Nonlinear Signal Processing 2006-2007

Connections

(Ch.4, "Riemannian Manifolds", J. Lee, Springer-Verlag)

Instituto Superior Técnico, Lisbon, Portugal

João Xavier

jxavier@isr.ist.utl.pt

 \Box **Definition [Connection]** Let M be a smooth manifold. A linear connection on M is a map

$$\nabla : \mathcal{T}(M) \times \mathcal{T}(M) \to \mathcal{T}(M) \qquad (X,Y) \mapsto \nabla_X Y$$

such that

(a) $\nabla_X Y$ is $C^{\infty}(M)$ -linear with respect to X:

$$\nabla_{f_1 X_1 + f_2 X_2} Y = f_1 \nabla_{X_1} Y + f_2 \nabla_{X_2} Y \quad \text{ for } f_1, f_2 \in C^{\infty}(M), X_1, X_2, Y \in \mathcal{T}(M)$$

(b) $\nabla_X Y$ is \mathbb{R} -linear with respect to Y:

$$\nabla_X(a_1Y_1 + a_2Y_2) = a_1\nabla_XY_1 + a_2\nabla_XY_2$$
 for $a_1, a_2 \in \mathbb{R}, X, Y_1, Y_2 \in \mathcal{T}(M)$

(c) ∇ satisfies the rule:

$$\nabla_X(fY) = (Xf)Y + f\nabla_XY$$
 for $f \in C^{\infty}(M), X, Y \in \mathcal{T}(M)$

 \square Example (Euclidean connection): let $M=\mathbb{R}^n$. For given smooth vector fields $X=X^i\partial_i, Y=Y^i\partial_i\in\mathcal{T}(\mathbb{R}^n)$ define

$$\nabla_X Y = (XY^i)\partial_i.$$

Then, ∇ is a linear connection on \mathbb{R}^n , also called the Euclidean connection

 \square Lemma [A linear connection is a local object] Let ∇ be a linear connection on M. Then, $\nabla_X Y$ at $p \in M$ only depends on the values of Y in a neighborhood of p and the value of X at p

 \square **Definition [Christoffel symbols]** Let $\{E_1, E_2, \ldots, E_n\}$ be a local frame on an open subset $U \subset M$ (i.e., each E_i is a smooth vector field on U and $\{E_{1p}, E_{2p}, \ldots, E_{np}\}$ is a basis for T_pM for each $p \in U$).

For any $1 \leq i, j \leq n$, we have the expansion

$$\nabla_{E_i} E_j = \Gamma_{ij}^k E_k.$$

The n^3 functions $\Gamma^k_{ij}:U\to\mathbb{R}$ defined this way are called the Christoffel symbols of ∇ with respect to $\{E_1,E_2,\ldots,E_n\}$

Definition [Covariant derivative of smooth covector fields] Let ∇ be a linear connection on M and let ω be a smooth covector field on M. The covariant derivative of ω with respect to X is the smooth covector field $\nabla_X \omega$ given by

$$(\nabla_X \omega)(Y) = X\omega(Y) - \omega(\nabla_X Y)$$
 for $Y \in \mathcal{T}(M)$

 \square Lemma [An inner-product on V establishes an isomorphism $V \simeq V^*$] Let $\langle \cdot, \cdot \rangle$ denote an inner-product on the n-dimensional vector space V. To each $X \in V$ corresponds the covector $X^{\flat} \in V^*$ given by $X^{\flat} = \langle \cdot, X \rangle$, that is,

$$X^{\flat}(Y) = \langle Y, X \rangle$$
 for $Y \in V$.

The map $V \to V^*, \, X \mapsto X^{\flat}$ is an isomorphism. Its inverse is $V^* \to V, \, \omega \mapsto \omega^{\sharp}$

 \square **Definition [Gradient and Hessian of a smooth function]** Let M be a Riemannian manifold and let f be a smooth function on M.

