Nonlinear Signal Processing 2006-2007

Riemannian Geodesics (Ch.5, "Riemannian Manifolds", J. Lee, Springer-Verlag)

Instituto Superior Técnico, Lisbon, Portugal

João Xavier

jxavier@isr.ist.utl.pt

Lecture's key-points

 \Box A Riemannian manifolds has a "natural" connection

 \Box Definition [Connection and metric compatibility] Let M be a Riemannian manifold with metric $g \equiv \langle \cdot, \cdot \rangle$. A linear connection ∇ is said to be compatible with the metric if for all smooth vector fields $X, Y, Z \in \mathcal{T}(M)$ there holds

$$X\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$$

 \Box Lemma [Characterization of metric compatibility] Let (M, g) be a Riemannian manifold. The following conditions are equivalent:

- (a) the linear connection ∇ is compatible with g
- (b) if V, W are smooth vector fields along a smooth curve γ , then

$$\frac{d}{dt}\langle V,W\rangle = \langle D_t V,W\rangle + \langle V,D_t W\rangle$$

(c) parallel translation $P_{s \to t} : T_{\gamma(s)}M \to T_{\gamma(t)}M$ is an isometry

 \Box Definition [Lie bracket of vector fields] Let M be a smooth manifold and let $X, Y \in \mathcal{T}(M)$ be smooth vector fields. Their Lie bracket is the smooth vector field $[X, Y] \in \mathcal{T}(M)$ defined by

$$f \in C^{\infty}(M) \mapsto [X, Y]_p f = X_p(Yf) - Y_p(Xf)$$

for any $p \in M$

Definition [Torsion-free connections] Let ∇ be a linear connection on the smooth manifold M. The connection ∇ is said to be torsion-free (or symmetric) if

$$[X,Y] = \nabla_X Y - \nabla_Y X$$

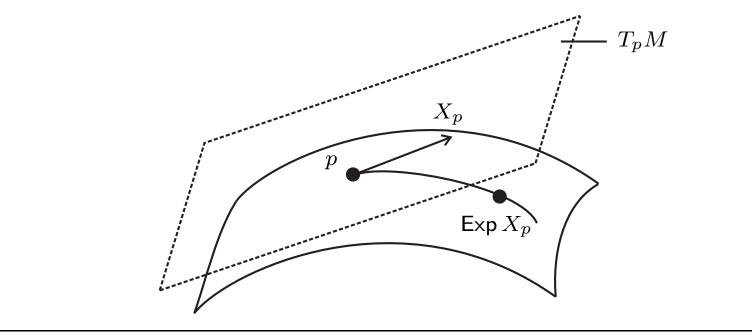
for all $X, Y \in \mathcal{T}(M)$

 \Box Theorem [Fundamental theorem of Riemannian geometry] Let (M, g) be a Riemannian manifold. There exists a unique linear connection ∇ which is torsion-free and compatible with g.

This connection is called the Riemannian or the Levi-Civita connection

□ Lemma [Riemannian geodesics] All Riemannian geodesics are constant-speed curves

□ Definition [Exponential map] Let M be a Riemannian manifold. Let $\mathcal{E} = \{V \in TM : \text{there is a geodesic } \gamma_V \text{ whose domain contain } [0,1] \text{ and } \dot{\gamma}_V(0) = V\}.$ The exponential map is defined as $\text{Exp} : \mathcal{E} \subset TM \to M \qquad V \mapsto \text{Exp}(V) = \gamma_V(1).$



 \Box **Proposition [Properties of the exponential map]** Let (M,g) be a Riemannian manifold. The following conditions are equivalent:

(a) \mathcal{E} is an open subset of TM, and each set $\mathcal{E}_p = \mathcal{E} \subset T_pM$ is star-shaped with respect to 0

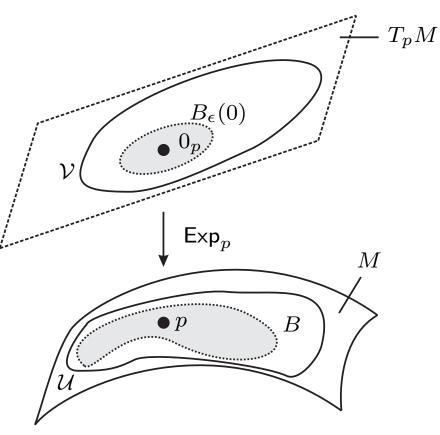
(b) for each $V \in TM$, the geodesic γ_V is given by

