Nonlinear Signal Processing 2006-2007

Submanifolds
(Ch.5, "Introduction to Smooth Manifolds", J. Lee, Springer-Verlag)

Instituto Superior Técnico, Lisbon, Portugal
João Xavier
jxavier@isr.ist.utl.pt

Lecture's key-points

The implicit function theorem is an useful toolTwo main approaches for creating embedded submanifolds:\triangleright image of smooth embedding
\triangleright pre-image of smooth constant rank map

Theorem [Inverse Function Theorem] Let U and V be open subsets of \mathbb{R}^{n} and $F: U \rightarrow V$ a smooth map. Let $p \in U$. If

$$
D F(p)=\left[\begin{array}{cccc}
\frac{\partial F^{1}}{\partial x^{1}}(p) & \frac{\partial F^{1}}{\partial x^{2}}(p) & \cdots & \frac{\partial F^{1}}{\partial x^{n}}(p) \\
\frac{\partial F^{2}}{\partial x^{1}}(p) & \frac{\partial F^{2}}{\partial x^{2}}(p) & \cdots & \frac{\partial F^{2}}{\partial x^{n}}(p) \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial F^{n}}{\partial x^{1}}(p) & \frac{\partial F^{n}}{\partial x^{2}}(p) & \cdots & \frac{\partial F^{n}}{\partial x^{n}}(p)
\end{array}\right]
$$

is nonsingular, then there exist neighborhoods $U_{0} \subset U$ of p and $V_{0} \subset V$ of $q=F(p)$ such that $F: U_{0} \rightarrow V_{0}$ is a diffeomorphism. Furthermore, we have

$$
D F^{-1}\left(y_{0}\right)=\left(D F\left(x_{0}\right)\right)^{-1}
$$

where $x_{0}=F^{-1}\left(y_{0}\right)$ for each $y_{0} \in V_{0}$

* Intuition: the bijectivity of $D F(p)$ carries over locally to F

Example (Inverse function theorem as a generalization of the linear case): let

$$
F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad F(x)=A x
$$

where $A: n \times n$ is nonsingular. By simple linear algebra, the linear map F is (globally) bijective. Note that

$$
D F(p)=A
$$

for any $p \in \mathbb{R}^{n}$Example (simple illustration): consider the smooth map

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad F(x, y)=\left(x^{2}+y^{2}, x y\right)
$$

Then,

$$
D F(1,0)=\left[\begin{array}{cc}
2 x & 2 y \\
y & x
\end{array}\right]_{(x, y)=(1,0)}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

is non-singular, which means that F is a diffeomorphism near $(1,0)$. Note that F is not a bijective map: $F(1,1)=F(-1,-1)$

Theorem [Implicit Function Theorem] Let $W \subset \mathbb{R}^{n} \times \mathbb{R}^{k}$ be an open set and $F: W \rightarrow \mathbb{R}^{k}$,

$$
(x, y)=\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{k}\right) \quad \stackrel{F}{\longmapsto} \quad F(x, y)=\left(F^{1}(x, y), \ldots, F^{k}(x, y)\right)
$$

a smooth map. Let $(p, q)=\left(p^{1} \ldots, p^{n}, q^{1}, \ldots, q^{k}\right) \in W$ with $F(p, q)=0$ and suppose that

$$
D_{y} F(p, q)=\left(\begin{array}{cccc}
\frac{\partial F^{1}}{\partial y^{1}}(p, q) & \frac{\partial F^{1}}{\partial y^{2}}(p, q) & \cdots & \frac{\partial F^{1}}{\partial y^{k}}(p, q) \\
\frac{\partial F^{2}}{\partial y^{1}}(p, q) & \frac{\partial F^{2}}{\partial y^{2}}(p, q) & \cdots & \frac{\partial F^{2}}{\partial y^{k}}(p, q) \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial F^{k}}{\partial y^{1}}(p, q) & \frac{\partial F^{k}}{\partial y^{2}}(p, q) & \cdots & \frac{\partial F^{k}}{\partial y^{k}}(p, q)
\end{array}\right)
$$

is nonsingular.

Then, there exist neighborhoods U_{0} of p and V_{0} of q and a smooth map $\Phi: U_{0} \rightarrow V_{0}$ such that $U_{0} \times V_{0} \subset W$ and

$$
(x, y) \in U_{0} \times V_{0}, F(x, y)=0 \quad \text { if and only if } y=\Phi(x)
$$

Furthermore, we have $D \Phi(p)=-\left(D_{y} F(p, q)\right)^{-1} D_{x} F(p, q)$, where

$$
D_{x} F(p, q)=\left(\begin{array}{cccc}
\frac{\partial F^{1}}{\partial x^{1}}(p, q) & \frac{\partial F^{1}}{\partial x^{2}}(p, q) & \cdots & \frac{\partial F^{1}}{\partial x^{n}}(p, q) \\
\frac{\partial F^{2}}{\partial x^{1}}(p, q) & \frac{\partial F^{2}}{\partial x^{2}}(p, q) & \cdots & \frac{\partial F^{2}}{\partial x^{n}}(p, q) \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial F^{k}}{\partial x^{1}}(p, q) & \frac{\partial F^{k}}{\partial x^{2}}(p, q) & \cdots & \frac{\partial F^{k}}{\partial x^{n}}(p, q)
\end{array}\right) .
$$

Example (Implicit function theorem as a generalization of the linear case): let

$$
F: \mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k} \quad F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
A & B
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where $A: k \times n$ and the matrix $B: k \times k$ is nonsingular.
By simple linear algebra,

$$
F(x, y)=0 \quad \text { if and only if } \quad y=-B^{-1} A x
$$

That is,

$$
F(x, y)=0 \quad \text { if and only if } \quad y=\Phi(x)
$$

where

$$
\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} \quad \Phi(x)=-B^{-1} A x
$$

Note that

$$
B=D_{y} F(p, q) \quad \text { and } \quad D_{x} F(p, q)=A
$$

for all $(p, q) \in \mathbb{R}^{n} \times \mathbb{R}^{k}$

Example (simple eigenvalues are smooth): Let $X_{0} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and u_{0} be an unit-norm eigenvector associated with the simple eigenvalue λ_{0} :

$$
X_{0} u_{0}=\lambda_{0} u_{0} \quad \text { and } \quad u_{0}^{\top} u_{0}=1
$$

Then, there exists:
\triangleright a neighborhood $U_{0} \subset \mathbb{R}^{n \times n}$ of X_{0}
\triangleright a neighborhood $V_{0} \subset \mathbb{R}^{n} \times \mathbb{R}$ of $\left(u_{0}, \lambda_{0}\right)$
\triangleright a smooth map

$$
\Phi: U_{0} \rightarrow V_{0} \quad \Phi(X)=(u(X), \lambda(X))
$$

such that $u\left(X_{0}\right)=u_{0}, \lambda\left(X_{0}\right)=\lambda_{0}$, and

$$
X u(X)=\lambda(X) u(X), \quad u(X)^{\top} u(X)=1 \quad \text { for all } X \in U_{0}
$$

