

k!1
�1

k
log P e

k (0) = max

�2[0,1]

{�⇤

0,N (�)} = N max

�2[0,1]

{�⇤

0

(�)} = NI
0

(0).

2

5.1.3 Distributed detection algorithm

We now consider distributed detection when the agents cooperate through a randomly varying network.

Specifically, we consider the running consensus distributed detector proposed in [1]. The algorithm is of

distributed inference type, similar to the algorithms that we considered in Chapter 4. Each agent i maintains

its local decision variable xi,k, which is a local estimate of the global optimal decision variable Dk in (5.9).

Note that Dk is not locally available. At each time k, each agent i updates xi,k in two ways: 1) by incor-

porating its new observation Yi,k to make an intermediate decision variable k�1

k xi(k � 1) +

1

kLi(k); and

2) by exchanging the intermediate decision variable locally with its neighbors and computing the weighted

average of its own and the neighbors’ intermediate variables.
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More precisely, the update of xi,k is as follows:

xi,k =

k � 1

k

X

j2Oi,k

[Wk]ijxj,k�1

+

1

k
Li,k, k = 0, 1, 2, ... (5.19)

xi,0 = 0. (5.20)

Here Oi,k is the (random) neighborhood of agent i at time k (including i), and [Wk]ij are the (random)

averaging weights. The agent i’s local decision test at time k is:

xi,k

H
1

?
H

0

�, (5.21)

i.e., H
1

(respectively, H
0

) is decided when xi,k � � (respectively, xi,k < �).

Write algorithm (5.19) in vector form. Let xk = (x
1,k, x2,k, ..., xN,k)

> and Lk = (L
1,k, ..., LN,k)

>.

Also, collect the averaging weights [Wk]ij in the N ⇥N matrix Wk, where, clearly, [Wk]ij = 0 if the agents

i and j do not communicate at time step k. The algorithm (5.19) becomes:

xk+1

=

k

k + 1

Wk+1

xk +

1

k
Lk, k = 0, 1, 2, ... x

0

= 0. (5.22)

Network model. We state the assumption on the random averaging matrices Wk and the observations Yt.

Assumptions 5.5 The averaging matrices Wk satisfy the following:

(a) The sequence {Wk}1k=1

is i.i.d.

(b) Wk is symmetric, stochastic (row-sums equal 1 and Wij(k) � 0), and has positive diagonal entries,

with probability one, 8k.

(c) Wk and Yt are mutually independent over all k and t.

Note that we assume here the doubly stochasticity of matrices Wk’s.

Define the matrices �(k, t) by:

�(k, t) := WkWk�1

...Wt+1

, k � t � 1. (5.23)

It is easy to verify from (5.22) that xk equals:

xk =

1

k

k
X

t=1

�(k, t)Lt, k = 1, 2, ... (5.24)
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Choice of threshold �. We restrict the choice of threshold � to � 2 (�
0

, �
1

), �
0

< 0, �
1

> 0, where we

recall �l = E[L
1

(1)|Hl], l = 0, 1. Namely, Wt is a stochastic matrix, hence Wt1 = 1, for all t, and thus

�(k, t)1 = 1. Also, E[Lt|Hl] = �l1, for all t, l = 0, 1. Now, by iterating expectation:

E[xk|Hl] = E[E[xk|Hl, W1

, ...,Wk]] = E
"

1

k

k
X

t=1

�(k, t)E[Lt|Hl]

#

= �l1, l = 0, 1,

and so E[xi,k|Hl] = �l, for all i, k. Moreover, it can be shown using the results from Chapter 4 that

xi,k converges in probability to �l under Hl. Now, a similar argument as with the centralized detector in

Subsection 5.1.2 shows that for � /2 (�
0

, �
1

), the error probability with detector (5.19) and (5.21) does not

converge to zero when k ! 1. We will show that, for any � 2 (�
0

, �
1

), the error probability converges to

0 exponentially fast, and we find the optimal � = �? that maximizes a certain lower bound on the exponent

of the error probability.

Network connectivity. From (5.24), we can see that the matrices �(k, t) should be as close to J =

(1/N)11

> as possible for enhanced detection performance. To measure the “quality” of matrices �(k, t),

we invoke the quantity J from Chapter 2. We refer to J as the connectivity, and we recall the definition:4

J := lim

(k�t)!1
� 1

k � t
log P (k�(k, t)� Jk > ✏) . (5.25)

The following lemma easily follows from (5.25).

Lemma 5.6 Let Assumption 5.5 hold. Then, for any � 2 (0,J ), there exists a constant C(�) 2 (0,1)

(independent of ✏ 2 (0, 1)) such that, for any ✏ 2 (0, 1):

P (k�(k, t)� Jk > ✏)  C(�)e�(k�t)(J��), for all k � t.

5.2 Main results: Error exponents for distributed detection

Subsection 5.2.1 establishes the asymptotic performance of distributed detection under identically dis-

tributed agents’ observations; subsection 5.2.2 proves the results.

4The limit in (5.25) exists and it does not depend on ✏ for ✏ 2 (0, 1).
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5.2.1 Statement of main results

In this section, we analyze the performance of distributed detection in terms of the detection error exponent,

when the number of observations (per agent), or the size k of the observation interval tends to +1. As we

will see next, we show that there exists a threshold on the network connectivity J such that if J is above this

threshold, each agent in the network achieves asymptotic optimality (i.e., the error exponent at each agent

is the total Chernoff information equal to NC
ind

). When J is below the threshold, we give a lower bound

for the error exponent. Both the threshold and the lower bound are given solely in terms of the log-moment

generating function ⇤

0

and the number of agents N . These findings are summarized in Theorem 5.7 and

Corollary 5.8 below.

Let ↵i,k(�), �i,k(�), and P e

i,k(�) denote the probability of false alarm, the probability of miss, and the

error probability, respectively, of agent i for the detector (5.19) and (5.21), for the threshold equal to �:

↵i,k(�) = P (xi,k � �|H
0

) , �i,k(�) = P (xi,k < �|H
1

) , P e

i,k(�) = ⇡
0

↵i,k(�) + ⇡
1

�i,k(�), (5.26)

where, we recall, ⇡
1

and ⇡
0

are the prior probabilities. Also, recall Il(·), l = 0, 1, in (5.18). Finally, for two

functions �
1

, �
2

: R 7! R, recall from Chapter 4 the definition of their convex hull �
3

= co(�
1

, �
2

) : R 7!
R, �

3

(x) = co(�
1

, �
2

)(x).

Theorem 5.7 Let Assumptions 5.1-5.5 hold and consider the family of distributed detectors in (5.19) and (5.21)

parameterized by detection thresholds � 2 (�
0

, �
1

). Let �s

l be the zero of the function:

�l(�) := ⇤l(N�)� J �N⇤l(�), l = 0, 1, (5.27)

and define ��l , �+

l , l = 0, 1 by

��
0

= ⇤

0
0

(�s

0

), �+

0

= ⇤

0
0

(N�s

0

) � ��
0

(5.28)

��
1

= ⇤

0
1

(N�s

1

), �+

1

= ⇤

0
1

(�s

1

) � ��
1

. (5.29)

Then, for every � 2 (�
0

, �
1

), at each agent i, i = 1, . . . , N , we have:

lim inf

k!1
�1

k
log ↵i,k(�) � I0

J ,N (�), lim inf

k!1
�1

k
log �i,k(�) � I1

J ,N (�), (5.30)
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where

I0

J ,N (�) = co (I
0

+ J , NI
0

) (�) =

8

>

>

>

<

>

>

>

:

NI
0

(�), � 2 (�
0

, ��
0

]

NI
0

(��
0

) + N�s

0

(� � ��
0

), � 2 (��
0

, �+

0

)

I
0

(�) + J , � 2 [�+

0

, �
1

)

I1

J ,N (�) = co (I
1

+ J , NI
1

) (�) =

8

>

>

>

<

>

>

>

:

I
1

(�) + J , � 2 (�
0

, ��
1

]

NI
1

(�+

1

) + N�s

1

(� � �+

1

), � 2 (��
1

, �+

1

)

NI
1

(�), � 2 [�+

1

, �
1

).

Corollary 5.8 Let Assumptions 5.1-5.5 hold and consider the family of distributed detectors in (5.19) and (5.21)

parameterized by detector thresholds � 2 (�
0

, �
1

). Then:

(a)

lim inf

k!1
�1

k
log P e

i,k(�) � min{I0

J ,N (�), I1

J ,N (�)} > 0, (5.31)

and the lower bound in (5.31) is maximized for the point �? 2 (�
0

, �
1

)

5 at which I0

J ,N (�?
) = I1

J ,N (�?
).

(b) Consider �• = arg min�2R⇤

0

(�), and let:

J ?
(⇤

0

, N) = max{⇤
0

(N�•)�N⇤

0

(�•),⇤
0

(1�N(1� �•))�N⇤

0

(�•)}. (5.32)

Then, when J � J ?
(⇤

0

, N), each agent i with the detector threshold set to � = 0, is asymptotically

optimal:

lim

k!1
�1

k
log P e

i,k(0) = NC
ind

.

(c) Suppose ⇤

0

(�) = ⇤

0

(1 � �), for � 2 [0, 1]. Then, �?
= 0, irrespective of the value of r (even when

J < J ?
(⇤

0

, N).)

Figure 5.1 (left) illustrates the error exponent lower bounds I0

J ,N (�) and I1

J ,N (�) in Theorem 5.7, while

Figure 5.1 (right) illustrates the quantities in (5.28). (See the definition of the function �

0

(�) in (5.44) in

the proof of Theorem 5.7.) Note that Bl(·) is the convex envelope of the functions NIl(·) and Il(·) + J ,

l = 0, 1. We consider N = 3 agents and a discrete distribution of Yi,t over a 5-point alphabet, with the

distribution [.2, .2, .2, .2, .2] under H
1

, and [0.01, 0.01, 0.01, 0.01, 0.96] under H
0

. We set here J ⇡ 0.92

Remark. Consider part (c) of Corollary 5.8. When ⇤

0

(�) = ⇤

0

(1� �), for � 2 [0, 1], it can be shown that
5As we show in the proof, such a point exists and is unique.
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Figure 5.1: Left: Illustration of the error exponent lower bounds I0

J ,N (�) and I1

J ,N (�) in Theorem 5.7;
Right: Illustration of the function �

0

(�) in (5.44), and the quantities in (5.28). We consider N = 3 agents
and a discrete distribution of Yi,t over a 5-point alphabet, with the distribution [.2, .2, .2, .2, .2] under H

1

,
and [0.01, 0.01, 0.01, 0.01, 0.96] under H

0

. We set here J ⇡ 0.92.