 $\gamma_V(t) = \mathsf{Exp}(tV)$

for all t such that either side is defined

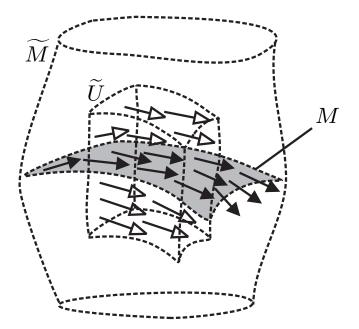
(c) the exponential map is smooth

 \Box Lemma [Normal neighborhood lemma]: For any $p \in M$, there is a neighborhood \mathcal{V} of the origin in T_pM and a neighborhood \mathcal{U} of p such that $\mathsf{Exp}_p : \mathcal{V} \to \mathcal{U}$ is a diffeomorphism



 \Box A geodesic ball is a set $B=\mathrm{Exp}_p\left(B_\epsilon(0)\right)$ such that Exp_p is a diffeomorphism on $B_\epsilon(0)$

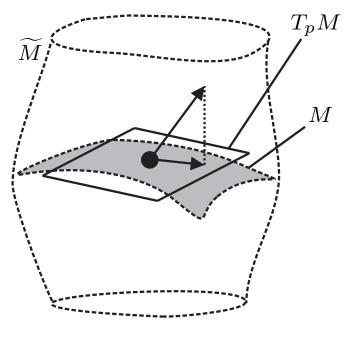
 \Box Definition [Local extension] Let M be an embedded submanifold of \widetilde{M} . Let X be a smooth vector field on M. A local extension of X around p is a smooth vector field \widetilde{X} on a open neighborhood $\widetilde{U} \subset \widetilde{M}$ of p, which agrees with X on $M \cap \widetilde{U}$



 \Box Lemma [Existence of local extensions] Let M be an embedded submanifold of \widetilde{M} . Let X be a smooth vector field on M. Then, for any $p \in M$, there exists a local extension of X around p \Box Lemma [Characterization of Riemannian connections on Riemannian submanifolds] Let \widetilde{M} be a Riemannian manifold and M a Riemannian submanifold of M. Let $\widetilde{\nabla}$ and ∇ denote the respective Riemannian connections. Let X, Y denote smooth vector fields on M. Then, for any $p \in M$, we have

$$\nabla_{X_p} Y = \left(\widetilde{\nabla}_{\widetilde{X}_p} \widetilde{Y}\right)^\top$$

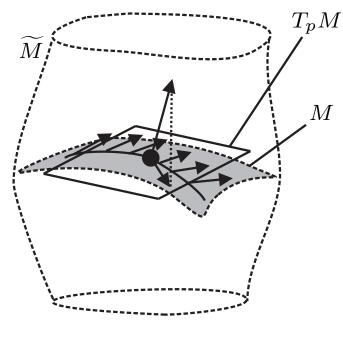
where $\widetilde{X}, \widetilde{Y}$ denote local extensions of X, Y around p and $(\cdot)^{\top} : T_p \widetilde{M} \to T_p M$ corresponds to orthogonal projection



 \Box Lemma [Characterization of covariant derivative on Riemannian submanifolds] Let \widetilde{M} be a Riemannian manifold and M a Riemannian submanifold of M. Let $\gamma :]a, b[\subset \mathbb{R} \to M$ be a smooth curve, $\widetilde{\gamma} = \gamma \circ \iota :]a, b[\to \widetilde{M}$, and let \widetilde{D}_t and D_t denote the covariant derivative operators along γ and $\widetilde{\gamma}$, respectively. Let V denote a vector field along γ . Then, for any $t_0 \in]a, b[$, we have

$$D_t V(t_0) = \left(\widetilde{D}_t V(t_0) \right)^{\top}$$

where $(\cdot)^{\top}$: $T_p \widetilde{M} \to T_p M$ corresponds to orthogonal projection

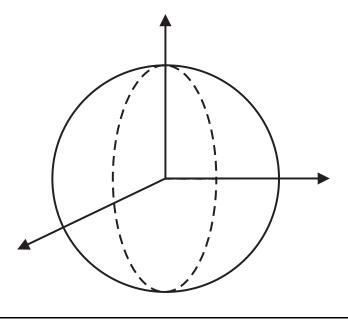


 \Box Lemma [Characterization of geodesics on Riemannian submanifolds] Let \widetilde{M} be a Riemannian manifold and M a Riemannian submanifold of \widetilde{M} . A smooth curve $\gamma : I \subset \mathbb{R} \to M$ is a geodesic in M if and only if

$$\widetilde{D}_t \dot{\gamma}(t) \perp T_{\gamma(t)} M$$

for all $t \in I$. Here \widetilde{D}_t denotes the covariant derivative operator on \widetilde{M}