The derivative of the map Φ at X_{0} is given by

$$
D \Phi\left(X_{0}\right)=\left[\begin{array}{c}
u_{0}^{\top} \otimes\left(\lambda_{0} I_{n}-X_{0}\right)^{+} \\
u_{0}^{\top} \otimes u_{0}^{\top}
\end{array}\right]
$$

Example (signal processing application - asymptotic performance analysis):
\triangleright Data model: $y[k]=\theta s[k]+w[k] \quad k=1,2, \ldots, K$
○ $y[k]=\left(y_{1}[k], y_{2}[k], \ldots, y_{n}[k]\right) \in \mathbb{R}^{n}=$ observation vector
$\circ \theta \in \mathrm{S}_{+}^{n-1}(\mathbb{R})=$ unknown deterministic parameter (channel)

$$
\mathrm{S}_{+}^{n-1}(\mathbb{R})=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\|x\|=1 \text { and } x_{n}>0\right\}
$$

○ $s[k] \in \mathbb{R}=$ zero-mean, unit-power Gaussian random process
○ $w[k] \in \mathbb{R}^{n}=$ random Gaussian process $\sim \mathcal{N}\left(0, \sigma^{2} I_{n}\right)$

\triangleright The maximum-likelihood (ML) estimate of θ,

$$
\widehat{\theta}_{K}=\underset{\theta \in \mathrm{S}_{+}^{n-1}(\mathbb{R})}{\operatorname{argmax}} p\left(y_{1}, \ldots, y_{K} ; \theta\right)
$$

is easily seen to be given by the unit-norm eigenvector (with last coordinate positive) which is associated with the maximum eigenvalue of the sample covariance matrix

$$
\widehat{R}_{K}=\frac{1}{K} \sum_{k=1}^{K} y[k] y[k]^{\top}
$$

In the sequel, we write $\widehat{\theta}_{K}=\phi\left(\widehat{R}_{K}\right)$, where ϕ stands for the map just described
\triangleright We are interested in evaluating the mean-square error (MSE) of the estimate

$$
\mathrm{MSE}=\mathrm{E}\left\{\left\|\hat{\theta}_{K}-\theta\right\|^{2}\right\}
$$

Since it is difficult to obtain the exact distribution of the statistic $\widehat{\theta}_{K}$, we resort to an asymptotic analysis $(K \rightarrow+\infty)$
\triangleright A fundamental tool in asymptotic analysis is the δ-method: let $x_{K} \in \mathbb{R}^{n}$ denote a sequence of random vectors satisfying

$$
\sqrt{K}\left(x_{K}-\mu\right) \xrightarrow{d} \mathcal{N}(0, \Sigma)
$$

where \xrightarrow{d} means convergence in distribution (as $K \rightarrow+\infty$), and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ denote a map which is of class C^{1} near μ. Then,

$$
\sqrt{K}\left(f\left(x_{K}\right)-f(\mu)\right) \xrightarrow{d} \mathcal{N}\left(0, D f(\mu) \Sigma D f(\mu)^{\top}\right)
$$

where $D f(\mu)$ stands for the derivative of f at the point μ
\triangleright In our context, it can be shown (trivial application of the central limit theorem) that

$$
\sqrt{K}\left(\operatorname{vec}\left(\widehat{R}_{K}\right)-\operatorname{vec}(R)\right) \xrightarrow{d} \mathcal{N}(0, \Sigma)
$$

for a certain covariance matrix Σ (not shown here) and where

$$
R=\mathrm{E}\left\{y[k] y[k]^{\top}\right\}=\theta \theta^{\top}+\sigma^{2} I_{n}
$$

denotes the correlation matrix corresponding to our data model. Furthermore, note that the maximum eigenvalue of R is $\lambda_{\max }=1+\sigma^{2}$
\triangleright The previous example has shown that ϕ is smooth in a neighborhood of R and its derivative is given by

$$
D \phi(R)=\theta^{\top} \otimes\left(\lambda_{\max } I_{n}-R\right)^{+}
$$

Thus, we have

$$
\sqrt{K}\left(\widehat{\theta}_{K}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, D \phi(R) \Sigma D \phi(R)^{\top}\right)
$$

from which follows the approximation (for a given K)

$$
\widehat{\theta}_{K}-\theta \sim \mathcal{N}\left(0, \frac{1}{K} D \phi(R) \Sigma D \phi(R)^{\top}\right)
$$

That is,

$$
\begin{aligned}
\mathrm{MSE} & =\mathrm{E}\left\{\left\|\hat{\theta}_{K}-\theta\right\|^{2}\right\} \\
& =\operatorname{tr}\left(\mathrm{E}\left\{\left(\widehat{\theta}_{K}-\theta\right)\left(\hat{\theta}_{K}-\theta\right)^{\top}\right\}\right) \\
& \simeq \frac{1}{K} \operatorname{tr}\left(D \phi(R) \Sigma D \phi(R)^{\top}\right)
\end{aligned}
$$

\triangleright Simulation example: observation y has dimension $n=10, \theta=(1 / \sqrt{n}, \ldots, 1 / \sqrt{n})$, the signal-to-noise ratio $\mathrm{SNR}=\mathrm{E}\left\{\|\theta s\|^{2}\right\} / \mathrm{E}\left\{\|w\|^{2}\right\}=1 /\left(n \sigma^{2}\right)$ is fixed at 10 dB and the sample size K is varied between $K_{\text {min }}=10$ and $K_{\max }=100$

Theorem [Rank theorem] Let $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{m}$ be open sets, and $F: U \rightarrow V$ a smooth map with constant rank k, that is, $\operatorname{rank}(D F(x))=k$ for each $x \in U$. Let $p \in U$. Then, there exist neighborhoods $U_{0} \subset U$ of p and $V_{0} \subset V$ of $q=F(p)$ and diffeomorphisms $\varphi: U_{0} \rightarrow \widehat{U}_{0}$ and $\psi: V_{0} \rightarrow \widehat{V}_{0}$ such that

$$
\psi \circ F \circ \varphi^{-1}\left(x^{1}, \ldots, x^{k}, x^{k+1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{k}, 0, \ldots, 0\right) .
$$

The neighborhoods U_{0} and V_{0} can be chosen such that: (i) $\widehat{U}_{0}=C_{\varepsilon}^{n}(0)$ and $\widehat{V}_{0}=C_{\varepsilon}^{m}(0)$ or (ii) $\widehat{U}_{0}=B_{\varepsilon}^{n}(0)$ and $\widehat{V}_{0}=B_{\varepsilon}^{m}(0)$, for any chosen $\varepsilon>0$

* Intuition: looks like a nonlinear generalization of the SVD for linear maps

$\psi \downarrow$

Definition [Rank of a smooth map, immersions, submersions] Let $F: M \rightarrow N$ be a smooth map between smooth manifolds. The rank of F at $p \in M$ is the dimension of the linear subspace $\operatorname{Im} F_{*}\left(T_{p} M\right) \subset T_{F(p)} N$. Equivalently, it is the rank of the Jacobian matrix rank $D \widehat{F}(\varphi(p))$ in any smooth chart.
We say that F has constant rank k if the rank of F at any $p \in M$ is k.
\triangleright the smooth map $F: M \rightarrow N$ is called an immersion if F_{*} is injective at every point. Equivalently, if rank $F=\operatorname{dim} M$ at every point
\triangleright the smooth map $F: M \rightarrow N$ is called a submersion if F_{*} is surjective at every point. Equivalently, if rank $F=\operatorname{dim} N$ at every point