 \triangleright The gradient of f, written grad f, is the smooth vector field defined pointwise as

$$\operatorname{grad} f|_p = \left(df|_p\right)^{\sharp},$$

for all $p \in M$. Thus, for any tangent vector $X_p \in T_pM$, we have

$$X_p f = (df)_p(X_p) = \langle X_p, \operatorname{grad} f|_p \rangle$$

 \triangleright Let ∇ be a linear connection on M. The Hessian of f with respect to ∇ , written $\nabla^2 f$, is the smooth tensor field of order 2 on M defined as

$$\nabla^2 f(X, Y) = (\nabla_Y df)(X) = Y(Xf) - (\nabla_Y X)f, \quad \text{for } X, Y \in \mathcal{T}(M)$$

 \square Example (gradient and Hessian of a smooth function in (flat) \mathbb{R}^n): let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function. Thus,

$$df = \partial_1 f dx^1 + \partial_2 f dx^2 + \dots + \partial_n f dx^n.$$

Consider the usual Riemannian metric on \mathbb{R}^n :

$$g\left(\partial_i|_p,\partial_j|_p\right)=\delta_i^j.$$

The gradient of f at p is given by

$$\operatorname{grad} f(p) = \partial_1 f(p) \, \partial_1|_p + \partial_2 f(p) \, \partial_2|_p + \dots + \partial_n f(p) \, \partial_n|_p.$$

Let ∇ be the Euclidean connection. The Hessian of f at p is given by

$$\nabla^2 f(X_p, Y_p) = X^i Y^j \partial_{ij}^2 f(p) \quad \text{ for } X_p = X^i \partial_i|_p, Y_p = Y^j \partial_j|_p.$$

 \square Example (gradient and Hessian of a smooth function in \mathbb{R}^n): let $f:\mathbb{R}^n \to \mathbb{R}$ be a smooth function.

Consider the Riemannian metric on \mathbb{R}^n :

$$g = e^{2x+yz} dx \otimes dx + (2-\cos(z)) dy \otimes dy + (y^2+1) dz \otimes dz.$$

The gradient of f at p is given by

$$\operatorname{grad} f(p) = \frac{\partial_x f(p)}{e^{2x+yz}} \, \partial_x|_p + \frac{\partial_y f(p)}{2 - \cos(z)} \, \partial_y|_p + \frac{\partial_z f(p)}{y^2 + 1} \, \partial_z|_p.$$

Let ∇ be the Euclidean connection. The Hessian of f at p is given by

$$\nabla^2 f(X_p, Y_p) = X^i Y^j \partial_{ij}^2 f(p) \quad \text{ for } X_p = X^i \partial_i|_p, Y_p = Y^j \partial_j|_p.$$

 \square **Definition [Vector fields along curves]** Let M be a smooth manifold and let $\gamma:I\subset\mathbb{R}\to M$ be a smooth curve (I is an interval).

A vector field along γ is a smooth map $V:I\to TM$ such that $V(t)\in T_{\gamma(t)}M$ for all $t\in I$.

The space of vector fields along γ is denoted by $\mathcal{T}(\gamma)$.

A vector field along γ is said to be extendible if there exists a smooth vector field \widetilde{V} defined on an open set U containing $\gamma(I)\subset M$ such that $V(t)=\widetilde{V}_{\gamma(t)}$ for all $t\in I$

 \square Lemma [Covariant derivatives along curves] A linear connection ∇ on M determines, for each smooth curve $\gamma:I\to M$, a unique operator

$$D_t: \mathcal{T}(\gamma) \to \mathcal{T}(\gamma)$$

such that:

(a) [linearity over \mathbb{R}]

$$D_t(aV + bW) = a D_t V + b D_t W$$
 for $a, b \in \mathbb{R}, V, W \in \mathcal{T}(\gamma)$;

(b) [product rule]

$$D_t(fV) = \dot{f} V + f D_t V$$
 for $f \in C^{\infty}(I), V \in \mathcal{T}(\gamma)$;

(c) [compatibility with ∇]

$$D_t V(a) = \nabla_{\dot{\gamma}(a)} \widetilde{V}$$

whenever \widetilde{V} is an extension of V.

