Nonlinear Signal Processing 2006-2007

Connections
(Ch.4, "Riemannian Manifolds", J. Lee, Springer-Verlag)

Instituto Superior Técnico, Lisbon, Portugal
João Xavier
jxavier@isr.ist.utl.pt

Lecture's key-points

\square A connection permits the differentiation of vector fields

Definition [Connection] Let M be a smooth manifold. A linear connection on M is a map

$$
\nabla: \mathcal{T}(M) \times \mathcal{T}(M) \rightarrow \mathcal{T}(M) \quad(X, Y) \mapsto \nabla_{X} Y
$$

such that
(a) $\nabla_{X} Y$ is $C^{\infty}(M)$-linear with respect to X :

$$
\nabla_{f_{1} X_{1}+f_{2} X_{2}} Y=f_{1} \nabla_{X_{1}} Y+f_{2} \nabla_{X_{2}} Y \quad \text { for } f_{1}, f_{2} \in C^{\infty}(M), X_{1}, X_{2}, Y \in \mathcal{T}(M)
$$

(b) $\nabla_{X} Y$ is \mathbb{R}-linear with respect to Y :

$$
\nabla_{X}\left(a_{1} Y_{1}+a_{2} Y_{2}\right)=a_{1} \nabla_{X} Y_{1}+a_{2} \nabla_{X} Y_{2} \quad \text { for } a_{1}, a_{2} \in \mathbb{R}, X, Y_{1}, Y_{2} \in \mathcal{T}(M)
$$

(c) ∇ satisfies the rule:

$$
\nabla_{X}(f Y)=(X f) Y+f \nabla_{X} Y \quad \text { for } f \in C^{\infty}(M), X, Y \in \mathcal{T}(M)
$$

Example (Euclidean connection): let $M=\mathbb{R}^{n}$. For given smooth vector fields $X=X^{i} \partial_{i}, Y=Y^{i} \partial_{i} \in \mathcal{T}\left(\mathbb{R}^{n}\right)$ define

$$
\nabla_{X} Y=\left(X Y^{i}\right) \partial_{i}
$$

Then, ∇ is a linear connection on \mathbb{R}^{n}, also called the Euclidean connection

Lemma [A linear connection is a local object] Let ∇ be a linear connection on M. Then, $\nabla_{X} Y$ at $p \in M$ only depends on the values of Y in a neighborhood of p and the value of X at p

Definition [Christoffel symbols] Let $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ be a local frame on an open subset $U \subset M$ (i.e., each E_{i} is a smooth vector field on U and $\left\{E_{1 p}, E_{2 p}, \ldots, E_{n p}\right\}$ is a basis for $T_{p} M$ for each $\left.p \in U\right)$.
For any $1 \leq i, j \leq n$, we have the expansion

$$
\nabla_{E_{i}} E_{j}=\Gamma_{i j}^{k} E_{k}
$$

The n^{3} functions $\Gamma_{i j}^{k}: U \rightarrow \mathbb{R}$ defined this way are called the Christoffel symbols of ∇ with respect to $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$
\square Example (Christoffel symbols for the Euclidean connection): let $M=\mathbb{R}^{n}$ and consider the (global) frame $\left\{\partial_{1}, \partial_{2}, \ldots, \partial_{n}\right\}$ on M. The Christoffel symbols corresponding to the Euclidean connection vanish identically with respect to this frame

Definition [Covariant derivative of smooth covector fields] Let ∇ be a linear connection on M and let ω be a smooth covector field on M. The covariant derivative of ω with respect to X is the smooth covector field $\nabla_{X} \omega$ given by

$$
\left(\nabla_{X} \omega\right)(Y)=X \omega(Y)-\omega\left(\nabla_{X} Y\right) \quad \text { for } Y \in \mathcal{T}(M)
$$

Lemma [An inner-product on V establishes an isomorphism $V \simeq V^{*}$] Let $\langle\cdot, \cdot\rangle$ denote an inner-product on the n-dimensional vector space V. To each $X \in V$ corresponds the covector $X^{b} \in V^{*}$ given by $X^{b}=\langle\cdot, X\rangle$, that is,

$$
X^{b}(Y)=\langle Y, X\rangle \quad \text { for } Y \in V
$$

The $\operatorname{map} V \rightarrow V^{*}, X \mapsto X^{b}$ is an isomorphism. Its inverse is $V^{*} \rightarrow V, \omega \mapsto \omega^{\sharp}$