�
0

= ��
1

< 0, and I0

J ,N (�) = I1

J ,N (��), for all � 2 (�
0

, �
1

). This implies that the point �? at which

I0

J ,N and I1

J ,N are equal is necessarily zero, and hence the optimal detector threshold �?
= 0, irrespective

of the network connectivity J (even when J < J ?
(⇤

0

, N).) This symmetry holds, e.g., for the Gaussian

and Laplace distribution considered in Section 5.3.

Corollary 5.8 states that, when the network connectivity J is above a threshold, the distributed detector

in (5.19) and (5.21) is asymptotically equivalent to the optimal centralized detector. The corresponding

optimal detector threshold is � = 0. When J is below the threshold, Corollary 5.8 determines what value of

the error exponent the distributed detector can achieve, for any given � 2 (�
0

, �
1

). Moreover, Corollary 5.8

finds the optimal detector threshold �? for a given r; �? can be found as the unique zero of the strictly

decreasing function �B(�) := I1

J ,N (�)� I0

J ,N (�) on � 2 (�
0

, �
1

), see the proof of Corollary 5.8, e.g., by

bisection on (�
0

, �
1

).

Corollary 5.8 establishes that there exists a “sufficient” connectivity, sayJ ?, so that further improvement

on the connectivity (and further spending of resources, e.g., transmission power) does not lead to a pay off

in terms of asymptotic detection performance. Hence, Corollary 5.8 is valuable in the practical design

of a network, as it says how much connectivity (resources) is sufficient to achieve asymptotically optimal

detection.
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Equation (5.31) says that the distribution of the agent observations (through the logarithmic moment

generating function) plays a role in determining the performance of distributed detection. We illustrate and

explain by examples this effect in Section 5.3.

5.2.2 Proofs of the main results

In this subsection, we prove Theorem 5.7 and Corollary 5.8. We follow essentially the same arguments as

in the proof of Theorem 4.19 in Chapter 4. Differently from the latter proof, 1) we explicitly characterize

the convex hull of the functions NIl(·) and Il(·) + J , l = 0, 1; and 2) we analyze the (average) error

probability and the choice of thresholds �. (The average error probability and thresholds are specific to

distributed detection and are not considered in Chapter 4.) For convenience, we include here the full proof

of Theorem 5.7 and Corollary 5.8.

Proof [Proof of Theorem 5.7] Consider the probability of false alarm ↵i,k(�) in (5.26). We upper bound

↵i,k(�) using the exponential Markov inequality [69] parameterized by ⇣ � 0:

↵i,k(�) = P (xi,k � � |H
0

) = P
⇣

e⇣xi,k � e⇣� |H
0

⌘

 E
h

e⇣xi,k |H
0

i

e�⇣� . (5.33)

Next, by setting ⇣ = N k �, with � � 0, we obtain:

↵i,k(�)  E
h

eNk�xi,k |H
0

i

e�Nk�� (5.34)

= E
h

eN�
Pk

t=1

PN
j=1

[�(k,t)]i,jLj,t |H
0

i

e�Nk�� . (5.35)

The terms in the sum in the exponent in (5.35) are conditionally independent, given the realizations of the

averaging matrices Wt, t = 1, . . . , k, Thus, by iterating the expectations, and using the definition of ⇤

0

in (5.10), we compute the expectation in (5.35) by conditioning first on Wt, t = 1, . . . , k:

E
h

eN�
Pk

t=1

PN
j=1

[�(k,t)]i,jLj,t |H
0

i

= E
h

E
h

eN�
Pk

t=1

PN
j=1

[�(k,t)]i,jLj,t |H
0

, W
1

, . . . ,Wk

ii

= E
h

e
Pk

t=1

PN
j=1

⇤

0

(N�[�(k,t)]i,j)
i

. (5.36)

Partition of the sample space. We handle the random matrix realizations Wt, t = 1, . . . , k, through a

suitable partition of the underlying probability space. Adapting the argument from Subsection 4.5.3 in

Chapter 4, partition the probability space based on the time of the last successful averaging. In more detail,

for a fixed k, introduce the partition Pk of the sample space that consists of the disjoint events As,k, s =
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0, 1, ..., k, given by:

As,k = {k�(k, s)� Jk  ✏ and k�(k, s + 1)� Jk > ✏} ,

for s = 1, ..., k � 1, A
0,k = {k�(k, 1) � Jk > ✏}, and Ak,k = {k�(k, k)� Jk  ✏}. For simplicity

of notation, we drop the index k in the sequel and denote event As,k by As, s = 0, . . . , k. for ✏ > 0.

Intuitively, the smaller t is, the closer the product �(k, t) to J is; if the event As occurred, then the largest t

for which the product �(k, t) is still ✏-close to J equals s. We now show that Pk is indeed a partition. We

need the following simple lemma. The lemma shows that convergence of �(k, s)� J is monotonic, for any

realization of the matrices W
1

, W
2

, ...,Wk.

Lemma 5.9 Let Assumption 5.5 hold. Then, for any realization of the matrices W
1

, ...,Wk:

k�(k, s)� Jk  k�(k, t)� Jk, for 1  s  t  k.

Proof Since every realization of Wt is stochastic and symmetric for every t, we have that Wt1 = 1 and

1

>Wt = 1

>, and, so: �(k, s) � J = Wk · · ·W (s) � J = (Wk � J) · · · (W (s) � J). Now, using the

sub-multiplicative property of the spectral norm, we get

k�(k, s)� Jk = k(Wk � J) · · · (Wt � J)(W (t� 1)� J) · · · (W (s)� J)k
 k(Wk � J) · · · (Wt � J)kk(W (t� 1)� J)k · · · k(W (s)� J)k.

To prove Lemma 5.9, it remains to show that kWt � Jk  1, for any realization of Wt. To this end, fix a

realization W of Wt. Consider the eigenvalue decomposition W = QMQ>, where M = diag(µ
1

, . . . , µN )

is the matrix of eigenvalues of W , and the columns of Q are the orthonormal eigenvectors. As 1p
N

1

is the eigenvector associated with eigenvalue µ
1

= 1, we have that W � J = QM 0Q>, where M =

diag(0, µ
2

, . . . , µN ). Because W is stochastic, we know that 1 = µ
1

� µ
2

� ... � µN � �1, and so

kW � Jk = max{|µ
2

|, |µN |}  1. 2

We now show that Pk is indeed a partition. Note first that (at least) one of the events A
0

, ...,Ak nec-

essarily occurs. It remains to show that the events As are disjoint. We carry out this by fixing arbitrary

s = 1, ..., k, and showing that, if the event As occurs, then At, t 6= s, does not occur. Suppose that As

occurs, i.e., the realizations W
1

, ...,Wk are such that k�(k, s)�Jk  ✏ and k�(k, s+1)�Jk > ✏. Fix any

t > s. Then, eventAt does not occur, because, by Lemma 5.9, k�(k, t)�Jk � k�(k, s+1)�Jk > ✏. Now,
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fix any t < s. Then, eventAt does not occur, because, by Lemma 5.9, k�(k, t+1)�Jk  k�(k, s)�Jk  ✏.

Thus, for any s = 1, ..., k, if the event As occurs, then At, for t 6= s, does not occur, and hence the events

As are disjoint.

Using the total probability law over Pk, the expectation (5.36) is computed by:

E
h

e
Pk

t=1

PN
j=1

⇤

0

(N�[�(k,t)]i,j)
i

=

k
X

s=0

E
h

e
Pk

t=1

PN
j=1

⇤

0

(N�[�(k,t)]i,j) IAs

i

, (5.37)

where, we recall, IAs is the indicator function of the event As. The following lemma explains how to use

the partition Pk to upper bound the expectation in (5.37).

Lemma 5.10 Let Assumptions 5.1-5.5 hold. Then:

(a) For any realization of the random matrices Wt, t = 1, 2, ..., k:

N
X

j=1

⇤

0

(N�[�(k, t)]i,j)  ⇤

0

(N�) , 8t = 1, . . . , k.

(b) Further, consider a fixed s in {0, 1, ..., k}. If the eventAs occurred, then, for i = 1, . . . , N : ⇤

0

(N�[�(k, t)]i,j) 
max

⇣

⇤

0

⇣

�� ✏N
p

N�
⌘

,⇤
0

⇣

� + ✏N
p

N�
⌘⌘

, 8t = 1, . . . , s, 8j = 1, . . . , N.

Proof To prove part (a) of the lemma, by convexity of ⇤

0

, the maximum of
PN

j=1

⇤

0

(N�aj) over

the simplex
n

a 2 RN
:

PN
j=1

aj = 1, aj � 0, j = 1, . . . , N
o

is achieved at a corner point of the simplex.

The maximum equals: ⇤

0

(N�) + (N � 1)⇤

0

(0) = ⇤

0

(N�), where we use the property from Lemma 5.2,

part (b), that ⇤

0

(0) = 0. Finally, since for any realization of the matrices W
1

, . . . ,Wk, the set of entries

{[�(k, t)]i,j : j = 1, . . . , N} is a point in the simplex, the claim of part (a) of the lemma follows.

To prove part (b) of the lemma, suppose that event As occurred. Then, by the definition of As,

k�(k, s)� Jk = kWk · . . . ·W (s)� Jk  ✏.