 \Box Example (geodesics on the unit-sphere): the geodesics on the unit-sphere $S^{n-1}(\mathbb{R}) = \{x \in \mathbb{R}^n : ||x|| = 1\}$ are the great circles



The geodesic emanating from $p \in S^{n-1}(\mathbb{R})$ in the non-zero direction $\delta \in T_pS^{n-1}(\mathbb{R})$ is given by

$$\gamma_{p,\delta}(t) = p\cos\left(\|\delta\|\,t\right) + \frac{\delta}{\|\delta\|}\sin\left(\|\delta\|\,t\right)$$

for all $t \in \mathbb{R}$

 \Box Example (parallel transport on the unit-sphere): parallel transport along the unit-speed (||d|| = 1) geodesic $\gamma_{p,d}(t)$ is given by

$$\tau_{0 \to t} : T_p \mathsf{S}^{n-1}(\mathbb{R}) \to T_{\gamma_{p,d}(t)} \mathsf{S}^{n-1}(\mathbb{R}) \qquad \delta \mapsto \left[I_n + \left(\dot{\gamma}_{p,d}(t) - d \right) d^\top \right] \delta$$

 \Box Example (geodesics on the orthogonal group): the geodesics on the orthogonal group O(n) (viewed as a Riemannian submanifold of $\mathbb{R}^{n \times n}$) which emanate from $Q \in O(n)$ in the tangent direction $\Delta = QK$, $K \in K(n, \mathbb{R})$ are given by

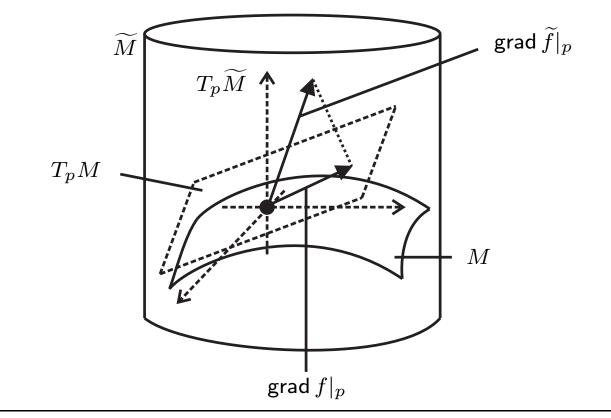
$$\gamma(t) = Q e^{Kt}$$

for all $t \in \mathbb{R}$

 \Box Lemma [Characterization of gradient for Riemannian submanifolds] Let \widetilde{M} be a Riemannian manifold and M a Riemannian submanifold of \widetilde{M} . Let $\widetilde{f} : \widetilde{M} \to \mathbb{R}$ be a smooth function and $f : M \to \mathbb{R}$, $f = \widetilde{f}|_M$. Then, for any $p \in M$, we have

$$\mathsf{grad}\, f|_p = \left(\mathsf{grad}\, \widetilde{f}|_p
ight)^ op$$

where $(\cdot)^{\top}$: $T_p \widetilde{M} \to T_p \widetilde{M}$ denotes orthogonal projection onto $T_p M$



 \Box Lemma [Characterization of covariant Hessian] Let M be a Riemannian manifold and ∇ its Riemannian connection. Let $f : M \to \mathbb{R}$ be a smooth function.

(a) For any smooth vector fields $X, Y \in \mathcal{T}(M)$ we have

$$\nabla^2 f(X,Y) = \langle \nabla_X \operatorname{\mathsf{grad}} f, Y \rangle = \langle \nabla_Y \operatorname{\mathsf{grad}} f, X \rangle$$

(b) For any $X_p \in T_p M$, we have

$$\nabla^2 f(X_p, X_p) = \frac{d^2}{dt^2} f(\gamma(t))|_{t=0}$$

where γ denotes the geodesic emanating from p in the tangent direction X_p

 \Box Example (gradient and Hessian on the unit-sphere): let $f : S^{n-1}(\mathbb{R}) \to \mathbb{R}$, $f(x) = c^{\top}x$. The (intrinsic) gradient and Hessian of f are given by

grad
$$f|_p = (I_n - pp^{\top})c$$

 $\nabla^2 f(\delta, \delta) = -(c^{\top}p)\delta^{\top}\delta$ for $\delta \in T_p S^{n-1}(\mathbb{R})$