Definition [Gradient and Hessian of a smooth function] Let M be a Riemannian manifold and let f be a smooth function on M.
\triangleright The gradient of f, written $\operatorname{grad} f$, is the smooth vector field defined pointwise as

$$
\left.\operatorname{grad} f\right|_{p}=\left(\left.d f\right|_{p}\right)^{\sharp}
$$

for all $p \in M$. Thus, for any tangent vector $X_{p} \in T_{p} M$, we have

$$
X_{p} f=(d f)_{p}\left(X_{p}\right)=\left\langle X_{p},\left.\operatorname{grad} f\right|_{p}\right\rangle
$$

\triangleright Let ∇ be a linear connection on M. The Hessian of f with respect to ∇, written $\nabla^{2} f$, is the smooth tensor field of order 2 on M defined as

$$
\nabla^{2} f(X, Y)=\left(\nabla_{Y} d f\right)(X)=Y(X f)-\left(\nabla_{Y} X\right) f, \quad \text { for } X, Y \in \mathcal{T}(M)
$$

Example (gradient and Hessian of a smooth function in (flat) \mathbb{R}^{n}): let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function. Thus,

$$
d f=\partial_{1} f d x^{1}+\partial_{2} f d x^{2}+\cdots+\partial_{n} f d x^{n}
$$

Consider the usual Riemannian metric on \mathbb{R}^{n} :

$$
g\left(\left.\partial_{i}\right|_{p},\left.\partial_{j}\right|_{p}\right)=\delta_{i}^{j} .
$$

The gradient of f at p is given by

$$
\operatorname{grad} f(p)=\left.\partial_{1} f(p) \partial_{1}\right|_{p}+\left.\partial_{2} f(p) \partial_{2}\right|_{p}+\cdots+\left.\partial_{n} f(p) \partial_{n}\right|_{p}
$$

Let ∇ be the Euclidean connection. The Hessian of f at p is given by

$$
\nabla^{2} f\left(X_{p}, Y_{p}\right)=X^{i} Y^{j} \partial_{i j}^{2} f(p) \quad \text { for } X_{p}=\left.X^{i} \partial_{i}\right|_{p}, Y_{p}=\left.Y^{j} \partial_{j}\right|_{p}
$$

\square Example (gradient and Hessian of a smooth function in \mathbb{R}^{n}): let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function.

Consider the Riemannian metric on \mathbb{R}^{n} :

$$
g=e^{2 x+y z} d x \otimes d x+(2-\cos (z)) d y \otimes d y+\left(y^{2}+1\right) d z \otimes d z
$$

The gradient of f at p is given by

$$
\operatorname{grad} f(p)=\left.\frac{\partial_{x} f(p)}{e^{2 x+y z}} \partial_{x}\right|_{p}+\left.\frac{\partial_{y} f(p)}{2-\cos (z)} \partial_{y}\right|_{p}+\left.\frac{\partial_{z} f(p)}{y^{2}+1} \partial_{z}\right|_{p}
$$

Let ∇ be the Euclidean connection. The Hessian of f at p is given by

$$
\nabla^{2} f\left(X_{p}, Y_{p}\right)=X^{i} Y^{j} \partial_{i j}^{2} f(p) \quad \text { for } X_{p}=\left.X^{i} \partial_{i}\right|_{p}, Y_{p}=\left.Y^{j} \partial_{j}\right|_{p}
$$

Definition [Vector fields along curves] Let M be a smooth manifold and let

 $\gamma: I \subset \mathbb{R} \rightarrow M$ be a smooth curve (I is an interval).A vector field along γ is a smooth map $V: I \rightarrow T M$ such that $V(t) \in T_{\gamma(t)} M$ for all $t \in I$.

The space of vector fields along γ is denoted by $\mathcal{T}(\gamma)$.
A vector field along γ is said to be extendible if there exists a smooth vector field \widetilde{V} defined on an open set U containing $\gamma(I) \subset M$ such that $V(t)=\widetilde{V}_{\gamma(t)}$ for all $t \in I$

Lemma [Covariant derivatives along curves] A linear connection ∇ on M determines, for each smooth curve $\gamma: I \rightarrow M$, a unique operator

$$
D_{t}: \mathcal{T}(\gamma) \rightarrow \mathcal{T}(\gamma)
$$

such that:
(a) [linearity over $\mathbb{R}]$

$$
D_{t}(a V+b W)=a D_{t} V+b D_{t} W \quad \text { for } a, b \in \mathbb{R}, V, W \in \mathcal{T}(\gamma)
$$

(b) [product rule]

$$
D_{t}(f V)=\dot{f} V+f D_{t} V \quad \text { for } f \in C^{\infty}(I), V \in \mathcal{T}(\gamma)
$$

(c) [compatibility with ∇]

$$
D_{t} V(a)=\nabla_{\dot{\gamma}(a)} \tilde{V}
$$

whenever \widetilde{V} is an extension of V.
The symbol $D_{t} V$ is termed the covariant derivative of V along γ.