Now, by Lemma 5.9:

k�(k, t)� Jk = kWk · . . . ·Wt � Jk  ✏,

for every t  s. Then, by the equivalence of the 1-norm and the spectral norm, it follows that:

�

�

�

�

[�(k, t)]i,j � 1

N

�

�

�

�


p

N✏, for t = 1, . . . , s, for all i, j = 1, . . . , N.
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Finally, since ⇤

0

is convex (Lemma 5.2, part (a)), its maximum in
h

�� ✏N
p

N�,� + ✏N
p

N�
i

is attained

at a boundary point and the claim follows. 2

We now fix � 2 (0,J ). Using the results from Lemma 5.6 and Lemma 5.10, we next bound the

expectation in (5.37) as follows:

k
X

s=0

E
h

e
Pk

t=1

PN
j=1

⇤

0

(N�[�(k,t)]i,j) IAs

i


k
X

s=0

⇣

esN max

(

⇤

0

(

��✏N
p

N�
)

,⇤
0

(

�+✏N
p

N�
))

+(k�s)⇤
0

(N�)

⌘

⇥
⇣

C(�)e�(k�(s+1))(J��)
⌘

. (5.38)

To simplify the notation, we introduce the function:

g
0

: R2 �! R, g
0

(✏, �) := max

⇣

⇤

0

⇣

�� ✏N
p

N�
⌘

,⇤
0

⇣

� + ✏N
p

N�
⌘⌘

. (5.39)

We need the following property of g
0

(·, ·).

Lemma 5.11 Consider g
0

(·, ·) in (5.39). Then, for every � 2 R, the following holds:

inf

✏>0

g
0

(✏, �) = ⇤

0

(�).

Proof Since ⇤

0

(·) is convex, for ✏0 < ✏ and for a fixed �, we have that

g
0

(✏, �) = max

�2[�✏,✏]
⇤

0

⇣

� + �N
p

N�
⌘

� max

�2[�✏0,✏0]
⇤

0

⇣

� + �N
p

N�
⌘

= g
0

(✏0, �).

Thus, for a fixed �, f(·, �) is non-increasing, and the claim of the lemma follows. 2

We proceed by bounding further the right hand side in (5.38), by rewriting e�(k�(s+1))(J��) as 1

re� e�(k�s)(J��):

k
X

s=0

C(�)

re�
esNg

0

(✏,�) + (k�s)⇤
0

(N�)� (k�s)(J��)

 (k + 1) max

s2{0,...,k}
C(�)

re�
e[ sNg

0

(✏,�) + (k�s) (⇤

0

(N�)�(J��)) ]

= (k + 1)

C(�)

re�
emaxs2{0,...,k}[ sNg

0

(✏,�) + (k�s)(⇤
0

(N�)�(J��)) ]

 (k + 1)

C(�)

re�
ek max✓2[0,1][ ✓Ng

0

(✏,�) + (1�✓)(⇤
0

(N�)�(J��))]

= (k + 1)

C(�)

re�
ek max{Ng

0

(✏,�), ⇤
0

(N�)�(J��) }. (5.40)
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The second inequality follows by introducing ✓ :=

s
k and by enlarging the set for ✓ from

�

0, 1

k , . . . , 1
 

to

the continuous interval [0, 1]. Taking the log and dividing by k, from (5.34) and (5.40) we get:

1

k
log ↵i,k(�)  log(k + 1)

k
+

log

C(�)
re�

k
+ max {Ng

0

(✏, �),⇤
0

(N�)� (J � �)}�N��. (5.41)

Taking the lim sup when k !1, the first two terms in the right hand side of (5.41) vanish; further, changing

the sign, we get a bound on the exponent of ↵i(k) that holds for every ✏ 2 (0, 1):

lim inf �1

k
log ↵i,k(�) � �max {Ng

0

(✏, �), ⇤

0

(N�)� (J � �)}+ N��.

By Lemma 5.11, as ✏ ! 0, Ng
0

(✏, �) decreases to N ⇤

0

(�); further, letting � ! 0, we get

lim inf �1

k
log ↵i,k(�) � �max {N⇤

0

(�), ⇤

0

(N�)� J }+ N��. (5.42)

The previous bound on the exponent of the probability of false alarm holds for any � � 0. To get the best

bound, we maximize the expression on the right hand side of (5.42) over � 2 [0,1). (We refer to Figure 5.1,

left and right, to help us illustrate the bounds I0

J ,N (�) and I1

J ,N (�) for the discrete valued observations Yi,t

over a 5-point alphabet.) More precisely, we calculate the convex hull I0

J ,N (�) from Theorem 5.7:

I0

J ,N (�) = max

��0

N��� �

0

(�), (5.43)

where

�

0

(�) := max {N⇤

0

(�), ⇤

0

(N�)� J } . (5.44)

To calculate I0

J ,N (�) in (5.43), we need to find an optimizer �?
= �?

(�) (if it exists) of the objective

in (5.43); from the first order optimality conditions, �? is a point that satisfies:

N� 2 @�

0

(�?
), �? � 0, (5.45)

where @�

0

(�) denotes the subdifferential set of �

0

at �. We next characterize @�

0

(�), for � � 0. Recall

the zero �s

0

of �

0

(·) from Theorem 5.7. The function �

0

(�) in (5.44) equals: 1) N⇤

0

(�) on � 2 [0, �s

0

);

2) N⇤

0

(�s

0

) = ⇤

0

(N�s

0

) � J at � = �s

0

; and 3) ⇤

0

(N�) � J on � > �s

0

. Thus, by the rule for the
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subdifferential of a pointwise maximum of two convex functions, the subdifferential @�

0

(�) is:

@�

0

(�) =

8

>

>

>

<

>

>

>

:

{N⇤

0
0

(�)}, for � 2 [0, �s

0

)

[N⇤

0
0

(�), N⇤

0
0

(N�)] , for � = �s

0

{N⇤

0
0

(N�)}, for � > �s

0

.

(5.46)

Geometrically, @�

0

(�) is the set of slopes of the tangent lines to the graph of �

0

(·) at the point �, see

Figure 5.1, right. We next find I0

J ,N (�) for any � 2 (�
0

, �
1

), by finding �?
= �?

(�) for any � 2 (�
0

, �
1

).

Geometrically, from Figure 5.1, right, given a slope � 2 (�
0

, �
1

), finding a �? corresponds to finding a

point at which a tangent line to the graph of �

0

(·) has a slope �. Recall ��
0

and �+

0

from Theorem 5.7. We

consider separately three regions: 1) � 2 [�
0

, ��
0

]; 2) � 2 (��
0

, �+

0

); and 3) � 2 [�+

0

, �
1

]. For the first

region, (5.45) reduces to finding �? � 0 such that � = ⇤

0
0

(�?
). Recall that ⇤

0
0

(0) = �
0

, i.e., for � = �
0

,

equation (5.45) holds (only) for �?
= 0. Also, for � = ��

0

, we have, by definition of ��
0

, that ⇤

0
0

(�s

0

) = ��
0

,

i.e., equation (5.45) holds (only) for �?
= �s

0

. Because ⇤

0
0

(�) is continuous and strictly increasing on

� 2 [0, �s

0

], it follows that, for any � 2 [�
0

, ��
0

] there exists a solution �? to (5.45), it is unique, and lies in

[0, �s

0

]. Now, we calculate I0

J ,N (�):

I0

J ,N (�) = N�?� � �

0

(�?
) = N�?� �N⇤

0

(�?
) (5.47)

= N(�?� � ⇤

0

(�?
)) = N sup

��0

(�� � ⇤

0

(�)) = NI
0

(�), (5.48)

where we used the fact that �

0

(�?
) = N⇤

0

(�?
) (because �?  �s

0

), and the definition of the function I
0

(·)
in (5.18). We now consider the second region. Fix � 2 (��

0

, �+

0

). It is trivial to verify, from (5.46), that

�?
= �s

0

is the solution to (5.45). Thus, we calculate I0

J ,N (�) as follows:

I0

J ,N (�) = N�s

0

� � �

0

(�s

0

) = N�s

0

� �N⇤

0

(�s

0

) (5.49)

= N�s

0

(� � ��
0

) + N�s

0

��
0

�N⇤

0

(�s

0

) = N�s

0

(� � ��
0

) + NI
0

(��
0

), (5.50)

where we used the fact that �s

0

��
0

� ⇤

0

(�s

0

) = sup��0

���
0

� ⇤

0

(�) = I
0

(��
0

). The proof for the third

region is analogous to the proof for the first region. Hence, the part of the proof for ↵i,k(�) is complete.

For a proof of the claim on the probability of miss �i,k(�) = P (xi,k < �|H
1

), we proceed analogously

to (5.33), where instead of ⇣ � 0, we now use ⇣  0 (and, hence, the proof proceeds with �  0). 2

Proof [Proof of Corollary 5.8] We first prove part (a). Consider the error probability P e

i,k(�) in (5.26).
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By Lemma 1.2.15 in [8], we have that:

lim inf

k!1
�1

k
log P e

i,k(�) = min

⇢

lim inf

k!1
�1

k
log(↵i,k(�)⇡

0

), lim inf

k!1
�1

k
log(�i,k(�)⇡

1

)

�

= min

⇢

lim inf

k!1
�1

k
log ↵i,k(�), lim inf

k!1
�1

k
log �i,k(�)

�

� min{I0

J ,N (�), I1

J ,N (�)},

where the last inequality is by Theorem 5.7; thus, the left inequality in (5.31). We now show the right

inequality in (5.31), i.e., min{I0

J ,N (�), I1

J ,N (�)} > 0 for all � 2 (�
0

, �
1

). First, from the expression for

I0

J ,N (�) in Theorem 5.7, for J > 0, we have: I0

J ,N (�
0

) = NI
0

(�
0

) = 0, and I0

J ,N
0
(�) = NI 0

0

(�) > 0 for

any � 2 (�
0

, ��
0

). As the function I0

J ,N (·) is convex, we conclude that I0

J ,N (�) > 0, for all � > �
0

. (The

same conclusion holds under J = 0, by replacing NI
0

(�) with I
0

(�) + J = I
0

(�).) Analogously, it can

be shown that I1

J ,N (�) > 0 for all � < �
1

; thus, min{I0

J ,N (�), I1

J ,N (�)} > 0, for all � 2 (�
0

, �
1

).

