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Lecture’s key-points

� A Riemannian manifolds has a “natural” connection
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� Definition [Connection and metric compatibility] Let M be a Riemannian

manifold with metric g ≡ 〈·, ·〉. A linear connection ∇ is said to be compatible with

the metric if for all smooth vector fields X, Y, Z ∈ T (M) there holds

X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉

� Lemma [Characterization of metric compatibility] Let (M, g) be a Riemannian

manifold. The following conditions are equivalent:

(a) the linear connection ∇ is compatible with g

(b) if V, W are smooth vector fields along a smooth curve γ, then

d

dt
〈V, W 〉 = 〈DtV, W 〉 + 〈V, DtW 〉

(c) parallel translation Ps→t : Tγ(s)M → Tγ(t)M is an isometry
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� Definition [Lie bracket of vector fields] Let M be a smooth manifold and let

X, Y ∈ T (M) be smooth vector fields. Their Lie bracket is the smooth vector field

[X, Y ] ∈ T (M) defined by

f ∈ C∞(M) 7→ [X, Y ]pf = Xp(Y f) − Yp(Xf)

for any p ∈ M

� Definition [Torsion-free connections] Let ∇ be a linear connection on the smooth

manifold M . The connection ∇ is said to be torsion-free (or symmetric) if

[X, Y ] = ∇XY −∇Y X

for all X, Y ∈ T (M)

� Theorem [Fundamental theorem of Riemannian geometry] Let (M, g) be a

Riemannian manifold. There exists a unique linear connection ∇ which is torsion-free

and compatible with g.

This connection is called the Riemannian or the Levi-Civita connection
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� Lemma [Riemannian geodesics] All Riemannian geodesics are constant-speed

curves

� Definition [Exponential map] Let M be a Riemannian manifold. Let

E = {V ∈ TM : there is a geodesic γV whose domain contain [0, 1] and γ̇V (0) = V }.

The exponential map is defined as

Exp : E ⊂ TM → M V 7→ Exp(V ) = γV (1).

p

TpM

Xp

Exp Xp
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� Proposition [Properties of the exponential map] Let (M, g) be a Riemannian

manifold. The following conditions are equivalent:

(a) E is an open subset of TM , and each set Ep = E ⊂ TpM is star-shaped

with respect to 0

(b) for each V ∈ TM , the geodesic γV is given by

γV (t) = Exp(tV )

for all t such that either side is defined

(c) the exponential map is smooth
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� Lemma [Normal neighborhood lemma]: For any p ∈ M , there is a neighborhood

V of the origin in TpM and a neighborhood U of p such that Expp : V → U is a

diffeomorphism

TpM

M

p

0p

Expp

B

Bǫ(0)

V

U

� A geodesic ball is a set B = Expp (Bǫ(0)) such that Expp is a diffeomorphism

on Bǫ(0)
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� Definition [Local extension] Let M be an embedded submanifold of M̃ . Let X be

a smooth vector field on M . A local extension of X around p is a smooth vector field

X̃ on a open neighborhood Ũ ⊂ M̃ of p, which agrees with X on M ∩ Ũ

M
Ũ

M̃

� Lemma [Existence of local extensions] Let M be an embedded submanifold of M̃ .

Let X be a smooth vector field on M . Then, for any p ∈ M , there exists a local

extension of X around p
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� Lemma [Characterization of Riemannian connections on Riemannian

submanifolds] Let M̃ be a Riemannian manifold and M a Riemannian submanifold

of M . Let ∇̃ and ∇ denote the respective Riemannian connections. Let X, Y denote

smooth vector fields on M . Then, for any p ∈ M , we have

∇Xp
Y =

(
∇̃

X̃p
Ỹ

)⊤

where X̃, Ỹ denote local extensions of X, Y around p and (·)⊤ : TpM̃ → TpM

corresponds to orthogonal projection

M

M̃

TpM
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� Lemma [Characterization of covariant derivative on Riemannian submanifolds]