Example (an immersion of the unit-sphere): consider the map

$$
F: \mathrm{S}^{n-1}(\mathbb{R}) \rightarrow \mathbb{R}^{n \times n} \quad F(u)=u u^{\top}
$$

We already know that F is smooth. The map F is also an immersion

Example (a submersion onto the unit-sphere): consider the map

$$
F: \mathbb{R}^{n}-\{0\} \rightarrow \mathrm{S}^{n-1}(\mathbb{R}) \quad F(x)=\frac{x}{\|x\|}
$$

We already know that F is smooth. The map F is also a submersionExample (product manifolds): let M and N be smooth manifolds.
For fixed $q \in N$, the inclusion map

$$
\iota_{q}: M \rightarrow M \times N \quad \iota(p)=(p, q)
$$

is an immersion. The projection map

$$
\pi_{M}: M \times N \rightarrow M \quad \pi_{M}(p, q)=p
$$

is a submersion

Lemma [Composition of immersions and submersions] The composition of

 immersions is an immersion. The composition of submersions is a submersionTheorem [Inverse function theorem for manifolds] Let $F: M \rightarrow N$ be a smooth map between manifolds. Let $p \in M$ and suppose $F_{*}: T_{p} M \rightarrow T_{F(p)} N$ is an isomorphism (equivalently, a bijective linear map). Then there exist neighborhoods U_{0} of p and V_{0} of $F(p)$ such that $\left.F\right|_{U_{0}}: U_{0} \rightarrow V_{0}$ is a diffeomorphism

* Intuition: the bijectivity of F_{*} transpires locally to F

\triangleright Remark that the inverse map $F^{-1}: V_{0} \rightarrow U_{0}$ is smooth
\square Example (Cholesky decomposition is a diffeomorphism):
\triangleright The Cholesky decomposition asserts that for any $P \in \mathrm{P}(n, \mathbb{R})$ there is an unique $L \in \mathrm{~L}^{+}(n, \mathbb{R})$ such that

$$
P=L L^{\top} .
$$

Thus, we can define a map

$$
\text { Cholesky }: \mathrm{P}(n, \mathbb{R}) \rightarrow \mathrm{L}^{+}(n, \mathbb{R})
$$

which, given a positive-definite P , computes its Cholesky factor L s.t. $P=L L^{\top}$.
The purpose of this example is to show that the map Cholesky is smooth
\triangleright We already know that the map

$$
F: \mathrm{L}^{+}(n, \mathbb{R}) \rightarrow \mathrm{P}(n, \mathbb{R}) \quad F(L)=L L^{\top}
$$

is bijective (linear algebra) and smooth. Remark that the map Cholesky is the inverse map of F
\triangleright Also, by exploiting the isomorphisms

$$
T_{L_{0}} \mathrm{~L}^{+}(n, \mathbb{R}) \simeq \mathrm{L}(n, \mathbb{R}) \quad \text { and } \quad T_{F\left(L_{0}\right)} \mathrm{P}(n, \mathbb{R}) \simeq \mathrm{S}(n, \mathbb{R})
$$

we have computed a representation of the push-forward map
$F_{*}: T_{L_{0}} \mathrm{~L}^{+}(n, \mathbb{R}) \rightarrow T_{F\left(L_{0}\right)} \mathrm{P}(n, \mathbb{R})$ as

$$
F_{*}: \mathrm{L}(n, \mathbb{R}) \rightarrow \mathrm{S}(n, \mathbb{R}) \quad F_{*}(\Delta)=\Delta L_{0}^{\top}+L_{0} \Delta^{\top}
$$

\triangleright If we show that F_{*} is an isomorphism, we can use the last theorem to conclude that Cholesky $=F^{-1}$ is smooth (because it is smooth on a neighborhood of any given point $\left.P_{0}=F\left(L_{0}\right) \in \mathrm{P}(n, \mathbb{R})\right)$
\triangleright To prove that the linear map F_{*} is bijective it suffices to prove that F_{*} is injective because $\operatorname{dim} \mathrm{L}(n, \mathbb{R})=\operatorname{dim} \mathrm{S}(n, \mathbb{R})$
\triangleright To prove that F_{*} is injective, we must show that $\operatorname{Ker} F_{*}=\{0\}$. So, let $\Delta \in \mathrm{L}(n, \mathbb{R})$ satisfy $F_{*}(\Delta)=0$, that is,

$$
\Delta L_{0}^{\top}+L_{0} \Delta^{\top}=0 .
$$

Pre-multiplying by L_{0}^{-1} and post-multiplying by $\left(L_{0}^{\top}\right)^{-1}$ both sides of the equation yields

$$
\left(L_{0}^{-1} \Delta\right)+\left(L_{0}^{-1} \Delta\right)^{\top}=0
$$

Note that L_{0}^{-1} is a lower-triangular matrix and $\Psi=L_{0}^{-1} \Delta$ also (product of two lower-triangular matrices). But,

$$
\Psi+\Psi^{\top}=0 \quad \text { and } \quad \Psi: \text { lower-triangular } \quad \Rightarrow \quad \Psi=0
$$

As a consequence, $\Delta=L_{0} \Psi=0$.
We conclude that the map Cholesky is smooth. In fact, it is a diffeomorphism (because its inverse F is also smooth)

Theorem [Rank theorem for manifolds] Suppose that the smooth map
$F: M \rightarrow N$ has constant rank k, with $\operatorname{dim} M=m$ and $\operatorname{dim} N=n$. Then, for any given $p \in M$, there exist smooth charts (U, φ) containing p and (V, ψ) containing $F(p)$ such that the coordinate representation $\widehat{F}=\psi \circ F \circ \varphi^{-1}$ is given by

$$
\widehat{F}\left(x^{1}, x^{2}, \ldots, x^{k}, x^{k+1}, \ldots, x^{m}\right)=(x^{1}, x^{2}, \ldots, x^{k}, \underbrace{0, \ldots, 0}_{n-k \text { zeros }}) .
$$