We now calculate max�2(�
0

,�
1

)

min{I0

J ,N (�), I1

J ,N (�)}. Consider the function �B(�) := I1

J ,N (�) �
I0

J ,N (�). Using the definition of I0

J ,N (�) in Theorem 5.7, and taking the subdifferential of I0

J ,N (�) at

any point � 2 (�
0

, �
1

), it is easy to show that I0

J ,N
0
(�) > 0, for any subgradient I0

J ,N
0
(�) 2 @I0

J ,N (�),

which implies that I0

J ,N (·) is strictly increasing on � 2 (�
0

, �
1

). Similarly, it can be shown that I1

J ,N (·) is

strictly decreasing on � 2 (�
0

, �
1

). Further, using the properties that I
0

(�
0

) = 0 and I
1

(�
1

) = 0, we have

�B(�
0

) = I1

J ,N (�
0

) > 0, and �B(�
1

) = �I0

J ,N (�
1

) < 0. By the previous two observations, we have that

�B(�) is strictly decreasing on � 2 (�
0

, �
1

), with �B(�
0

) > 0 and �B(�
1

) < 0. Thus, �B(·) has a unique

zero �? on (�
0

, �
1

). Now, the claim: max�2(�
0

,�
1

)

min{I0

J ,N (�), I1

J ,N (�)} = I0

J ,N (�?
) = I1

J ,N (�?
) holds

trivially because I0

J ,N (·) is strictly increasing on � 2 (�
0

, �
1

), I1

J ,N (·) is strictly decreasing on � 2 (�
0

, �
1

),

and I0

J ,N (·) and I1

J ,N (·) intersect at �? 2 (�
0

, �
1

). This completes the proof of part (a).

We now prove part (b). Suppose that J � J ?
(⇤

0

, N). We show that, for � = 0:

I0

J ,N (0) = NI
0

(0), I1

J ,N (0) = NI
1

(0) = NI
0

(0). (5.51)

(The last equality in (5.51) holds because I
1

(0) = (I
0

(�)� �)|�=0

= I
0

(0).)

We prove only the equality for I0

J ,N in (5.51) as the equality for I1

J ,N follows similarly. Because

J � J ?
(⇤

0

, N), we have, by the definition of �

0

(·) in (5.44), that �

0

(�•) = N⇤

0

(�•). Recall that

I0

J ,N (0) = ��

0

(�?
), where �? is a point for which (5.45) holds for � = 0. However, because @�

0

(�•) =

{N⇤

0
0

(�•)}, and ⇤

0
0

(�•) = 0, it follows that �?
= �• and I0

J ,N (0) = ��

0

(�•) = �N⇤

0

(�•) = NI
0

(0),

which proves (5.51).
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Now, (5.51) means that I0

J ,N (0) = I1

J ,N (0). Further, 0 2 (�
0

, �
1

), and, from part (a), �? is unique, and

so �? has to be 0. This shows that sup�2(�
0

,�
1

)

min{I0

J ,N (�), I1

J ,N (�)} = NI
0

(0) = NC
ind

, and so, by

part (a):

lim inf

k!1
�1

k
log P e

i,k(0) � NC
ind

. (5.52)

On the other hand,

lim sup

k!1
�1

k
log P e

i,k(0)  NC
ind

, (5.53)

because, by the Chernoff lemma [8], for any test (with the corresponding error probability P e

0
k(�),) we have

that lim supk!1� 1

k log P e

0
k(�)  NC

ind

. Combining (5.52) and (5.53) yields‘

NC
ind

 lim inf

k!1
�1

k
log P e

i,k(0)  lim sup

k!1
�1

k
log P e

i,k(0)  NC
ind

.

Thus, the result in part (b) of the lemma. 2

5.3 Examples

This section illustrates our main results for several examples of the distributions of the agent observations.

Subsection 5.3.1 compares the Gaussian and Laplace distributions, both with a finite number of agents N

and when N ! 1. Subsection 5.3.2 considers discrete distributions with finite support, and, in more

detail, binary distributions. Finally, Subsection 5.3.3 numerically demonstrates that our theoretical lower

bound on the error exponent (5.31) is tight. Subsection 5.3.3 also shows through a symmetric, tractable

example how distributed detection performance depends on the network topology (agents’ degree and link

occurrence/failure probability.)

5.3.1 Gaussian distribution versus Laplace distribution

Gaussian distribution. We now study the detection of a signal in additive Gaussian noise; Yi,t has the

following density:

f
G

(y) =

8

>

>

<

>

>

:

1p
2⇡�

G

e
� (

y�m
G

)

2

2�2

G , H
1

1p
2⇡�

G

e
� y2

2�2

G , H
0

.

129



The logarithmic moment generating function is given by: ⇤

0,G(�) = ��(1��)

2

m2

G

�2

G

. The minimum of ⇤

0,G

is achieved at �• =

1

2

, and the per agent Chernoff information is

C
ind,G =

m2

G

8�2

G

.

Applying Corollary 5.8, we get the sufficient condition for optimality:

J � ⇤

0,G

✓

N

2

◆

�N⇤

0,G

✓

1

2

◆

= N(N � 1)C
ind,G. (5.54)

Since ⇤

0

(�) = ⇤

1

(�), the two conditions from the Corollary here reduce to a single condition in (5.31).

Now, let the number of agents N ! 1, while keeping the total Chernoff information constant, i.e.,

not dependent on N ; that is, C
G

:= NC
ind,G = const, C

ind,G(N) = C
G

/N. Intuitively, as N increases,

we deploy more and more agents over a region (denser deployment), but, on the other hand, the agents’

quality becomes worse and worse. The increase of N is balanced in such a way that the total information

offered by all agents stays constant with N . Our goal is to determine how the optimality threshold on the

network connectivity J ?
(N, ⇤

0,G) depends on N . We can see from (5.54) that the optimality threshold for

the distributed detector in the Gaussian case equals:

J ?
(⇤

0,G, N) = (N � 1)C
G

. (5.55)

Laplace distribution. We next study the optimality conditions for the agent observations with Laplace

distribution. The density of Yi,t is:

f
L

(y) =

8

<

:

1

2b
L

e
� |y�m

L

|
b
L , H

1

1

2b
L

e
� |y|

b
L , H

0

.

The logarithmic moment generating function has the following form:

⇤

0,L(�) = log

✓

1� �

1� 2�
e
��

m
L

b
L � �

1� 2�
e
�(1��)

m
L

b
L

◆

.

Again, the minimum is at �• =

1

2

, and the per agent Chernoff information is C
ind,L =

m
L

2b
L

� log

⇣

1 +

m
L

2b
L

⌘

.
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The optimality condition in (5.31) becomes:

J � ⇤

0,L

✓

N

2

◆

�N⇤

0,L

✓

1

2

◆

(5.56)

= log

✓

2�N

2� 2N
e
�N

2

m
L

b
L � N

2� 2N
e
�(1�N

2

)

m
L

b
L

◆

�N log

✓

1 +

m
L

2b
L

◆

+ N
m

L

2b
L

.

Gaussian versus Laplace distribution. It is now interesting to compare the Gaussian and the Laplace case

under equal per agent Chernoff information C
ind,L = C

ind,G. Figure 5.2 (left) plots the logarithmic moment

generating function for the Gaussian and Laplace distributions, for N = 10, C
ind

= C
ind,L = C

ind,G =

0.0945, b
L

= 1, m
L

= 1, and m2

G

/�2

G

= 0.7563 = 8C
ind

. By (5.32), the optimality threshold equals

|N⇤

0

(1/2)|+ |⇤
0

(N/2)|,

as �• = 1/2, for both the Gaussian and Laplace distributions. The threshold can be estimated from Fig-

ure 5.2 (left): solid lines plot the functions ⇤

0

(N�) for the two different distributions, while dashed lines

plot the functions N ⇤

0

(�). For both solid and dashed lines, the Gaussian distribution corresponds to the

more curved functions. We see that the threshold is larger for the Gaussian case. This means that, for a

certain range J 2 (J
min

,J
max

), the distributed detector with Laplace agents is asymptotically optimal,

while with Gaussian agents the distributed detector may not be optimal, even though it uses the same net-

work infrastructure (equal r) and has equal per agent Chernoff information. (See also Figure 5.2 (right) for

another illustration of this effect.)

We now compare the Gaussian and Laplace distributions when N !1, and we keep the Gaussian total

Chernoff information C
G

constant with N . Let the Laplace distribution parameters vary with N as:

m
L

= m
L

(N) =

2

p
2C

Gp
N

, b
L

= b
L

(N) = 1.

We can show that, as N ! 1, the total Chernoff information C
L

(N) ! C
G

as N ! 1, and so the

Gaussian and the Laplace centralized detectors become equivalent. On the other hand, the threshold for the

Gaussian distributed detector is given by (5.55) while, for the Laplace detector, using (5.56) and a Taylor

expansion, we get that the optimality threshold is approximately:

J ?
(⇤

0,L, N) ⇡
p

2C
G

N.

Hence, the required J to achieve the optimal error exponent grows much slower with the Laplace distribu-
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tion than with the Gaussian distribution.
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Figure 5.2: Left: Logarithmic moment generating functions for Gaussian and Laplace distributions with
equal per agent Chernoff information, for N = 10, C

ind

= C
ind,L = C

ind,G = 0.0945, b
L

= 1, m
L

= 1, and
m2

G

/�2

G

= 0.7563 = 8C
ind

. Solid lines plot the functions ⇤

0

(N�) for the two distributions, while dashed
lines plot the functions N⇤

0

(�). For both solid and dashed lines, the Gaussian distribution corresponds
to the more curved functions. The optimality threshold in (5.32) is given by |N⇤

0

(1/2)| + |⇤
0

(N/2)|, as
�• = 1/2. Right: Lower bound on the error exponent in (5.31) and the Monte Carlo estimate of the error
exponent versus J for the Gaussian and Laplace agent observations: N = 20, C

ind

= C
ind,L = C

ind,G =

0.005, b
L

= 1, m
L

= 0.2, and m2

G

/�2

G

= 0.04 = 8C
ind

.