 \Box Example (geometrical interpretation of 2nd order KKT conditions): let $M = \{x \in \mathbb{R}^n : F(x) = 0\}$ be an embedded submanifold of \mathbb{R}^n where $F : \mathbb{R}^n \to \mathbb{R}^p$ has rank p over M. The classical sufficient 2nd order KKT conditions for $p \in M$ to be a local minimizer for

$$\min_{x \in M} \phi(x)$$

are equivalent to

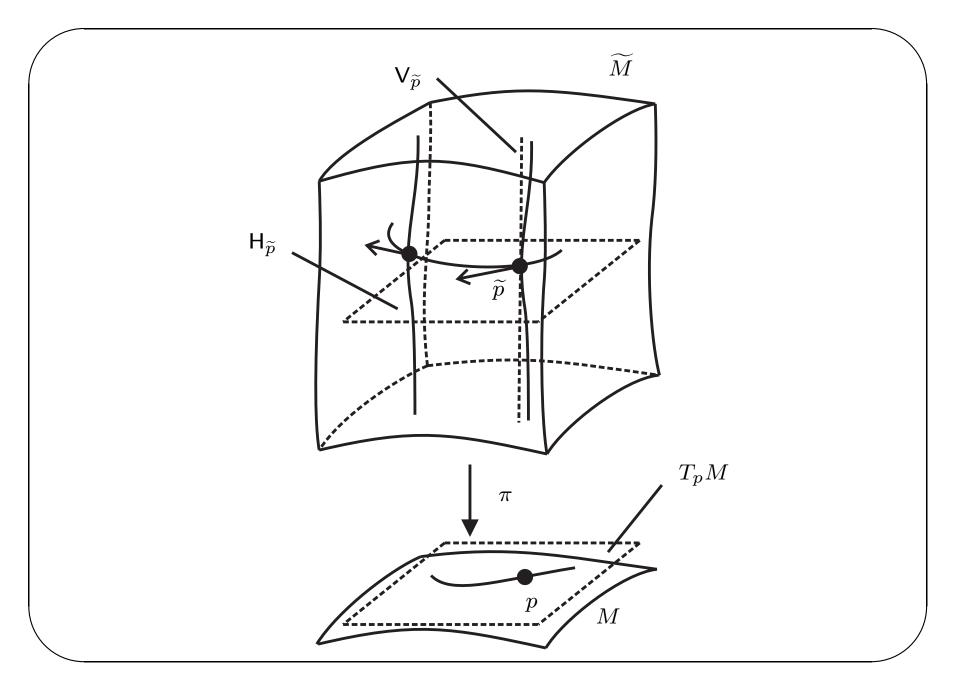
 $\begin{aligned} & \text{grad } \phi|_p = 0 & \text{(stationary point)} \\ & \nabla^2 \phi(\delta, \delta) > 0 \text{ for any } \delta \in T_p M - \{0\} & \text{(Hessian is definite positive)} \end{aligned}$

 \Box Proposition [Geodesics and Riemannian submersions] Let $\pi : \widetilde{M} \to M$ be a Riemannian submersion.

(a) Let $\tilde{\gamma} : I \subset \mathbb{R} \to \widetilde{M}$ be a geodesic of \widetilde{M} . If $\dot{\tilde{\gamma}}(t_0)$ is horizontal for some $t_0 \in I$, then $\dot{\tilde{\gamma}}(t)$ is horizontal for all $t \in I$

(b) Let $\widetilde{\gamma} : I \subset \mathbb{R} \to \widetilde{M}$ be a geodesic of \widetilde{M} . Then $\gamma = \pi \circ \widetilde{\gamma}$ is a geodesic of M

(c) Let $p = \pi(\widetilde{p})$ and $\gamma : I \to M$ be a geodesic of M such that $\gamma(t_0) = p$, $t_0 \in I$. Then, there is an open interval $J \subset I$ containing t_0 and an horizontal geodesic $\widetilde{\gamma} : J \to \widetilde{M}$ such that $\widetilde{\gamma}(t_0) = \widetilde{p}$ and $\gamma = \pi \circ \widetilde{\gamma}$. Such $\widetilde{\gamma}$ is unique



 \Box Example (horizontal lifts can only be local): consider the Riemannian manifolds $\widetilde{M} = \mathbb{R}^2 - \{(1,0)\}, M = \mathbb{R}$ and the Riemannian submersion $\pi : \widetilde{M} \to M$, $\pi(x,y) = x$.