Let M̃ be a Riemannian manifold and M a Riemannian submanifold of M . Let

γ : ]a, b[⊂ R → M be a smooth curve, γ̃ = γ ◦ ι : ]a, b[→ M̃ , and let D̃t and Dt

denote the covariant derivative operators along γ and γ̃, respectively. Let V denote a

vector field along γ. Then, for any t0 ∈]a, b[, we have

DtV (t0) =
(
D̃tV (t0)

)⊤

where (·)⊤ : TpM̃ → TpM corresponds to orthogonal projection

M

M̃

TpM
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� Lemma [Characterization of geodesics on Riemannian submanifolds] Let M̃ be a

Riemannian manifold and M a Riemannian submanifold of M̃ . A smooth curve

γ : I ⊂ R → M is a geodesic in M if and only if

D̃tγ̇(t) ⊥ Tγ(t)M

for all t ∈ I. Here D̃t denotes the covariant derivative operator on M̃

� Example (geodesics on the unit-sphere): the geodesics on the unit-sphere

Sn−1(R) = {x ∈ R
n : ‖x‖ = 1} are the great circles
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The geodesic emanating from p ∈ Sn−1(R) in the non-zero direction δ ∈ TpSn−1(R)

is given by

γp,δ(t) = p cos (‖δ‖ t) +
δ

‖δ‖
sin (‖δ‖ t)

for all t ∈ R

� Example (parallel transport on the unit-sphere): parallel transport along the

unit-speed (‖d‖ = 1) geodesic γp,d(t) is given by

τ0→t : TpSn−1(R) → Tγp,d(t)S
n−1(R) δ 7→

[
In +

(
γ̇p,d(t) − d

)
d⊤

]
δ

� Example (geodesics on the orthogonal group): the geodesics on the orthogonal

group O(n) (viewed as a Riemannian submanifold of R
n×n) which emanate from

Q ∈ O(n) in the tangent direction ∆ = QK, K ∈ K(n, R) are given by

γ(t) = QeKt

for all t ∈ R
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� Lemma [Characterization of gradient for Riemannian submanifolds] Let M̃ be a

Riemannian manifold and M a Riemannian submanifold of M̃ . Let f̃ : M̃ → R be a

smooth function and f : M → R, f = f̃ |M . Then, for any p ∈ M , we have

grad f |p =
(
grad f̃ |p

)⊤

where (·)⊤ : TpM̃ → TpM̃ denotes orthogonal projection onto TpM

M̃ grad f̃ |p

TpM̃

TpM

M

grad f |p
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� Lemma [Characterization of covariant Hessian] Let M be a Riemannian manifold

and ∇ its Riemannian connection. Let f : M → R be a smooth function.

(a) For any smooth vector fields X, Y ∈ T (M) we have

∇2f(X, Y ) = 〈∇Xgrad f, Y 〉 = 〈∇Y grad f, X〉

(b) For any Xp ∈ TpM , we have

∇2f(Xp, Xp) =
d2

dt2
f(γ(t))|t=0

where γ denotes the geodesic emanating from p in the tangent direction Xp

� Example (gradient and Hessian on the unit-sphere): let f : Sn−1(R) → R,

f(x) = c⊤x. The (intrinsic) gradient and Hessian of f are given by

grad f |p =
(
In − pp⊤

)
c

∇2f(δ, δ) = −(c⊤p) δ⊤δ for δ ∈ TpSn−1(R)
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� Example (geometrical interpretation of 2nd order KKT conditions): let

M = {x ∈ R
n : F (x) = 0} be an embedded submanifold of R

n where F : R
n → R

p

has rank p over M . The classical sufficient 2nd order KKT conditions for p ∈ M to

be a local minimizer for

min
x∈M

φ(x)

are equivalent to



grad φ|p = 0 (stationary point)

∇2φ(δ, δ) > 0 for any δ ∈ TpM − {0} (Hessian is definite positive)

� Proposition [Geodesics and Riemannian submersions] Let π : M̃ → M be a

Riemannian submersion.

