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Lecture’s key-points

[ ] A Riemannian manifolds has a “natural’ connection
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[] Definition [Connection and metric compatibility] Let M be a Riemannian
manifold with metric g = (-,-). A linear connection V is said to be compatible with
the metric if for all smooth vector fields X,Y, Z € 7T (M) there holds

X(Y,Z)=(VxY,Z)+{Y,VxZ)

[J Lemma [Characterization of metric compatibility] Let (M, g) be a Riemannian
manifold. The following conditions are equivalent:

(a) the linear connection V is compatible with g

(b) if V,W are smooth vector fields along a smooth curve ~, then

%(V, W) = (D:V,W) + (V, D:W)

(c) parallel translation Ps_.¢ : T, (syM — T, ;)M is an isometry




/DDefinition [Lie bracket of vector fields] Let M be a smooth manifold and let \
X,Y € T(M) be smooth vector fields. Their Lie bracket is the smooth vector field
[X,Y] € T(M) defined by

feC™(M) = [X,Y]pf = Xp(Yf) = Yp(X[)

forany pe M

[] Definition [Torsion-free connections] Let V be a linear connection on the smooth
manifold M. The connection V is said to be torsion-free (or symmetric) if

X,Y]=VxY — Vy X

forall X, Y € T(M)

[] Theorem [Fundamental theorem of Riemannian geometry] Let (M, g) be a
Riemannian manifold. There exists a unique linear connection V which is torsion-free

and compatible with g.

\This connection is called the Riemannian or the Levi-Civita connection /
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GLemma [Riemannian geodesics] All Riemannian geodesics are constant-speed
curves

[] Definition [Exponential map] Let M be a Riemannian manifold. Let
E={V € TM : there is a geodesic vy, whose domain contain [0, 1] and 4y (0) =
The exponential map is defined as

Exp: £ECTM — M V i— Exp(V) = vy (1).

~

VY.
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[] Proposition [Properties of the exponential map] Let (M, g) be a Riemannian
manifold. The following conditions are equivalent:

(a) £ is an open subset of T'M, and each set £, = & C Tp M is star-shaped
with respect to O

(b) for each V' € T'M, the geodesic vy is given by
v (t) = Exp(tV)

for all t such that either side is defined

(c) the exponential map is smooth

. /




GLemma [Normal neighborhood lemmal: For any p € M, there is a neighborhoocm

V of the origin in T M and a neighborhood U of p such that Exp,, : V — U is a
diffeomorphism

[J A geodesic ball is a set B = Exp,, (B¢(0)) such that Exp,, is a diffeomorphism

\on Be(0)

/




/DDefinition [Local extension] Let M be an embedded submanifold of M. Let X D
a smooth vector field on M. A local extension of X around p is a smooth vector field
X on a open neighborhood U C M of p, which agrees with X on M NU
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(] Lemma [Existence of local extensions] Let M be an embedded submanifold of M.
Let X be a smooth vector field on M. Then, for any p € M, there exists a local

\extension of X around p /




GLemma [Characterization of Riemannian connections on Riemannian \
submanifolds] Let M be a Riemannian manifold and M a Riemannian submanifold

of M. Let V and V denote the respective Riemannian connections. Let X, Y denote
smooth vector fields on M. Then, for any p € M, we have

Vx,Y = (%Xp?)T

where XY denote local extensions of X,Y around p and (-)T : Tp,M — T, M
corresponds to orthogonal projection




GLemma [Characterization of covariant derivative on Riemannian submanifolds]\
Let M be a Riemannian manifold and M a Riemannian submanifold of M. Let

~ :]a,b[C R — M be a smooth curve, ¥ = yo.¢ :]a,b]— M and let D; and D;
denote the covariant derivative operators along v and 7, respectively. Let V' denote a
vector field along . Then, for any tg €]a, b|, we have

Dy V (to) = (1’3,51/(750))T

where (1) T : Tpﬂ — I’y M corresponds to orthogonal projection
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/DLemma [Characterization of geodesics on Riemannian submanifolds] Let M bea\
Riemannian manifold and M a Riemannian submanifold of M. A smooth curve

v : I CR— M is a geodesic in M if and only if
Diy(t) L TyeyM

for all t € I. Here D; denotes the covariant derivative operator on M

[] Example (geodesics on the unit-sphere): the geodesics on the unit-sphere
S"—1(R) = {x € R™ : ||z|| = 1} are the great circles
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/The geodesic emanating from p € S?~1(R) in the non-zero direction § € TpS”_l(R)\

Is given by

o .
Vp,5(t) = pcos ([|6]| ) + oy Sim (o]l )

forallt € R

[J Example (parallel transport on the unit-sphere): parallel transport along the
unit-speed (||d|| = 1) geodesic v, 4(t) is given by

rot § TS TR) = Ty S I R) 8 [Tt (dpa®) —d)dT |9

[] Example (geodesics on the orthogonal group): the geodesics on the orthogonal
group O(n) (viewed as a Riemannian submanifold of R"*™) which emanate from