Theorem [Constant rank and immersions, submersions and diffeomorphisms] Let $F: M \rightarrow N$ be a smooth map of constant rank.
(a) If F is injective, then it is an immersion
(b) If F is surjective, then it is a submersion
(c) If F is bijective, then it is a diffeomorphismExample (an immersion of the unit-circle): consider the map

$$
F: \mathrm{S}^{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2 \times 2} \quad F(u)=\left[\begin{array}{ll}
u & J u
\end{array}\right]
$$

where

$$
J=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

\triangleright The map F is smooth (why?). The goal of this example is to show that F is an immersion, without computing in coordinates
\triangleright Note that F is injective. If we prove that F has constant rank, we are done (see last theorem). Let $p, q \in \mathrm{~S}^{1}(\mathbb{R})$. We must show that the two linear maps

$$
F_{* p}: T_{p} \mathrm{~S}^{1}(\mathbb{R}) \rightarrow T_{F(p)} \mathbb{R}^{2 \times 2} \quad \text { and } \quad F_{* q}: T_{q} \mathrm{~S}^{1}(\mathbb{R}) \rightarrow T_{F(q)} \mathbb{R}^{2 \times 2}
$$

have the same rank
\triangleright The trick consists in noting that, for any fixed rotation $Q \in \mathrm{SO}(2)$, we have $F \circ L_{Q}=\widehat{L}_{Q} \circ F$ or, equivalently, the commutative diagram:

where $L_{Q}: \mathrm{S}^{1}(\mathbb{R}) \rightarrow \mathrm{S}^{1}(\mathbb{R}), L_{Q}(u)=Q u$ and $\widehat{L}_{Q}: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}, \widehat{L}_{Q}(X)=Q X$
\triangleright Note that both L_{Q} and \widehat{L}_{Q} are smooth (why?). In fact they are diffeomorphisms because their inverse maps correspond to $L_{Q^{\top}}$ and $\widehat{L}_{Q^{\top}}$, respectively, which are smooth
\triangleright Now, choose Q such that $L_{Q}(p)=q$. The previous diagram induces the next one, expressed in terms of push-forwards:

Equivalently: $\widehat{L}_{Q *} \circ F_{* p}=F_{* q} \circ L_{Q *}$. Since $\widehat{L}_{Q *}$ and $L_{Q *}$ are isomorphisms,

$$
\operatorname{rank}\left(\widehat{L}_{Q *} \circ F_{* p}\right)=\operatorname{rank}\left(F_{* p}\right) \quad \text { and } \quad \operatorname{rank}\left(F_{* q} \circ L_{Q *}\right)=\operatorname{rank}\left(F_{* q}\right) .
$$

The conclusion is $\operatorname{rank}\left(F_{* p}\right)=\operatorname{rank}\left(F_{* q}\right)$

Definition [Local section] Let $\pi: M \rightarrow N$ be a smooth map between smooth manifolds. A smooth local section of π is a pair (V, σ) where $V \subset N$ is open and $\sigma: V \rightarrow M$ is a smooth map satisfying $\pi \circ \sigma=\mathrm{id}_{V}$.

* Intuition: σ is a smooth choice of a representative in each fiber of π

Lemma [Properties of submersions: part I] Let $\pi: M \rightarrow N$ be a smooth map between smooth manifolds. Suppose π is a submersion. Then, π is an open map. Moreover, for every $p \in M$, there exists a local section (V, σ) of π such that $p \in \sigma(V)$

Lemma [Properties of submersions: part II] Let M, N, P be smooth manifolds and $\pi: M \rightarrow N$ be a surjective submersion. Then, a map $F: N \rightarrow P$ is smooth if and only if $\widehat{F}=F \circ \pi$ is smooth

* Intuition: smoothness of the "hard" map F can be investigated via the easier \widehat{F}

Example (an immersion of the unit-sphere): consider the map

$$
F: \mathrm{S}^{n-1}(\mathbb{R}) \rightarrow \mathbb{R}^{n \times n} \quad F(u)=u u^{\top}
$$

We already know that F is smooth. Here is an alternative proof of smoothness of F : \triangleright

$$
\pi: \mathbb{R}^{n}-\{0\} \rightarrow \mathrm{S}^{n-1}(\mathbb{R}) \quad \pi(x)=\frac{x}{\|x\|}
$$

is a surjective submersion
-

$$
\widehat{F}: \mathbb{R}^{n}-\{0\} \rightarrow \mathbb{R}^{n \times n} \quad \widehat{F}(x)=\frac{x x^{\top}}{\|x\|^{2}}
$$

is clearly smooth
$\triangleright \widehat{F}=F \circ \pi$

Definition [Embedded submanifold] Let M be an n-dimensional smooth manifold. A subset $S \subset M$ is called an embedded k-submanifold of M if, for each point $p \in S$, there is a smooth chart (U, φ) centered at p with $\varphi(U)=C_{\epsilon}^{n}(0)$ and

$$
\varphi(U \cap S)=\left\{\left(x^{1}, x^{2}, \ldots, x^{k}, x^{k+1}, \ldots, x^{n}\right): x^{k+1}=x^{k+2}=\cdots=x^{n}=0\right\}
$$

* Intuition: the subset $S \subset M$ can be flattened (locally)

Example:

S is not an embedded submanifold of \mathbb{R}^{2}

Example (linear subspaces): if $S \subset \mathbb{R}^{n}$ is a linear subspace with (linear) dimension k then, S is an embedded k-submanifold of \mathbb{R}^{n}.
\triangleright the linear subspace of symmetric matrices

$$
\mathrm{S}(n, \mathbb{R})=\left\{X \in \mathbb{R}^{n \times n}: X=X^{\top}\right\}
$$

is an embedded $n(n+1) / 2$-submanifold of $\mathbb{R}^{n \times n}$
\triangleright same holds for the linear subspace of skew-symmetric matrices

$$
\mathrm{K}(n, \mathbb{R})=\left\{X \in \mathbb{R}^{n \times n}: X=-X^{\top}\right\}
$$

Example (unit-sphere): $\mathrm{S}^{n-1}(\mathbb{R})=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$ is an embedded ($n-1$)-submanifold of \mathbb{R}^{n}
\square Lemma [Embedding submanifolds are local constructions] Let M be a smooth manifold. The subset $S \subset M$ is a embedded submanifold of M if and only if each $p \in S$ has a neighborhood $U \subset M$ such that $S \cap U$ is an embedded submanifold of U

Lemma [Open subsets are embedded submanifolds] Let $U \subset M$ be an open subset of the n-dimensional smooth manifold M. Then, U is an embedded n-submanifold of M

Example (positive definite matrices): the set of positive definite matrices

$$
\mathrm{P}(n, \mathbb{R})=\{X \in \mathrm{~S}(n, \mathbb{R}): X \succ 0\}
$$

is an embedded $n(n+1) / 2$-submanifold of $S(n, \mathbb{R})$

Definition [Embedding] A smooth map $F: N \rightarrow M$ between smooth manifolds is said to be an embedding if it is an immersion and a topological embedding (a homeomorphism of N onto its image $\widetilde{N}=F(N)$, viewed as a subspace of M).

Lemma [Useful criterion for detecting embeddings] Let the smooth map $F: M \rightarrow N$ be an injective immersion. If M is compact, F is an embedding.
\square Example (an embedding of the unit-circle): consider the map

$$
F: \mathrm{S}^{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2 \times 2} \quad F(u)=\left[\begin{array}{ll}
u & J u
\end{array}\right]
$$

where

$$
J=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

We already know that F is a smooth immersion. Since $\mathrm{S}^{1}(\mathbb{R})$ is compact, F is an embedding
\square Theorem [Embedded submanifolds are smooth manifolds] Let the subset $S \subset M$ be an embedded k-dimensional submanifold of M, where $\operatorname{dim} M=n$.

Then, as a subspace of M, S is a topological manifold of dimension k and it has an unique smooth structure such that the inclusion map $\iota: S \rightarrow M$ is a smooth embedding.