The geodesic $\gamma(t) = t$ on M is defined for all $t \in \mathbb{R}$. The (horizontal) geodesic $\widetilde{\gamma}(t)$ on \widetilde{M} is only defined for t < 1

Example (geodesics on the Stiefel manifold): let the Stiefel manifold

$$\mathsf{O}(n,p) = \{ X \in \mathbb{R}^{n \times p} : Q^{\top}Q = I_p \}$$

be identified as the quotient space O(n)/O(n-p) where O(n-p) acts on O(n) as

$$\underbrace{R}_{(n-p)\times(n-p)} \cdot \left[\underbrace{Q_1}_{n\times p} \underbrace{Q_2}_{n\times(n-p)}\right] = \begin{bmatrix} Q_1 & Q_2 R^\top \end{bmatrix}$$

 \triangleright The usual metric is assumed for O(n), i.e., if $\Delta_1 = QK_1$, $\Delta_2 = QK_2$ denote tangent vectors in $T_QO(n)$ with $K_1, K_2 \in K(n, \mathbb{R})$ then

$$\langle \Delta_1, \Delta_2 \rangle = \operatorname{tr}\left(\Delta_2^{\top} \Delta_1\right) = \operatorname{tr}\left(K_2^{\top} K_1\right)$$

 \triangleright The vertical space at $Q = [\,Q_1\,Q_2\,] \in \mathsf{O}(n)$ is given by

$$\mathsf{V}_Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & \mathsf{K}(n-p,\mathbb{R}) \end{bmatrix}$$

 \triangleright The horizontal space at $Q = [\,Q_1\,Q_2\,] \in \mathsf{O}(n)$ is given by

$$\mathsf{H}_{Q} = \left\{ Q \begin{bmatrix} A & -B^{\top} \\ B & 0 \end{bmatrix} : A \in \mathsf{K}(p, \mathbb{R}), B \in \mathbb{R}^{(n-p) \times p} \right\}$$

 \triangleright The geodesic of O(n) emanating from Q in the horizontal direction

$$\Delta = Q \begin{bmatrix} A & -B^\top \\ B & 0 \end{bmatrix}$$

is given by

$$\gamma(t) = Qe \begin{bmatrix} A & -B^{\top} \\ B & 0 \end{bmatrix}^t$$

 \Box Example (geodesics on the Grassmann manifold): let the Grassmann manifold G(n, p) be realized as the coset space

$$\mathsf{G}(n,p) = \mathsf{O}(n) / \left(\mathsf{O}(p) \times \mathsf{O}(n-p) \right).$$

 \triangleright The vertical space at $Q \in \mathsf{O}(n)$ is given by

$$\mathsf{V}_Q = Q \begin{bmatrix} \mathsf{K}(p,\mathbb{R}) & 0\\ 0 & \mathsf{K}(n-p,\mathbb{R}) \end{bmatrix}$$

 \triangleright The horizontal space at $Q \in \mathsf{O}(n)$ is given by

$$\mathsf{H}_Q = \left\{ Q \begin{bmatrix} 0 & -A^\top \\ A & 0 \end{bmatrix} : A \in \mathbb{R}^{(n-p) \times p} \right\}$$

 \triangleright The geodesic of O(n) emanating from Q in the horizontal direction

$$\Delta = Q \begin{bmatrix} 0 & -A^\top \\ A & 0 \end{bmatrix}$$

is given by

	0	$-A^{\top}$	+
$\gamma(t) = Qe$	A	0	ι

 \Box Proposition [Cartesian product of Riemannian manifolds] Let (M, g_M) and (N, g_N) denote Riemannian manifolds. Then $(M \times N, g_{M \times N})$ is a Riemannian manifold where $g_{M \times N} = \pi_M^* g_M + \pi_N^* g_N$. Furthermore

(a) the projection maps π_M and π_N are Riemannian submersions

(b) if γ_M : $I \to M$ and γ_N : $I \to N$ are geodesics then

$$\gamma : I \to M \times N \quad \gamma(t) = (\gamma_M(t), \gamma_N(t))$$

is a geodesic on $M \times N$