5.3.2 Discrete distributions

We now consider the case when the support of the agent observations under both hypothesis is a finite

alphabet {a
1

, a
2

, ..., aM}. This case is of practical interest when, for example, the sensing device has an

analog-to-digital converter with a finite range; hence, the observations take only a finite number of values.

Specifically, the distribution of Yi,k, 8i, 8k, is given by:

P(Yi,k = am) =

8

<

:

qm, H
1

pm, H
0

, m = 1, ...,M. (5.57)

Then, the logarithmic moment generating function under H
0

equals:

⇤

0

(�) = log

 

M
X

m=1

q�
mp1��

m

!

.

Note that ⇤

0

(�) is finite on R. Due to concavity of �⇤

0

(·), the argument of the Chernoff information

�• (C
ind

= max�2[0,1]
{�⇤

0

(�)} = �⇤

0

(�•)) can, in general, be efficiently computed numerically, for

example, by the Netwon method (see, e.g., [83], for details on the Newton method.) It can be shown,
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defining cm = log

⇣

qm

pm

⌘

, that the Newton direction, e.g., [83], equals:

d(�) = � �⇤00
0

(�)

��1

⇤

0
0

(�) = � 1

PM
m=1

c2mpme�cm
PM

m=1

cmpme�cm
�

PM
m=1

cmpme�cm
PM

m=1

cme�cm

.

Binary observations. To gain more intuition and obtain analytical results, we consider (5.57) with M = 2,

i.e., binary agents,

P(Yi,t = �m) =

8

<

:

qm, H
1

pm, H
0

, m = 1, 2,

with p
2

= 1� p
1

= 1� p, q
2

= 1� q
1

= 1� q. Suppose further that p < q. We can show that the negative

of the per agent Chernoff information ⇤

0,bin

and the quantity �• are:

�C
ind

= ⇤

0,bin

(�•) = �• log

✓

q

p

◆

+ log p + log

 

1�
log

q
p

log

1�q
1�p

!

, �• =

log

p
1�p + log

✓

log

p
q

log

1�q
1�p

◆

log

⇣

1�q
1�p

⌘

� log

⇣

q
p

⌘ .

Further, note that:

⇤

0,bin

(N�•) = log

 

p

✓

q

p

◆N�•

+ (1� p)

✓

1� q

1� p

◆N�•
!

 log

✓

q

p

◆N�•

= N�• log

✓

q

p

◆

.(5.58)

Also, we can show similarly that:

⇤

0,bin

(1�N(1� �•))  N(1� �•) log

✓

1� p

1� q

◆

. (5.59)

Combining (5.58) and (5.59), and applying Corollary 5.8 (equation (5.31)), we get that a sufficient condition

for asymptotic optimality is:

J � max

8

<

:

N log

1

p
�N log

0

@

1 +

�

�

�

log

q
p

�

�

�

�

�

�

log

1�q
1�p

�

�

�

1

A , N log

1

1� q
�N log

0

@

1 +

�

�

�

log

1�q
1�p

�

�

�

�

�

�

log

q
p

�

�

�

1

A

9

=

;

.

From the equation above, we can further obtain a very simplified sufficient condition for optimality:

J � N max {|log p| , |log(1� q)|} . (5.60)

The expression in (5.60) is intuitive. Consider, for example, the case p = 1/2, so that the right hand

side in (5.60) simplifies to: N | log(1 � q)|. Let q vary from 1/2 to 1. Then, as q increases, the per agent
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Chernoff information increases, and the optimal centralized detector has better and better performance (error

exponent.) That is, the centralized detector has a very low error probability after a very short observation

interval k. Hence, for larger q, the distributed detector needs more connectivity to be able to “catch up”

with the performance of the centralized detector. We compare numerically Gaussian and binary distributed

detectors with equal per agent Chernoff information, for N = 32 agents, C
ind

= 5.11 · 10

�4, m2

G/�2

G =

8C
ind

, p = 0.1, and q = 0.12. Binary detector requires more connectivity to achieve asymptotic optimality

(J ⇡ 1.39), while Gaussian detector requires J ⇡ 0.69

5.3.3 Tightness of the error exponent lower bound in (5.31) and the impact of the network

topology

Assessment of the tightness of the error exponent lower bound in (5.31). We note that the result in (5.31)

is a theoretical lower bound on the error exponent. In particular, the condition J � J ?
(⇤

0

, N) is proved

to be a sufficient, but not necessary, condition for asymptotically optimal detection; in other words, (5.31)

does not exclude the possibility of achieving asymptotic optimality for a certain value of J smaller than

J ?
(⇤

0

, N). In order to assess the tightness of (5.31) (for both the Gaussian and Laplace distributions,)

we perform Monte Carlo simulations to estimate the actual error exponent and compare it with (5.31).

We consider N = 20 agents and fix the agent observation distributions with the following parameters:

C
ind

= C
ind,L = C

ind,G = 0.005, b
L

= 1, m
L

= 0.2, and m2

G

/�2

G

= 0.04 = 8C
ind

. We vary J as

follows. We construct a (fixed) geometric graph with N agents by placing the agents uniformly at random

on a unit square and connecting the agents whose distance is less than a radius. Each link is a Bernoulli

random variable, equal to 1 with probability p (link online), and equal to 0 with probability 1 � p (link

offline). The link occurrences are independent in time and space. We change J by varying p from 0 to

0.95 in the increments of 0.05. We adopt the standard time-varying Metropolis weights: whenever a link

{i, j} is online, we set [Wk]ij = 1/(1 + max(di,k, dj,k)), where di,k is the number od neighbors of agent i

at time k; when a link {i, j} is offline, [Wk]ij = 0; and [Wk]ii = 1 �Pj2Oi,k
[Wk]ij , where we recall that

Oi(k) is the neighborhood of agent i. We obtain an estimate of the error probability bP e

i,k at agent i and time

k using 30,000 Monte Carlo runs of (5.19) per each hypothesis. We then estimate the agent-wide average

error exponent as:
1

N

N
X

i=1

log

bP e

i,K
1

� log

bP e

i,K
2

K
2

�K
1

,

with K
1

= 40, K
2

= 60. That is, we estimate the error exponent as the average slope (across agents) of

the error probability curve in a semi-log scale. Figure 5.2 (right) plots both the theoretical lower bound on
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the error exponent in (5.31) and the Monte Carlo estimate of the error exponent versus J for Gaussian and

Laplace distributions. We can see that the bound (5.31) is tight for both distributions. Hence, the actual

distributed detection performance is very close to the performance predicted by (5.31). (Of course, above

the optimality threshold, (5.31) and the actual error exponent coincide and are equal to the total Chernoff

information.) Also, we can see that the theoretical threshold on optimality J ?
(⇤

0

, N) and the threshold

value computed from simulation are very close. Finally, the distributed detector with Laplace observa-

tions achieves asymptotic optimality for a smaller value of J (J ⇡ 1.2) than the distributed detector with

Gaussian observations (J ⇡ 1.6), even though the corresponding centralized detectors are asymptotically

equivalent.

Impact of the network topology. We have seen in the previous two subsections how detection performance

depends on J . In order to understand how J depends on the network topology, we consider a symmetric

network structure, namely a regular network. For this case, we can express J as an explicit (closed form)

function of the agents’ degrees and the link occurrence probabilities. (Recall that the larger J is, the better

the network connectivity.)

Consider a connected regular network with N agents and degree d � 2. Suppose that each link is a

Bernoulli random variable, equal to 1 with probability p (link online) and 0 with probability 1 � p (link

offline,) with spatio-temporally independent link occurrences. Then, as we show in Chapter 2, J equals:

J = d| log(1� p)|. (5.61)

This expression is very intuitive. When p increases, i.e., when the links are online more often, the network

(on average) becomes more connected, and hence we expect that the network connectivity J increases

(improves). This is confirmed with expression (5.61). Further, when d increases, the network becomes more

connected, and hence the network speed again improves. Note also that J is a linear function of d.

We now recall Corollary 5.8 to relate distributed detection performance with p and d. For example, for

a fixed p, the distributed detection optimality condition becomes d > J ?
(⇤

0

,N)

| log(1�p)| , i.e., distributed detection

is asymptotically optimal when the agents’ degree is above a threshold. Further, because d  N , it follows

that, for a large value of J ?
(⇤

0

, N) and a small p, even the networks with a very large degree (say, d =

N � 1) do not achieve asymptotic optimality. Intuitively, a large J ?
(⇤

0

, N) means that the corresponding

centralized detector decreases the error probability so fast in k that, because of the intermittent link failures,

the distributed detector cannot parallel in performance the centralized detector. Finally, when p = 1, the

optimality condition becomes d > 0, i.e., distributed detection is asymptotically optimal for any d � 2.
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This is because, when p = 1, the network is always connected, and the distributed detector asymptotically

“catches up” with an arbitrarily fast centralized detector. In fact, it can be shown that an arbitrarily connected

network with no link failures achieves asymptotic optimality for any value of J ?
(⇤

0

, N). (Such a network

has the network connectivity J +1.)

5.4 Simulations

In this section, we present a simulation example for the distributed detection algorithm where the observa-

tions Yi,t are correlated Gaussian. To account for the correlations, we correspondingly adjust the values of

the innovations Li,t; we detail this adjustment below. Our simulation results demonstrate that the distributed

detector with correlated observations exhibits a similar behavior with respect to the network connectivity J
as its i.i.d. counterpart: when J is sufficiently large, the error probability of each node in the network de-

cays at the optimal rate equal to the total Chernoff information in the network. Further, we demonstrate that

a sensor with poor connectedness to the rest of the network cannot be an optimal detector,and, moreover,

its performance approaches the performance of an isolated sensor, i.e., a sensor that works as an individual

detector, as connectedness becomes worse and worse.