With this smooth structure on S, let (U, φ) be a smooth chart in M with $\varphi(U)=C_{\epsilon}^{n}(0)$ and

$$
\varphi(U \cap S)=\left\{\left(x^{1}, x^{2}, \ldots, x^{k}, x^{k+1}, \ldots, x^{n}\right): x^{k+1}=x^{k+2}=\cdots=x^{n}=0\right\}
$$

Then, $(S \cap U, \widehat{\pi} \circ \varphi)$ is a smooth chart in S, where

$$
\widehat{\pi}\left(x^{1}, \ldots, x^{k}, x^{k+1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{k}\right)
$$

Theorem [Smooth embeddings provide embedded submanifolds] The image of a smooth embedding is an embedded submanifold

Example $\left(\mathrm{SO}(2)\right.$ is an embedded submanifold of $\left.\mathbb{R}^{2 \times 2}\right)$: the subset

$$
\mathrm{SO}(2)=\left\{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\right\}
$$

is an embedded submanifold of $\mathbb{R}^{2 \times 2}$ because $\mathrm{SO}(2)=F\left(\mathrm{~S}^{1}(\mathbb{R})\right)$ where F is the embedding

$$
F: \mathrm{S}^{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2 \times 2} \quad F(u)=\left[\begin{array}{ll}
u & J u
\end{array}\right], \quad J=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Lemma [Composition of embeddings] The composition of embeddings is an embedding.

Theorem [Constant-rank level set theorem] Let $F: M \rightarrow N$ be a smooth map with constant rank k. Then, for each $c \in \operatorname{Im} F$, the level set

$$
F^{-1}(c)=\{p \in M: F(p)=c\}
$$

is a closed, embedded submanifold of dimension $\operatorname{dim} M-k$

Example (Stiefel): let

$$
\mathrm{O}(n, m)=\left\{X \in \mathbb{R}^{n \times m}: X^{\top} X=I_{m}\right\}
$$

be the set of $n \times m$ orthonormal frames in \mathbb{R}^{n}.
Then $\mathrm{O}(n, m)$ is an embedded submanifold of $\mathbb{R}^{n \times m}$ and

$$
\operatorname{dim} \mathrm{O}(n, m)=n m-\frac{m(m+1)}{2}
$$

The manifold $\mathrm{O}(n, m)$ is known as the Stiefel manifold
\square Example (special orthogonal group $\mathrm{SO}(n)$): since $\mathrm{SO}(n)$ is an open subset of the smooth manifold $\mathrm{O}(n)$, it is an embedded submanifold of $\mathrm{O}(n)$ and

$$
\operatorname{dim} \mathrm{SO}(n)=\operatorname{dim} \mathrm{O}(n)=\frac{n(n-1)}{2}
$$

Since $O(n)$ is embedded in $\mathbb{R}^{n \times}, \mathrm{SO}(n)$ is an embedded submanifold of $\mathbb{R}^{n \times n}$

Example (matrices with fixed rank): let

$$
\operatorname{Rank}_{=k}(n, m, \mathbb{R})=\left\{X \in \mathbb{R}^{n \times m}: \text { rank } X=k\right\}
$$

be the set of $n \times m$ matrices with rank k.
Then Rank $_{=k}(n, m, \mathbb{R})$ is an embedded submanifold of $\mathbb{R}^{n \times m}$ and

$$
\operatorname{dim}_{\operatorname{Rank}_{=k}}(n, m, \mathbb{R})=(m+n-k) k
$$

Lemma [Identifications for tangent spaces] Let $F: M \rightarrow N$ be a smooth map with constant rank k. Let $c \in \operatorname{Im} F$. Thus, the level set $S=F^{-1}(c)$ is an embedded submanifold of M and the dimension of S is $d=\operatorname{dim} M-k$.

Since the inclusion $\iota: S \rightarrow M$ is an embedding (in particular, an immersion), it follows that, for any $p \in S$, the push-forward $\iota_{*}: T_{p} S \rightarrow T_{P} M$ is injective and

$$
\iota_{*}\left(T_{p} S\right) \subset T_{p} M
$$

is a d-dimensional subspace of $T_{p} M$. We usually make the identification $T_{p} S \simeq \iota_{*}\left(T_{p} S\right)$. Further, in our case, $\iota_{*}\left(T_{p} S\right)=\operatorname{Ker} F_{* p}$. Thus, $T_{p} S \simeq \operatorname{Ker} F_{* p}$.

$\triangleright T_{p} S$ after being push-forwarded by ι_{*} appears as a subspace of $T_{p} M$

Example (unit-sphere):

$\triangleright S^{n-1}(\mathbb{R})$ is a level set of the constant-rank map

$$
F: \mathbb{R}^{n}-\{0\} \rightarrow \mathbb{R} \quad F(x)=x^{\top} x
$$

\triangleright thus, we have

$$
T_{p} \mathrm{~S}^{n-1}(\mathbb{R}) \simeq \operatorname{Ker} F_{* p}
$$

for any $p \in \mathrm{~S}^{n-1}(\mathbb{R})$
\triangleright using the identifications

$$
T_{p} \mathbb{R}^{n}-\{0\} \simeq \mathbb{R}^{n} \quad \text { and } \quad T_{F(p)} \mathbb{R} \simeq \mathbb{R}
$$

the push-forward $F_{* p}: T_{p} \mathbb{R}^{n}-\{0\} \rightarrow T_{F(p)} \mathbb{R}$ is represented by the linear map

$$
F_{* p}: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad F_{* p}(\delta)=\delta^{\top} p+p^{\top} \delta
$$

\triangleright hence,

$$
T_{p} \mathrm{~S}^{n-1}(\mathbb{R}) \simeq \operatorname{Ker} F_{* p}=\left\{\delta \in \mathbb{R}^{n}: p^{\top} \delta=0\right\}
$$

Example (orthogonal group):

$\triangleright \mathrm{O}(n)$ is a level set of the constant-rank map

$$
F: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathbb{R}^{n \times n} \quad F(X)=X^{\top} X
$$

\triangleright thus, we have

$$
T_{Q} \mathrm{O}(n) \simeq \operatorname{Ker} F_{* Q}
$$

for any $Q \in \mathrm{O}(n)$
\triangleright using the identifications

$$
T_{Q} \mathrm{GL}(n, \mathbb{R}) \simeq \mathbb{R}^{n \times n} \quad \text { and } \quad T_{F(Q)} \mathbb{R}^{n \times n} \simeq \mathbb{R}^{n \times n}
$$

the push-forward $F_{* Q}: T_{Q} \mathrm{GL}(n, \mathbb{R}) \rightarrow T_{F(Q)} \mathbb{R}^{n \times n}$ is represented by the linear map

$$
F_{* Q}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n} \quad F_{* Q}(\Delta)=\Delta^{\top} Q+Q^{\top} \Delta
$$

\triangleright hence,

$$
T_{Q} \mathrm{O}(n) \simeq \operatorname{Ker} F_{* Q}=\{Q K: K \in \mathrm{~K}(n, \mathbb{R})\}=Q \mathrm{~K}(n, \mathbb{R})
$$

Proposition [Restricting the domain and/or range of smooth maps] Let $F: M \rightarrow N$ be a smooth map.
(a) If A is an embedded submanifold of M, then the map

$$
\left.F\right|_{A}:\left.A \rightarrow N \quad F\right|_{A}(p)=F(p)
$$

is smooth.