Example (the canonical covariant derivative in \mathbb{R}^{n}): let $M=\mathbb{R}^{n}$ and ∇ denote the Euclidean connection. Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a smooth curve and

$$
V(t)=\left.V^{i}(t) \partial_{i}\right|_{\gamma(t)}
$$

be a smooth vector field along γ. Then,

$$
D_{t} V(t)=\left.\dot{V}^{i}(t) \partial_{i}\right|_{\gamma(t)}
$$

Definition [Acceleration of curves, geodesics] Let ∇ be a linear connection on M and γ a smooth curve. The acceleration of γ is the smooth vector field along γ given by $D_{t} \dot{\gamma}$.

A smooth curve γ is said to be a geodesic if $D_{t} \dot{\gamma}=0$.
\square Example (the geodesics in flat \mathbb{R}^{n}): Let $M=\mathbb{R}^{n}$ and ∇ denote the Euclidean connection. Let

$$
\gamma: I \rightarrow \mathbb{R}^{n} \quad \gamma(t)=\left(\gamma^{1}(t), \gamma^{2}(t), \ldots, \gamma^{n}(t)\right)
$$

be a smooth curve.

The acceleration of γ is given by

$$
D_{t} \dot{\gamma}=\left.\ddot{\gamma}^{i}(t) \partial_{i}\right|_{\gamma(t)} .
$$

Thus, γ is a geodesic if and only if

$$
\gamma(t)=a+t b
$$

for some $a, b \in \mathbb{R}^{n}$.
Note that the curve $c(t)=\left(t^{2}, t^{2}, \ldots, t^{2}\right)$ is not a geodesic.Theorem [Existence and uniqueness of geodesics] Let M be a manifold with a linear connection ∇. For any $X_{p} \in T_{p} M$ there is an $\epsilon>0$ and a geodesic $\gamma:]-\epsilon, \epsilon\left[\rightarrow M\right.$ such that $\gamma(0)=p, \dot{\gamma}(0)=X_{p}$.

If $\sigma:]-\epsilon, \epsilon\left[\rightarrow M\right.$ is another geodesic such that $\sigma(0)=p, \dot{\sigma}(0)=X_{p}$, then $\sigma \equiv \gamma$

Definition [Parallel vector fields along curves] Let M be a manifold with a linear connection ∇, and $\gamma: I \subset \mathbb{R} \rightarrow M$ a smooth curve. The smooth vector field V along γ is said to be parallel along γ if $D_{t} V \equiv 0$

Example (parallel vector field in \mathbb{R}^{n}): let $M=\mathbb{R}^{n}$ and ∇ denote the Euclidean connection. Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a smooth curve and

$$
V(t)=\left.V^{i}(t) \partial_{i}\right|_{\gamma(t)}
$$

be a smooth vector field along γ. Then V is parallel if and only if $V^{i}(t)=$ const.

Theorem [Existence and uniqueness of parallel vector fields along curves] Let M be a manifold with a linear connection ∇ and $\gamma: I \subset \mathbb{R} \rightarrow M$ a smooth curve. Given $t_{0} \in I$ and $V_{0} \in T_{\gamma(0)} M$, there is a unique parallel vector field V along γ such that $V\left(t_{0}\right)=V_{0}$

Lemma [Parallel translation] Let M be a manifold with linear connection ∇ and $\gamma: I \subset \mathbb{R} \rightarrow M$ a smooth curve. For $s, t \in I$, let

$$
P_{s \rightarrow t}: T_{\gamma(s)} M \rightarrow T_{\gamma(t)} M
$$

denote the linear parallel transport map. Then, for any smooth vector field V along γ,

$$
D_{t} V\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} \frac{P_{t \rightarrow t_{0}} V(t)-V\left(t_{0}\right)}{t-t_{0}}
$$