Simulation setup. We consider a network (V,E) with N = 40 nodes and M = 247 edges. Nodes are

uniformly distributed on a unit square and nodes within distance less than a radius ` are connected by an

edge. As averaging weights, we use the standard Metropolis weights.The link failures are spatially and

temporally independent. Each link {i, j} 2 E has the same probability of formation, i.e., the probability of

being online at a time, qij = q. This network and weight model satisfy Assumption 5.5.

We assume equal prior probabilities, ⇡
0

= ⇡
1

= 0.5, and thus we set the threshold � to be the optimal

threshold � = 0. We assume that the vector of all observations Yt is Gaussian with mean value m
1

= 1N

under hypothesis H
1

and mean value m
0

= 0N under hypothesis H
0

, with the same covariance matrix

S under both hypothesis. We generate randomly the covariance matrix S, as follows. We generate: a

N⇥N matrix MS , with the entries drawn independently from U [0, 1]–the uniform distribution on [0, 1]; we

set RS = MSM>
S ; we decompose RS via the eigenvalue decomposition: RS = QS⇤SQ>

S ; we generate a

N⇥1 vector uS with the entries drawn independently from U [0, 1]; finally, we set S = ↵S QSDiag(uS)Q>
S ,

where ↵S > 0 is a parameter. It can be shown that the log-likelihood ratio for this problem (after k ob-

servations are processed) has the form Dk :=

Pk
t=1

(m
1

� m
0

)

>S�1

�

Yt � m
1

+m
0

2

�

, and the decision

test consists of comparing Dk with 0. Observe that Dk is Gaussian random variable with mean value

mD,1 :=

(m
1

�m
0

)

>S�1

(m
1

�m
0

)

2

under hypothesis H
1

, mean value mD,0 := �mD,1 under the hypoth-
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esis H
0

, and variance (m
1

� m
0

)

>S�1

(m
1

� m
0

) (under both hypotheses). This implies that, for the

optimal centralized detector, the error probability P e

k (0) can be computed by the Q function and equals:

P e

k (0) = ⇡
0

P (Dk � 0|H
0

) + ⇡
1

P (Dk < 0|H
1

) = Q
⇣

k (m
1

�m
0

)

>S�1

(m
1

�m
0

)

8

⌘

. Also, the total Chernoff

information in the network is equal to C
tot

=

(m
1

�m
0

)

>S�1

(m
1

�m
0

)

8

.

Taking into account the correlations between the observations Yi,t, we run the distributed detector (5.19)

with Li,t = vi

⇣

Yi,t � mi,1�mi,0

2

⌘

, where v = S�1

(m
1

� m
0

). Note that this choice of Li,t’s aims at

computing the optimal decision statistics Dk in a distributed way: at each time t,
PN

i=1

Li,t = Dt. We

evaluate P e

i,k(0) by Monte Carlo simulations with 20,000 sample paths (20,000 for each hypothesis Hl,

l = 0, 1) of the running consensus algorithm.

Exponential rate of decay of the error probability vs. the network connectivity J . First, we examine

the asymptotic behavior of distributed detection when the network connectivity J varies. To this end, we

fix the graph G = (V,E), and then we vary the formation probability of links q from 0 to 0.75. Figure 5.3

(right) plots the estimated exponential rate of decay, averaged across sensors, versus q. For q greater than 0.1

the rate of decay of the error probability is approximately the same as for the optimal centralized detector

C
tot

–the simulation estimate of C
tot

is 0.0106. 6 For q < 0.1 the detection performance becomes worse

and worse as q decreases. Figure 5.3 (left) plots the estimated error probability, averaged across sensors,

for different values of q. We can see that the curves are “stretched” for small values of q; after q exceeds

a threshold (on the order of 0.1,) the curves cluster, and they have approximately the same slope (the error

probability has approximately the same decay rate,) equal to the optimal slope.

Study of a sensor with poor connectivity to the rest of the network. Next, we demonstrate that a

sensor with poor connectivity to the rest of the network cannot be an asymptotically optimal detector;its

performance approaches the performance of an individual detector-sensor, when its connectivity becomes

worse and worse. For the i-th individual detector-sensor (no cooperation between sensors), it is easy to

show that the Bayes probability of error, P e no cooper.
i,k equals: P e no cooper.

i,k = Q
⇣p

kmi,no cooper.

�
i,no cooper.

⌘

, where

mi,no cooper. =

1

2

[m
1

�m
0

]

2

i
Sii

, and �2

i,no cooper. =

[m
1

�m
0

]

2

i
Sii

. It is easy to show that the Chernoff information

(equal to limk!1 1

k log P e no cooper.
i,k ) for sensor i, in the absence of cooperation, is given by 1

8

[m
1

]

2

i
Sii

.

We now detail the simulation setup. We consider a network with N = 35 nodes and M = 263 edges.

We initially generate the graph as a geometric disc graph, but then we isolate sensor 35 from the rest of

the network, by keeping it connected only to sensor 3. We then vary the formation probability of the link

{3, 35}, q
3,35

, from 0.05 to 0.5 (see Figure 5.4.) All other links in the supergraph have the formation

6In this numerical example, the theoretical value of C
tot

is 0.009. The estimated value shows an error because the decay of the
error probability, for the centralized detection, and for distributed detection with a large q, tends to slow down slightly when k is
very large; this effect is not completely captured by the simulation with k < 700.
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probability of 0.8. Figure 5.4 plots the error probability for: 1) the optimal centralized detection; 2) the

distributed detection at each sensor, with cooperation (running consensus;) and 3) the distributed detection

at each sensor, without cooperation (sensors do not communicate.) Figure 5.4 shows that, when q
3,35

= 0.05,

sensor 35 behaves almost as bad as the individual sensors that do not communicate (cooperate) with each

other. As q increases, the performance of sensor 35 gradually improves.
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Figure 5.3: Monte Carlo estimate of the performance of distributed detection for different values of the link
formation probability q. Left: Error probability averaged across N sensors. Each line is labeled with the
value of q; performance of centralized detection is plotted in gray. Right: Estimated exponential rate of
decay of the error probability vs. q.

5.5 Non-identically distributed observations

We extend Theorem 5.7 and Corollary 5.8 to the case of (independent) non-identically distributed observa-

tions. First, we briefly explain the measurement model and define the relevant quantities. As before, let Yi,t

denote the observation of agent i at time t, i = 1, . . . , N , t = 1, 2, . . ..

Assumption 5.12 The observations of agent i are i.i.d. in time, with the following distribution:

Yi,t ⇠
8

<

:

⌫i,1, H
1

⌫i,0, H
0

, i = 1, ..., N, t = 1, 2, ...

(Here we assume that ⌫i,1 and ⌫i,0 are mutually absolutely continuous, distinguishable measures, for i =

1, . . . , N ). Further, the observations of different agents are independent both in time and across agents, i.e.,

for i 6= j, Yi,t and Yj,k are independent for all t and k.
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Figure 5.4: Error probability averaged across sensors for the optimal centralized detection, distributed de-
tection at each sensor (with cooperation), and detection at each sensor, without cooperation. The formation
probability q

3,35

of the link {3, 35} varies between 0.05 and 0.5: q
3,35

=0.05 (top right); 0.2 (top left); 0.3
(bottom left); 0.5 (bottom right).
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Under Assumption 5.12, the form of the log-likelihood ratio test remains the same as under Assump-

tion 5.1:

Dk :=

1

Nk

k
X

t=1

N
X

i=1

Li,t

H
1

?
H

0

�,

where the log-likelihood ratio at agent i, i = 1, ..., N , is now:

Li,t = log

fi,1(Yi,t)

fi,0(Yi,t)
,

and fi,l, l = 0, 1, is the density (or the probability mass) function associated with ⌫i,l. We now discuss

the choice of detector thresholds �. Let �l = E
h

1

N

PN
i=1

Li,t|Hl

i

=

⇣

PN
i=1

�i,l

⌘

/N . We can show that,

if J > 0, then any � 2 (�
0

, �
1

) yields an exponentially fast decay of the error probability, at any agent.

The condition J > 0 means that the network is connected on average, see Chapter 2; if met, then, it is

not difficult to show that for all i, E[xi,k|Hl] ! �l as k ! 1, l = 0, 1. Clearly, under identical agents,

�i,l = �j,l for any i, j, and hence the range of detector thresholds becomes the one assumed in Section 5.1.3.

Denote by ⇤i,0 the logarithmic moment generating function of Li,t under hypothesis H
0

:

⇤i,0 : R �! (�1,+1] , ⇤i,0(�) = log E
h

e�Li,1 |H
0

i

.

We assume finiteness of ⇤i,0(·) of all agents. Assumption 5.3 is restated explicitly as Assumption 5.13.

Assumption 5.13 For i = 1, . . . N , ⇤i,0(�) < +1, 8� 2 R.

The optimal centralized detector, with highest error exponent, is the log-likelihood ratio test with zero

threshold � = 0 [8], its error exponent is equal to the Chernoff information of the vector of all agents

observations, and can be expressed in terms of the logarithmic moment generating functions as:

C
tot

= max

�2[0,1]

�
N
X

i=1

⇤i,0(�) = �
N
X

i=1

⇤i,0(�
•
).

Here, �• is the minimizer of
PN

i=1

⇤i,0 over [0, 1]. We are now ready to state our results on the error

exponent of the distributed detector for the case of non-identically distributed observations. (We continue to

use ↵i,k(�), �i,k(�), and P e

i,k(�) to denote the false alarm, miss, and Bayes error probabilities of distributed

detector at agent i.)