(b) If B is an embedded submanifold of N and $F(M) \subset B$, then the map

$$
\left.F\right|^{B}:\left.M \rightarrow B \quad F\right|^{B}(p)=F(p)
$$

is smooth.

Example (an immersion of the unit-sphere): consider the map

$$
F: \mathrm{S}^{n-1}(\mathbb{R}) \rightarrow \mathbb{R}^{n \times n} \quad F(u)=u u^{\top}
$$

The map F is smooth because

Step 1:

$$
\widehat{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n} \quad \widehat{F}(x)=x x^{\top}
$$

is clearly smooth
Step 2: $\mathrm{S}^{n-1}(\mathbb{R})$ is an embedded submanifold of \mathbb{R}^{n}
Step 3: $F=\left.\widehat{F}\right|_{\mathbf{S}^{n-1}(\mathbb{R})}$
\square Example (a submersion onto the unit-sphere): consider the map

$$
F: \mathbb{R}^{n}-\{0\} \rightarrow \mathrm{S}^{n-1}(\mathbb{R}) \quad F(x)=\frac{x}{\|x\|}
$$

The map F is smooth because

Step 1:

$$
\widehat{F}: \mathbb{R}^{n}-\{0\} \rightarrow \mathbb{R}^{n} \quad \widehat{F}(x)=\frac{x}{\|x\|}
$$

is clearly smooth

Step 2: $\mathrm{S}^{n-1}(\mathbb{R})$ is an embedded submanifold of \mathbb{R}^{n}
Step 3: $F=\left.\widehat{F}\right|^{S^{n-1}(\mathbb{R})}$

Example (concatenating the techniques): consider the map

$$
F: \mathrm{O}(n) \rightarrow \mathrm{S}^{n-1}(\mathbb{R}) \quad F(X)=F\left(\left[x_{1} x_{2} \cdots x_{n}\right]\right)=x_{1}
$$

The map F is smooth because
Step 1:

$$
\widehat{F}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n} \quad \widehat{F}(X)=F\left(\left[x_{1} x_{2} \cdots x_{n}\right]\right)=x_{1}
$$

is clearly smooth
Step 2: $\mathrm{O}(n)$ is an embedded submanifold of $\mathbb{R}^{n \times n}$, hence,

$$
\left.\widehat{F}\right|_{\mathrm{O}(n)}: \mathrm{O}(n) \rightarrow \mathbb{R}^{n},\left.\quad \widehat{F}\right|_{\mathrm{O}(n)}(X)=x_{1}
$$

is smooth

Step 3: $\mathrm{S}^{n-1}(\mathbb{R})$ is an embedded submanifold of \mathbb{R}^{n} and $\left.\widehat{F}\right|_{\mathrm{O}(n)}(\mathrm{O}(n)) \subset \mathrm{S}^{n-1}(\mathbb{R})$; hence,

$$
F=\left.\widehat{F}\right|_{\mathrm{O}(n)} ^{\mathrm{S}^{n-1}(\mathbb{R})}
$$

is smooth

Example (using identifications for computations): let $F: A \rightarrow B$ be a smooth map between smooth manifolds. Assume that A and B are embedded in M and N, respectively. Suppose that there exists a smooth map $\widehat{F}: M \rightarrow N$ such that the following diagram commutes (i.e., $\iota_{B} \circ F=\widehat{F} \circ \iota_{A}$)

For any $p \in A$, we have the corresponding diagram in terms of the push-forwards

$$
\iota_{A *}\left(T_{p} A\right) \subset T_{p} M \longrightarrow{ }_{\iota_{A *}}^{\widehat{F}_{*}} \xrightarrow{\iota_{B *}\left(T_{F(p)} B\right) \subset T_{F(p)} N}
$$

This means that we can represent the push-forward map $F_{*}: T_{p} A \rightarrow T_{F(p)} B$ by the push-forward map

$$
\widehat{F}_{*}: \iota_{A *}\left(T_{p} A\right) \rightarrow \iota_{B *}\left(T_{F(p)} B\right)
$$

Example (an immersion of the unit-sphere): consider the map

$$
F: \mathrm{S}^{n-1}(\mathbb{R}) \rightarrow \mathbb{R}^{n \times n} \quad F(x)=x x^{\top}
$$

\triangleright We have the commutative diagram

\triangleright It is easy to obtain the push-forward of \widehat{F} at any point $p \in \mathbb{R}^{n}$:

$$
\widehat{F}_{*}: T_{p} \mathbb{R}^{n} \simeq \mathbb{R}^{n} \rightarrow T_{\widehat{F}(p)} \mathbb{R}^{n \times n} \simeq \mathbb{R}^{n \times n} \quad \widehat{F}(\delta)=\delta p^{\top}+p \delta^{\top}
$$

\triangleright On the other hand,

$$
T_{p} \mathrm{~S}^{n-1}(\mathbb{R}) \simeq\left\{\delta \in \mathbb{R}^{n}: p^{\top} \delta=0\right\}
$$

\triangleright In conclusion, we can represent the push-forward

$$
F_{*}: T_{p} \mathrm{~S}^{n-1}(\mathbb{R}) \rightarrow T_{F(p)} \mathbb{R}^{n \times n}
$$

by the linear map

$$
F_{*}:\left\{\delta: p^{\top} \delta=0\right\} \rightarrow \mathbb{R}^{n \times n} \quad F_{*}(\delta)=\delta p^{\top}+p \delta^{\top}
$$

\triangleright As an example, we can exploit the representation above to prove that the smooth $\operatorname{map} F$ is an immersion, that is, F_{*} is injective (its kernel is zero-dimensional):

$$
\begin{aligned}
F_{*}(\delta)=0 & \Rightarrow \delta p^{\top}+p \delta^{\top}=0 \\
& \Rightarrow p^{\top}\left(\delta p^{\top}+p \delta^{\top}\right)=0 \\
& \Rightarrow \delta^{\top}=0
\end{aligned}
$$

We used the facts that $p^{\top} \delta=0$ and $p^{\top} p=1$.