The symbol D_tV is termed the covariant derivative of V along γ .

 \square Example (the canonical covariant derivative in \mathbb{R}^n): let $M=\mathbb{R}^n$ and ∇ denote the Euclidean connection. Let $\gamma:I\to\mathbb{R}^n$ be a smooth curve and

$$V(t) = V^{i}(t) \, \partial_{i}|_{\gamma(t)}$$

be a smooth vector field along γ . Then,

$$D_t V(t) = \dot{V}^i(t) \, \partial_i|_{\gamma(t)}.$$

Definition [Acceleration of curves, geodesics] Let ∇ be a linear connection on M and γ a smooth curve. The acceleration of γ is the smooth vector field along γ given by $D_t\dot{\gamma}$.

A smooth curve γ is said to be a geodesic if $D_t \dot{\gamma} = 0$.

 \square Example (the geodesics in flat \mathbb{R}^n): Let $M=\mathbb{R}^n$ and ∇ denote the Euclidean connection. Let

$$\gamma: I \to \mathbb{R}^n \qquad \gamma(t) = (\gamma^1(t), \gamma^2(t), \dots, \gamma^n(t))$$

be a smooth curve.

The acceleration of γ is given by

$$D_t \dot{\gamma} = \ddot{\gamma}^i(t) \partial_i|_{\gamma(t)}.$$

Thus, γ is a geodesic if and only if

$$\gamma(t) = a + tb$$

for some $a, b \in \mathbb{R}^n$.

Note that the curve $c(t)=(t^2,t^2,\ldots,t^2)$ is <u>not</u> a geodesic.

 \square Theorem [Existence and uniqueness of geodesics] Let M be a manifold with a linear connection ∇ . For any $X_p \in T_pM$ there is an $\epsilon > 0$ and a geodesic $\gamma:]-\epsilon, \epsilon[\to M$ such that $\gamma(0) = p, \ \dot{\gamma}(0) = X_p.$

If $\sigma:]-\epsilon, \epsilon[\to M$ is another geodesic such that $\sigma(0)=p, \ \dot{\sigma}(0)=X_p,$ then $\sigma \equiv \gamma$

 \square Definition [Parallel vector fields along curves] Let M be a manifold with a linear connection ∇ , and $\gamma:I\subset\mathbb{R}\to M$ a smooth curve. The smooth vector field V along γ is said to be parallel along γ if $D_tV\equiv 0$

 \square Example (parallel vector field in \mathbb{R}^n): let $M=\mathbb{R}^n$ and ∇ denote the Euclidean connection. Let $\gamma:I\to\mathbb{R}^n$ be a smooth curve and

$$V(t) = V^{i}(t)\partial_{i}|_{\gamma(t)}$$

be a smooth vector field along $\gamma.$ Then V is parallel if and only if $V^i(t)={\rm const.}$

- □ Theorem [Existence and uniqueness of parallel vector fields along curves] Let M be a manifold with a linear connection ∇ and $\gamma:I\subset\mathbb{R}\to M$ a smooth curve. Given $t_0\in I$ and $V_0\in T_{\gamma(0)}M$, there is a unique parallel vector field V along γ such that $V(t_0)=V_0$
- \square Lemma [Parallel translation] Let M be a manifold with linear connection ∇ and $\gamma:I\subset\mathbb{R}\to M$ a smooth curve. For $s,t\in I$, let

$$P_{s \to t} : T_{\gamma(s)}M \to T_{\gamma(t)}M$$

denote the linear parallel transport map. Then, for any smooth vector field V along γ ,

$$D_t V(t_0) = \lim_{t \to t_0} \frac{P_{t \to t_0} V(t) - V(t_0)}{t - t_0}$$