Theorem 5.14 Let Assumptions 5.5, 5.12, and 5.13 hold, and let, in addition, J > 0. Consider the family
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of distributed detectors in (5.19) and (5.21) with thresholds � 2 (�
0

, �
1

). Then, at each agent i:

lim inf

k!1
�1

k
log ↵i,k(�) � I0

J ,N (�) > 0, lim inf

k!1
�1

k
log �i,k(�) � I1

J ,N (�) > 0, (5.62)

where

I0

J ,N (�) = max

�2[0,1]

N�� �max

(

N
X

i=1

⇤i,0(�), max

i=1,...,N
⇤i,0(N�)� J

)

(5.63)

I1

J ,N (�) = max

�2[�1,0]

N�� �max

(

N
X

i=1

⇤i,1(�), max

i=1,...,N
⇤i,1(N�)� J

)

. (5.64)

Corollary 5.15 Let Assumptions 5.5, 5.12, and 5.13 hold, and let, in addition, J > 0. Consider the family

of distributed detectors in (5.19) and (5.21) with thresholds � 2 (�
0

, �
1

). Then:

(a) At each agent i:

lim inf

k!1
�1

k
log P e

i,k(�) � min{I0

J ,N (�), I1

J ,N (�)} > 0, (5.65)

and the lower bound in (5.65) is maximized for the point �? 2 (�
0

, �
1

) at which I0

J ,N (�?
) = I1

J ,N (�?
).

(b) Consider �• = arg min�2[0,1]

PN
i=1

⇤i,0(�), and let:

J ?
(⇤

1,0, . . . ,⇤N,0) = (5.66)

max

(

max

i=1,...,N
⇤i,0(N�•)�

N
X

i=1

⇤i,0(�
•
), max

i=1,...,N
⇤i,0(1�N(1� �•))�

N
X

i=1

⇤i,0(�
•
)

)

.

Then, when J � J ?
(⇤

1,0, . . . ,⇤N,0), each agent i with the detector threshold set to � = 0, is asymp-

totically optimal:

lim

k!1
�1

k
log P e

i,k(0) = C
tot

.

Comparing Theorem 5.7 with Theorem 5.14, we can see that, under non-identically distributed observations,

it is no longer possible to analytically characterize the lower bounds on the error exponents, I0

J ,N (�) and

I1

J ,N (�). However, the objective functions (in the variable �) in (5.63) and (5.64) are concave (by convexity

of the logarithmic moment generating functions) and the underlying optimization variable � is a scalar, and,

thus, I0

J ,N (�) and I1

J ,N (�) can be efficiently found by a one dimensional numerical optimization procedure,

e.g., a subgradient algorithm [72].
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The proof of Theorem 5.14 mimics the proof of Theorem 5.7; we focus only on the steps that account

for different agents’ logarithmic moment generating functions. The proof of Corollary 5.15 is omitted.

Proof [Proof of Theorem 5.14] First, expression (5.36) that upper bounds the probability of false alarm

↵i,k(�) for the case of non-identically distributed observations becomes:

E
h

eN�
Pk

t=1

PN
j=1

[�(k,t)]i,jLj,t |H
0

i

= E
h

E
h

eN�
Pk

t=1

PN
j=1

[�(k,t)]i,jLj,t |H
0

, W
1

, . . . ,Wk

ii

= E
h

e
Pk

t=1

PN
j=1

⇤j,0(N�[�(k,t)]i,j)
i

.

Next, we bound the sum in the exponent of the previous equation, conditioned on the event As, for a fixed

s in {0, 1, . . . , k}, deriving a counterpart to Lemma 5.10.

Lemma 5.16 Let Assumptions 5.5, 5.12, and 5.13 hold. Then,

(a) For any realization of Wt, t = 1, 2, ..., k:

N
X

j=1

⇤j,0 (N�[�(k, t)]i,j)  max

j=1,...,N
⇤j,0 (N�) , 8t = 1, . . . , k.

(b) Consider a fixed s in {0, 1, ..., k}. If the event As occurred, then, for i = 1, ..., N :

N
X

j=1

⇤j,0 (N�[�(k, t)]i,j) 
N
X

j=1

max

⇣

⇤j,0

⇣

�� ✏N
p

N�
⌘

,⇤j,0

⇣

� + ✏N
p

N�
⌘⌘

, 8t = 1, . . . , s.

The remainder of the proof proceeds analogously to the proof of Theorem 5.7. 2

5.6 Power allocation

Part b of Corollary 5.8 says that there is a sufficient large deviation rate J ? such that the distributed detector

is asymptotically optimal; a further increase of J above J ? does not improve the exponential decay rate of

the error probability. Also, as we have shown in Subsection 2.5.2 of Chapter 2, the large deviation rate J
is a function of the link occurrence probabilities, which are further dependent on the sensors’ transmission

power. In summary, Part b of Corollary 5.8 suggests that there is a sufficient (minimal required) transmission

power that achieves detection with the optimal exponential decay rate. This observation motivates us to

formulate the optimal power allocation problem of minimizing the total transmission power per time k
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subject to the optimality condition J � J ?. Before presenting the optimization problem, we detail the

inter-sensor communication model.

Inter-sensor communication model. We adopt a symmetric Rayleigh fading channel model, a model

similar to the one proposed in [74] (reference [74] assumes asymmetric channels). At time k, sensor j

receives from sensor i:

yij,k = gij,k

s

Sij

d↵
ij

xi,k + nij,k,

where Sij is the transmission power that sensor i uses for transmission to sensor j, gij,k is the channel fading

coefficient, nij,k is the zero mean additive Gaussian noise with variance �2

n, dij is the inter-sensor distance,

and ↵ is the path loss coefficient. We assume that the channels (i, j) and (j, i) at time k experience the

same fade, i.e., gij,k = gji,k; gij,k is i.i.d. in time; and gij,t and glm,s are mutually independent for all t, s.

We adopt the following link failure model. Sensor j successfully decodes the message from sensor i (i.e.,

the link (i, j) is online) if the signal to noise ratio exceeds a threshold, i.e., if: SNR =

Sijg2

ij,k

�2

nd↵
ij

> ⌧ , or,

equivalently, if g2

ij,k >
⌧�2

nd↵
ij

Sij
:=

Kij

Sij
. The quantity g2

ij,k is, for the Rayleigh fading channel, exponentially

distributed with parameter 1. Hence, we arrive at the expression for the probability of the link (i, j) being

online:

Pij = P
✓

g2

ij,k >
Kij

Sij

◆

= e
�Kij

Sij . (5.67)

We constrain the choice of the transmission powers by Sij = Sji
7, so that the link (i, j) is online if and

only if the link (j, i) is online, i.e., the graph realizations are undirected graphs. Hence, the underlying

communication model is the link failure model, with the link occurrence probabilities Pij in (5.67) that are

dependent on the transmission powers Sij .

With this model, the large deviation rate J is given by (2.55), where the weight cij associated with link

(i, j) is:

cij(Sij) = � log

⇣

1� e�Kij/Sij

⌘

.

We denote by {Sij} the set of all powers Sij , {i, j} 2 E.

Lemma 5.17 The function J ({Sij}) = mincut(V,E,C), with cij = � log(1� e�Kij/Sij
), for {i, j} 2 E,

and cij = 0 else, is concave.

7We assumed equal noise variances �2

n = Var(nij,k) = Var(nji,k) so that Kij = Kji, which implies the constraint Sij = Sji.
Our analysis easily extends to unequal noise variances, in which case we would require Kij

Sij
=

Kji

Sji
; this is not considered here.
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Proof Note that the function J ({Sij}) = mincut(V,E, C) can be expressed as

min

E0⇢E: G0=(V,E0) is disconnected

X

{i,j}2E\E0
cij(Sij).

On the other hand, cij(Sij) is concave in Sij for Sij � 0, which can be shown by computing the second

derivative and noting that it is non-positive. Hence, J ({Sij}) is a pointwise minimum of concave functions,

and thus it is concave. 2

Power allocation problem formulation. We now formulate the power allocation problem as the problem

of minimizing the total transmission power used at time k, 2

P

{i,j}2E Sij , so that the distributed detector

achieves asymptotic optimality. This translates into the following optimization problem:

minimize
P

{i,j}2E Sij

subject to J ({Sij}) � J ?.
. (5.68)

The cost function in (5.68) is linear, and hence convex. Also, the constraint set {{Sij} : J ({Sij}) � J ?} =

{{Sij} : �J ({Sij})  �J ?} is convex, as a sub level set of the convex function �J ({Sij}). (See

Lemma 5.17.) Hence, we have just proved the following lemma.

Lemma 5.18 The optimization problem (5.68) is convex.

Convexity of (5.68) allows us to find a globally optimal solution.

5.6.1 Simulation example

We first describe the simulation setup. We consider a geometric network with N = 14 sensors. We place

the sensors uniformly over a unit square, and connect those sensors whose distance dij is less than a radius.

The total number of (undirected) links is 38. (These 38 links are the failing links, for which we want to

allocate the transmission powers Sij .) We set the coefficients Kij = 6.25d↵
ij , with ↵ = 2. For the averaging

weights, we use Metropolis weights, i.e., if link {i, j} is online, we assign Wij,k = 1/(1+max{di,k, dj,k}),
where di,k is the degree of node i at time k and Wij,k = 0 otherwise; also, Wii,k = 1 �Pj2Oi,k

Wij,k.

For the sensors’ measurements, we use the Gaussian distribution f
1

⇠ N (m, �2

), f
0

⇠ N (0, �2

), with

�2

= 1. For a lower signal-to-noise ratio (SNR) case, we set m = 0.0447, and for a higher SNR case, we

set m = 2 · 0.0447. The corresponding values are J ?
= (N � 1)N m2

8�2

= 0.0455, for a lower SNR, and and

J ?
= 0.182, for a higher SNR; see [64].

To obtain the optimized power allocation, we solve the optimization problem (5.68) by applying the
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subgradient algorithm with constant stepsize � = 0.0001 on the unconstrained exact penalty reformulation

of (5.68), see, e.g., [72], which is to minimize
P

{i,j}2E Sij + µmax {0,�mincut(V,E,C) + J ?}, where

C = [cij ], cij = � log(1� e�Kij/Sij
), for {i, j} 2 E, and zero else; and µ is the penalty parameter that we

set to µ = 500. We used the MATLAB implementation [91] of the min-cut algorithm from [73]. Note that

the resulting power allocation is optimal over the class of deterministic power allocations, i.e., the power

allocations that: 1) use the same total power across all links per each time step; and 2) use deterministic

power assignment policy at each time step.