Example (a submersion onto the unit-sphere): consider the map

$$
F: \mathbb{R}^{n}-\{0\} \rightarrow \mathrm{S}^{n-1}(\mathbb{R}) \quad F(x)=\frac{x}{\|x\|}
$$

\triangleright We have the commutative diagram

$\triangleright \mathrm{It}$ is easy to obtain the push-forward of \widehat{F} at any point $p \in \mathbb{R}^{n}-\{0\}$:

$$
\begin{gathered}
\widehat{F}_{*}: T_{p} \mathbb{R}^{n}-\{0\} \simeq \mathbb{R}^{n} \rightarrow T_{\widehat{F}(p)} \mathbb{R}^{n} \simeq \mathbb{R}^{n} \\
\widehat{F}_{*}(\delta)=\frac{1}{\|p\|}\left(I_{n}-\frac{p p^{\top}}{\|p\|^{2}}\right) \delta=\frac{1}{\|p\|}\left(I_{n}-F(p) F(p)^{\top}\right) \delta
\end{gathered}
$$

\triangleright On the other hand,

$$
T_{F(p)} \mathrm{S}^{n-1}(\mathbb{R}) \simeq\left\{\gamma \in \mathbb{R}^{n}: F(p)^{\top} \gamma=0\right\}
$$

\triangleright In conclusion, we can represent the push-forward

$$
F_{*}: \mathbb{R}^{n}-\{0\} \rightarrow T_{F(p)} \mathrm{S}^{n-1}(\mathbb{R})
$$

by the linear map

$$
F_{*}: \mathbb{R}^{n}-\{0\} \rightarrow\left\{\gamma: F(p)^{\top} \gamma=0\right\} \quad F_{*}(\delta)=\frac{1}{\|p\|}\left(I_{n}-F(p) F(p)^{\top}\right) \delta
$$

\triangleright As an example, we can exploit the representation above to prove that the smooth map F is a submersion, that is, F_{*} is surjective: choose γ such that $F(p)^{\top} \gamma=0$. Letting $\delta=\|p\| \gamma$, we have $F_{*}(\delta)=\gamma$

Example (another submersion onto the unit-sphere): consider the map

$$
F: \mathrm{O}(n) \rightarrow \mathrm{S}^{n-1}(\mathbb{R}) \quad F(X)=X e_{1}
$$

where $e_{1}=(1,0, \ldots, 0)^{\top}$.
\triangleright The map F is smooth and we have the commutative diagram

where $\widehat{F}(X)=X e_{1}$
\triangleright The push-forward of \widehat{F} at any point $X_{0} \in \mathbb{R}^{n \times n}$ is easily obtained:

$$
\begin{gathered}
\widehat{F}_{*}: T_{X_{0}} \mathbb{R}^{n \times n} \simeq \mathbb{R}^{n \times n} \rightarrow T_{\widehat{F}\left(X_{0}\right)} \mathbb{R}^{n \times n} \simeq \mathbb{R}^{n \times n} \\
\widehat{F}_{*}(\Delta)=\Delta e_{1}
\end{gathered}
$$

\triangleright Now, for $Q_{0}=\left[q_{1} q_{2} \cdots q_{n}\right] \in \mathrm{O}(n)$,

$$
\begin{array}{ll}
T_{Q_{0}} \mathrm{O}(n) & \simeq Q_{0} \mathrm{~K}(n, \mathbb{R}) \\
T_{F\left(Q_{0}\right)} \mathrm{S}^{n-1}(\mathbb{R}) & \simeq\left\{\delta \in \mathbb{R}^{n} q_{1}^{\top} \delta=0\right\}
\end{array}
$$

\triangleright Thus, we can represent the push-forward

$$
F_{*}: T_{Q_{0}} \mathrm{O}(n) \rightarrow T_{F\left(Q_{0}\right)} \mathrm{S}^{n-1}(\mathbb{R})
$$

by the linear map

$$
F_{*}: Q_{0} \mathrm{~K}(n, \mathbb{R}) \rightarrow\left\{\delta: q_{1}^{\top} \delta=0\right\} \quad F_{*}\left(Q_{0} K\right)=Q_{0} K e_{1}
$$

\triangleright Exploiting the representation above, it is straightforward to show that F_{*} is surjective and, therefore, F is a submersion

Lemma [Embedded submanifolds of product manifolds] If A is embedded in M and B is embedded in N, then $A \times B$ is embedded in $M \times N$
\square Example (tangent space identifications for product manifolds): let $(p, q) \in M \times N$. We have the identification

$$
T_{(p, q)} M \times N \simeq T_{p} M \oplus T_{q} N
$$

due to the isomorphism

$$
\begin{gathered}
\pi_{M *} \times \pi_{N *}: T_{(p, q)} M \times N \rightarrow T_{p} M \oplus T_{q} N \\
\pi_{M *} \times \pi_{N *}\left(Z_{(p, q)}\right)=\left(\pi_{M *}\left(Z_{(p, q)}\right), \pi_{N *}\left(Z_{(p, q)}\right)\right)
\end{gathered}
$$

The inverse map is given by

$$
\imath_{q *} \oplus \jmath_{p *}: T_{p} M \oplus T_{q} N \rightarrow T_{(p, q)} M \times N \quad \imath_{q *} \oplus \jmath_{p *}\left(X_{p}, Y_{q}\right)=\imath_{q *}\left(X_{p}\right)+\jmath_{q *}\left(Y_{q}\right)
$$

where

$$
\begin{array}{ll}
\imath_{q}: M \rightarrow M \times N & x \mapsto(x, q) \\
\jmath_{p}: N \rightarrow M \times N & y \mapsto(p, y)
\end{array}
$$

The discussed identification $T_{(p, q)} M \times N \simeq T_{p} M \oplus T_{q} N$ can be used as follows. Suppose we have a smooth map $F: M \times N \rightarrow P$. We want to compute the push-forward of F at the point (p, q), that is, the linear map

$$
F_{*}: T_{(p, q)} M \times N \rightarrow T_{F(p, q)} P \quad Z_{(p, q)} \mapsto F_{*}\left(Z_{(p, q)}\right)
$$

Since $T_{(p, q)} M \times N \simeq T_{p} M \oplus T_{q} N$, we know that it can be represented by a linear map

$$
F_{*}: T_{p} M \oplus T_{q} N \rightarrow T_{F(p, q)} P \quad\left(X_{p}, Y_{q}\right) \mapsto F_{*}\left(X_{p}, Y_{q}\right)
$$

The next diagram illustrates the idea:

To find out how to represent F_{*} by this latter map, we reason as follows:

$$
\begin{aligned}
F_{*}\left(X_{p}, Y_{q}\right) & \simeq F_{*} \circ \imath_{q *} \oplus \jmath_{p *}\left(X_{p}, Y_{q}\right) \\
& =F_{*}\left(\imath_{q *} X_{p}+\jmath_{p *} Y_{q}\right) \\
& =\left(F \circ \imath_{q}\right)_{*} X_{p}+\left(F \circ \jmath_{p}\right)_{*} Y_{q} \\
& =F_{q *} X_{p}+F_{p *} Y_{q}
\end{aligned}
$$

where

$$
F_{q}=F \circ \imath_{q}: M \rightarrow P \quad x \mapsto F(x, q)
$$

and

$$
F_{p}=F \circ \jmath_{p}: M \rightarrow P \quad y \mapsto F(p, y)
$$

That is, F_{q} and F_{p} correspond to F when we hold fixed the 2 nd and 1 st argument at q and p, respectively.
For a specific example, let $M=N=P=\mathbb{R}^{n \times n}$ and consider the smooth map

$$
F: M \times N \rightarrow P \quad F(X, Y)=X Y
$$

The push-forward of F at the point $\left(X_{0}, Y_{0}\right)$ can be represented by the linear map

$$
F_{*}: \mathbb{R}^{n \times n} \oplus \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n} \quad F_{*}(\Delta, \Omega)=\Delta Y_{0}+X_{0} \Omega
$$