Q@ € O(n) in the tangent direction A = QK, K € K(n,R) are given by

v(t) = Qel?
\for allt € R

/
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/DLemma [Characterization of gradient for Riemannian submanifolds] Let M be a\

Riemannian manifold and M a Riemannian submanifold of M. Let f M — R be a
smooth function and f : M — R, f = f\M. Then, for any p € M, we have

~ T
arad 1y = (arad 1y

where (1) T : Tp/]\\j — Tp]\7 denotes orthogonal projection onto T, M

—_—

M grad ﬂp

/




(o

and V its Riemannian connection. Let f : M — R be a smooth function.

o)

Lemma [Characterization of covariant Hessian] Let M be a Riemannian manifo

(a) For any smooth vector fields X,Y € 7 (M) we have

V2f(X,Y) =(Vxgrad f,Y) = (Vygrad f, X)

(b) For any X, € T, M, we have

d2
VQf(Xanp) = @f(’Y(t)”t:O

where v denotes the geodesic emanating from p in the tangent direction X,

[J Example (gradient and Hessian on the unit-sphere): let f : S"1(R) — R,
f(z) = c¢" 2. The (intrinsic) gradient and Hessian of f are given by

grad flp, = (In—ppT)c

V2f(5,6) = —(c'p)d's ford e T,S" H(R)

. /
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/DExample (geometrical interpretation of 2nd order KKT conditions): let \
M = {x € R™ : F(x) =0} be an embedded submanifold of R™ where F' : R"™ — RP
has rank p over M. The classical sufficient 2nd order KKT conditions for p € M to

be a local minimizer for

min ¢(x)

xeM
are equivalent to

grad ¢|p, =0 (stationary point)
V2¢(6,6) > 0 for any § € T, M — {0} (Hessian is definite positive)

[ Proposition [Geodesics and Riemannian submersions] Let = : M — M be a
Riemannian submersion.

() Lety : ICR — M be a geodesic of M. If Y(to) is horizontal for some
to € I, then 7(t) is horizontal for all t € 1

(b) Letyv : ICR — M be a geodesic of M. Then ~v = mo~ is a geodesic of M

(c) Let p=m(p) and v : I — M be a geodesic of M such that v(tp) = p,
to € I. Then, there is an open interval J C I containing tg and an horizontal

geodesic vy : J — M such that v(tg) = p and v = w o~. Such 7 is unique /
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GExample (horizontal lifts can only be local): consider the Riemannian manifolds\
M =R? — {(1,0)}, M = R and the Riemannian submersion 7 : M — M,

m(x,y) = x.
The geodesic «(t) =t on M is defined for all ¢t € R. The (horizontal) geodesic 7(t)
on M is only defined for t < 1

[1 Example (geodesics on the Stiefel manifold): let the Stiefel manifold

O(n,p) ={X eR™™P : QTQ =1I,}
be identified as the quotient space O(n)/O(n — p) where O(n — p) acts on O(n) as
. — T
B 1@ @ 1=[0 QFT]

(n—p)X(n—pP) nXp nx(n—p)

> The usual metric is assumed for O(n), i.e., if Ay = QK1, Ay = QK2 denote
tangent vectors in TgO(n) with K1, K2 € K(n,R) then

<A1, A2> = tr (A;Al) = tr (K;Kl)

. /
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/ > The vertical space at Q = [Q1 Q2] € O(n) is given by

0 0
0 K(n—p,R)

Vo=@ @) {

> The horizontal space at Q = [Q1 Q2] € O(n) is given by

A —BT
B 0

. A€ K(p,R), Be R(”p)XP}

> The geodesic of O(n) emanating from @ in the horizontal direction

A -B'
A=Q
B 0
is given by
A -B'

18
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[1 Example (geodesics on the Grassmann manifold): let the Grassmann manifold
G(n, p) be realized as the coset space

G(n,p) = O(n)/ (O(p) x O(n —p)).
> The vertical space at Q € O(n) is given by

K(p, R) 0
Vo =
@=¢ 0 K(n — p,R)

> The horizontal space at @ € O(n) is given by

0 —AT
Ho =¢{ Q . A e RMP)XP
@ A0
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/ > The geodesic of O(n) emanating from @ in the horizontal direction

0 —AT
A=Q
0
Is given by
0o —-AT
t
A 0
V(1) = Qe

[ Proposition [Cartesian product of Riemannian manifolds] Let (M, g5s) and
(N, gn) denote Riemannian manifolds. Then (M X N, gy« n) is a Riemannian
manifold where gpr« v = 3,90 + Ty gn - Furthermore

(a) the projection maps mps and 7 are Riemannian submersions

(b) if vpr : I — M and yn : I — N are geodesics then

y: I —=MXxN ~(t)=(ym(t), v~ (1))

\isa geodesic on M x N
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