(a) Let γ̃ : I ⊂ R → M̃ be a geodesic of M̃ . If ˙̃γ(t0) is horizontal for some

t0 ∈ I, then ˙̃γ(t) is horizontal for all t ∈ I

(b) Let γ̃ : I ⊂ R → M̃ be a geodesic of M̃ . Then γ = π ◦ γ̃ is a geodesic of M

(c) Let p = π(p̃) and γ : I → M be a geodesic of M such that γ(t0) = p,

t0 ∈ I. Then, there is an open interval J ⊂ I containing t0 and an horizontal

geodesic γ̃ : J → M̃ such that γ̃(t0) = p̃ and γ = π ◦ γ̃. Such γ̃ is unique
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M̃

p̃

Hp̃

M
p

π
TpM

Vp̃
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� Example (horizontal lifts can only be local): consider the Riemannian manifolds

M̃ = R
2 − {(1, 0)}, M = R and the Riemannian submersion π : M̃ → M ,

π(x, y) = x.

The geodesic γ(t) = t on M is defined for all t ∈ R. The (horizontal) geodesic γ̃(t)

on M̃ is only defined for t < 1

� Example (geodesics on the Stiefel manifold): let the Stiefel manifold

O(n, p) = {X ∈ R
n×p : Q⊤Q = Ip}

be identified as the quotient space O(n)/O(n − p) where O(n − p) acts on O(n) as

R︸︷︷︸
(n−p)×(n−p)

· [ Q1︸︷︷︸
n×p

Q2︸︷︷︸
n×(n−p)

] =
[
Q1 Q2R⊤

]

⊲ The usual metric is assumed for O(n), i.e., if ∆1 = QK1, ∆2 = QK2 denote

tangent vectors in TQO(n) with K1, K2 ∈ K(n, R) then

〈∆1, ∆2〉 = tr
(
∆⊤

2 ∆1

)
= tr

(
K⊤

2 K1

)
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⊲ The vertical space at Q = [ Q1 Q2 ] ∈ O(n) is given by

VQ =
[
Q1 Q2

]

0 0

0 K(n − p, R)




⊲ The horizontal space at Q = [ Q1 Q2 ] ∈ O(n) is given by

HQ =



Q


A −B⊤

B 0


 : A ∈ K(p, R), B ∈ R

(n−p)×p





⊲ The geodesic of O(n) emanating from Q in the horizontal direction

∆ = Q


A −B⊤

B 0




is given by

γ(t) = Qe



A −B⊤

B 0


t
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� Example (geodesics on the Grassmann manifold): let the Grassmann manifold

G(n, p) be realized as the coset space

G(n, p) = O(n)/ (O(p) × O(n − p)) .

⊲ The vertical space at Q ∈ O(n) is given by

VQ = Q


K(p, R) 0

0 K(n − p, R)




⊲ The horizontal space at Q ∈ O(n) is given by

HQ =



Q


 0 −A⊤

A 0


 : A ∈ R

(n−p)×p




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⊲ The geodesic of O(n) emanating from Q in the horizontal direction

∆ = Q


 0 −A⊤

A 0




is given by

γ(t) = Qe




0 −A⊤

A 0


t

� Proposition [Cartesian product of Riemannian manifolds] Let (M, gM ) and

(N, gN ) denote Riemannian manifolds. Then (M × N, gM×N ) is a Riemannian

manifold where gM×N = π∗
MgM + π∗

NgN . Furthermore

(a) the projection maps πM and πN are Riemannian submersions

(b) if γM : I → M and γN : I → N are geodesics then

γ : I → M × N γ(t) = (γM (t), γN (t))

is a geodesic on M × N
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