Results. Figure 5.5 (left) plots the detection error probability for a lower SNR case, of the worst sensor

maxi=1,...,N P e

i,k versus time k. We compare: 1) the optimized power allocation {S?
ij} (solid blue line);

2) the uniform power allocation Sij = S across all links, such that the total power per k over all links

2

P

{i,j}2E Sij = 2

P

{i,j}2E S?
ij =: S; and 3) a random, gossip like, power allocation, where, at a time

step k, only one out of all links is activated (uniformly across all links) such that the power S is invested in it

(half of S in each direction of the communication.) Note that this allocation is random, hence outside of the

class that we optimize over. The optimized power allocation significantly outperforms the uniform power

allocation. For example, to achieve the error probability 0.1, the optimized power allocation scheme requires

about 550 time steps, hence the total consumed power is 550S; in contrast, the uniform power allocation

needs more than 2000S for the same target error 0.1. In addition, Figure 5.5 plots the detection performance

for the uniform power allocation with the total power per k equal to sr⇥ 3S. This scheme takes more than

700 time steps to achieve an error of 0.1, hence requiring the total power of 700⇥3⇥S = 2100S to achieve

an error of 0.1. Further, we can see that, for a lower SNR case, the random, gossip policy achieves – exactly

as the optimized policy – the best detection error exponent D. (Note that the two corresponding lines are

parallel.) This is not a contradiction as the random policy is outside of the class of deterministic allocations

that we optimize over. Furthermore, the randomized gossip policy is slightly better than the optimized policy

(It has a better constant C in the detection error P e

k ⇡ Ce�kD). However, for a larger SNR (Figure 5.5,

right), the gossip policy no longer achieves the optimal slope D, and the optimized policy becomes better.

In particular, for the 10

�1 detection error, the optimized policy saves about 50 time steps (from 200 to 150),

with respect to gossip, hence saving 25% of total required power.
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Figure 5.5: Detection error probability of the worst sensor versus time step k for the optimized power
allocation, the uniform power allocation with sr = 1, 3, (sr =

total power per k for uniform allocation

total power per k for optimal allocation

,) and for the
random, gossip allocation; Left: lower SNR; Right: higher SNR.
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Chapter 6

Conclusion

This thesis analyzed the large deviations performance of consensus-based distributed algorithms for infer-

ence (detection, estimation) in networks. Consensus-based distributed algorithms have recently attracted

much attention in the literature, in the context of distributed estimation and detection in sensor networks [2],

modeling swarm behavior of robots/animals [3, 4], detection of a primary user in cognitive radio net-

works [5], and power grid state estimation [6].

In contrast with existing literature that usually adopts asymptotic normality or asymptotic consistency

metrics, the metric that we adopt are the rates of large deviations. This enables us to quantify an inter-

esting interplay between the underlying random network parameters and the distributions of the agents’

observations.

We recapitulate chapter-by-chapter contributions of this thesis.

Chapter 2: Products of random stochastic matrices: The symmetric i.i.d. case

We consider a sequence of i.i.d., symmetric, stochastic matrices {Wk} with positive diagonal entries. We

characterize the large deviation limit: J := limk!1� 1

k log P (kWk · · ·W2

W
1

� Jk � ✏) , ✏ 2 (0, 1], The

quantity J has not been computed in the literature before. We show that J is solely a function of the graphs

induced by the matrices Wk and the corresponding probabilities of occurrences of these graphs, and we

show that J does not depend on ✏ 2 (0, 1].

Computation of the quantity J is in general a hard problem. However, for commonly used gossip and

link failure models, we show that J = | log(1 � c)|, where c is the min-cut value (or connectivity [16])

of a graph whose links are weighted by the gossip link probabilities. Similarly, we show that J is also

computed via min-cut for link failures on general graphs. Finally, we find tight approximations for J for a
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symmetrized broadcast gossip and similar averaging models.

Besides distributed inference algorithms, the result on the characterization of J is of independent in-

terest in the theory of products of stochastic matrices [12, 13], non-homogenous Markov chains [14], and

consensus algorithms, e.g., [15].

Chapter 3: Products of Random Stochastic Matrices: Temporal Dependencies and Directed Networks

We go beyond symmetric i.i.d. matrices from Chapter 1 by studying: 1) temporally dependent, symmetric

matrices Wk; and 2) temporally i.i.d., asymmetric (not necessarily doubly stochastic) matrices Wk.

Our temporally dependent model of the Wk’s associates a state of a Markov chain to each of the possible

realizations Gt of graphs that supports Wt. The distribution of the graphs Gt, t � 1, is determined by

a M ⇥M transition probability matrix P , where M is the number of possible realizations of Gt. We

characterize the rate J as a function of the transition probability matrix P . We show that the rate J is

determined by the most likely way in which the Markov chain stays in a subset of states (graphs) whose

union is disconnected. The probability of this event is determined by the spectral radius of the block in the

transition matrix P that corresponds to this most likely subset of states, and this spectral radius determines

the rate J .

We study temporally i.i.d. asymmetric matrices Wk, and we characterize the following large deviation

limit: J
dir

= limk!+1 � 1

k log P (|�
2

(Wk · · ·W1

)| � ✏) , ✏ 2 (0, 1], which is a natural generalization of

the quantity J to directed networks. We show that the limit J
dir

depends on the distribution of matrices

only through the support graphs: J
dir

is determined by the probability of the most likely set of support

graphs whose union does not contain a directed spanning tree. We illustrate our results on a commonly used

broadcast gossip protocol, where (only one) node u activates at a time with probability pu, and broadcasts its

state to all single-hop neighbors. We show that the rate J
dir

= | log 1� p
min

|, where p
min

is the probability

of activation of the node that activates least frequently.

Chapter 4: Large deviations for distributed inference

We consider linear distributed inference algorithms with vector innovations Zi,k and generic distributions.

We study the large deviation rates I(E) for generic sets E ⇢ Rd. For spatio-temporally i.i.d. observations

and asymmetric matrices Wk, we show that performance I(E) of distributed inference is at least as good as

the performance of the performance of isolated inference. Likewise, distributed inference is always worse,

or at best equal, to the performance of the centralized, ideal inference. Although very intuitive, the result

is challenging to prove, and requires modification of the arguments of the Gartner-Ellis Theorem. When
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the Wk’s are symmetric, distributed inference guarantees much larger gains over isolated inference. The

results reveal a very interesting interplay between the underlying network and the distribution of the agents’

innovations. Distributed inferenceis close to the centralized performance for very high required accuracies,

but it can become much worse from the centralized performance for very coarse precisions. Further, for reg-

ular networks, we establish the full large deviations principle for distributed inference. Finally, for spatially

different innovations and symmetric Wk’s, we show that the relative performance of distributed inference

over the centralized inference is still a highly nonlinear function of the target accuracy.

Chapter 5: Distributed detection

We establish the large deviations performance of distributed detection algorithm in [1], hence establishing

a counterpart result to the (centralized detection’s) Chernoff lemma [8]. We show that distributed detec-

tion exhibits a phase transition behavior with respect to the large deviations rate of consensus J (network

connectivity). If J is above a threshold, then distributed detector’ error exponent equals the Chernoff

information–the best possible error exponent of the optimal centralized detector. For J below the threshold,

we quantify the achievable fraction of the centralized detector’s performance with the distributed detec-

tor. We discover a very interesting interplay between the distribution of the agents’ measurements (e.g.,

Gaussian or Laplace) and the network connectivity (the value of J ). For example, for the same network

connectivity (same J ), a distributed detector with Laplace observations may achieve the optimal asymp-

totic performance, while the distributed detector for Gaussian observations may be suboptimal, even though

the corresponding centralized detectors are asymptotically equivalent. Finally, we address the problem of

allocating the agents’ transmission powers such that they achieve asymptotically optimal detection while

minimizing the invested transmission power.
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[11] D. Bajović, J. Xavier, J. M. F. Moura, and B. Sinopoli, “Exact rate for convergence in probability of

averaging processes via generalized min-cut,” in CDC ’12, 51st IEEE Conference on Decision and

Control, (Hawaii, USA), December 2012.

[12] A. Leizarowitz, “On infinite products of stochastic matrices,” Linear Algebra and its Applications,

vol. 168, pp. 189–219, April 1992.

[13] L. Bruneau, A. Joye, and M. Merkli, “Infinite products of random matrices and repeated interaction

dynamics,” Annales de l’Institut Henri Poincar, Probabilits et Statistiques, vol. 46, no. 2, pp. 442–464,

2010.

[14] E. Seneta, Nonnegative Matrices and Markov Chains. New York: Springer, 1981.

[15] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology

and time-delays,” IEEE Transactions on Automatic Control, vol. 49, pp. 1520–1533, Sept. 2004.

[16] R. D. Carr, G. Konjevod, G. Little, V. Natarajan, and O. Parekh, “Compacting cuts: a new lin-

ear formulation for minimum cut,” ACM Transactions on Algorithms, vol. 5, July 2009. DOI:

10.1145/1541885.1541888.

[17] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental subgradient method for dis-

tributed optimization in networked systems,” SIAM Journal on Optimization, vol. 20, no. 3, pp. 1157–

1170, 2009.

[18] F. d. Hollander, Large deviations. Fields Institute Monographs, American Mathematical Society, 2000.

[19] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast gossip algorithms for consen-

sus,” IEEE Transactions on Signal Processing, vol. 57, pp. 2748–2761, July 2009.

[20] J. N. Tsitsiklis, Problems in decentralized decision making and computation. Ph.d., MIT, Cambridge,

MA, 1984.

[21] M. H. DeGroot, “Reaching a consensus,” Journal of the American Statistical Association, vol. 69,

pp. 118–121, 1974.

151



[22] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using

nearest neighbor rules,” IEEE Trans. Automat. Contr, vol. AC-48, pp. 988–1001, June 2003.

[23] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE Transactions

on Information Theory, vol. 52, pp. 2508–2530, June 2006.

[24] A. Dimakis, A. Sarwate, and M. Wainwright, “Geographic gossip: Efficient averaging for sensor net-

works,” IEEE Transactions on Signal Processing, vol. 56, no. 3, pp. 1205–1216, 2008.
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