Example (embedded submanifolds of product manifolds): let A, B and C be embedded submanifolds of M, N and P, respectively. Let $F: A \times B \rightarrow C$ be a smooth map. Suppose that there exists a smooth map $\widehat{F}: M \times N \rightarrow P$ such that the following diagram commutes

Note that $A \times B$ is embedded in $M \times N$. Thus, for any given $(a, b) \in A \times B$, we already know that we have the following diagram

$$
\begin{aligned}
& \iota_{A \times B *}\left(T_{(a, b)} A \times B\right) \widehat{F}_{*} \\
& \iota_{A \times B *} \\
& \iota_{C *}\left(T_{F(a, b)} C\right) \\
& T_{(a, b)} A \times B \\
& F_{*} \\
& \iota_{C *} \\
& \\
& T_{F(a, b)} C
\end{aligned}
$$

which allows us to represent the "hard" linear map

$$
F_{*}: T_{(a, b)} A \times B \rightarrow C
$$

by the "easier" one

$$
\widehat{F}_{*}: \iota_{A \times B *}\left(T_{(a, b)} A \times B\right) \subset T_{(a, b)} M \times N \rightarrow \iota_{C *}\left(T_{F(a, b)} C\right) \subset T_{F(a, b)} P
$$

Our goal here is to exploit the tangent space identifications discussed in the previous example to find out another representation for F_{*}.

We start by noting that we have the following two diagrams

where

$$
\begin{array}{ll}
\imath_{b}: A \rightarrow A \times B & x \mapsto(x, b) \\
\widehat{\imath}_{b}: M \rightarrow M \times N & x \mapsto(x, b) \\
\jmath_{a}: B \rightarrow A \times B & y \mapsto(a, y) \\
\widehat{\jmath}_{a}: N \rightarrow M \times N & y \mapsto(a, y)
\end{array}
$$

From this, it follows that

$$
\begin{aligned}
& \iota_{A *}\left(T_{a} A\right) \oplus \iota_{B *}\left(T_{b} B\right) \xrightarrow{\widehat{\imath}_{b *} \oplus \widehat{\jmath}_{a *}} \iota_{A \times B *}\left(T_{(a, b)} A \times B\right) \\
& \iota_{A *} \times \iota_{B *} \\
& T_{a} A \oplus T_{b} B \xrightarrow[\iota_{b *} \oplus \jmath_{a *}]{ } \\
& \iota_{A \times B *}
\end{aligned}
$$

where

$$
\begin{array}{ll}
\iota_{b *} \oplus \jmath_{a *}: T_{a} A \oplus T_{b} B \rightarrow T_{(a, b)} A \times B & \left(X_{a}, Y_{b}\right) \mapsto \imath_{b *}\left(X_{a}\right)+\jmath_{a *}\left(Y_{b}\right) \\
\widehat{\imath}_{b *} \oplus \widehat{\jmath}_{a *}: T_{a} M \oplus T_{b} N \rightarrow T_{(a, b)} M \times N & \left(X_{a}, Y_{b}\right) \mapsto \widehat{\imath}_{b *}\left(X_{a}\right)+\widehat{\jmath}_{a *}\left(Y_{b}\right) \\
\iota_{A *} \times \iota_{B *}: T_{a} A \oplus T_{b} B \rightarrow T_{a} M \oplus T_{b} N & \\
\left(X_{a}, Y_{b}\right) \mapsto\left(\iota_{A *}\left(X_{a}\right), \iota_{B *}\left(Y_{b}\right)\right)
\end{array}
$$

The equality

$$
\iota_{A \times B *} \circ \imath_{b *} \oplus \jmath_{a *}=\widehat{\imath}_{b *} \oplus \widehat{\jmath} a *^{\circ} \iota_{A *} \times \iota_{B *}
$$

expressed in the last diagram can be proved as follows:

$$
\begin{aligned}
\iota_{A \times B *} \circ \imath_{b *} \oplus \jmath_{a *}\left(X_{a}, Y_{b}\right) & =\iota_{A \times B *}\left(\imath_{b *}\left(X_{a}\right)+\jmath_{a *}\left(Y_{b}\right)\right) \\
& =\iota_{A \times B *} \circ \imath_{b *}\left(X_{a}\right)+\iota_{A \times B *} \circ \jmath_{a *}\left(Y_{b}\right) \\
& \stackrel{(a)}{=}\left(\iota_{A \times B} \circ \imath_{b}\right)_{*}\left(X_{a}\right)+\left(\iota_{A \times B} \circ \jmath_{a}\right)_{*}\left(Y_{b}\right) \\
& \stackrel{(b)}{=}\left(\widehat{\imath}_{b} \circ \iota_{A}\right)_{*}\left(X_{a}\right)+\left(\widehat{\jmath}_{a} \circ \iota_{B}\right)_{*}\left(Y_{b}\right) \\
& =\widehat{\imath}_{b *}\left(\iota_{A *}\left(X_{a}\right)\right)+\widehat{\jmath}_{a *}\left(\iota_{B *}\left(Y_{b}\right)\right) \\
& =\widehat{\imath}_{b *} \oplus \widehat{\jmath}_{a *}\left(\iota_{A *}\left(X_{a}\right), \iota_{B *}\left(Y_{b}\right)\right) \\
& =\widehat{\imath}_{b *} \oplus \widehat{\jmath}_{a *} \circ \iota_{A *} \times \iota_{B *}\left(X_{a}, Y_{b}\right) .
\end{aligned}
$$

In (a), the chain rule for push-forwards was used. In (b), we used the two commutative diagrams in page 64.

Now, taking the last diagram in page 64 and plugging it on the left of the last diagram in page 63 yields
F_{*} (the identification)
$\simeq \iota_{A \times B *}\left(T_{(a, b)} A \times B\right) \widehat{F}_{*}$
$\iota_{A *}\left(T_{a} A\right) \oplus \iota_{B *}\left(T_{b} B\right) \longrightarrow \iota_{C *}\left(T_{F(a, b)} P\right)$

Since the arrows marked with \simeq denote isomorphisms, this shows that F_{*} can be represented by the linear map

$$
F_{*}: \iota_{A *}\left(T_{a} A\right) \oplus \iota_{B *}\left(T_{b} B\right) \rightarrow \iota_{C *}\left(T_{F(a, b)} C\right)
$$

given by

$$
\begin{aligned}
\left(\iota_{A *}\left(X_{a}\right), \iota_{B *}\left(Y_{b}\right)\right) & \mapsto \widehat{F}_{*}\left(\widehat{\imath}_{b *}\left(\iota_{A *}\left(X_{a}\right)\right)+\widehat{\jmath}_{a *}\left(\iota_{B *}\left(Y_{b}\right)\right)\right) \\
& =\widehat{F}_{b *}\left(\iota_{A *}\left(X_{a}\right)\right)+\widehat{F}_{a *}\left(\iota_{B *}\left(Y_{b}\right)\right),
\end{aligned}
$$

where

$$
\begin{array}{ll}
\widehat{F}_{b}: M \rightarrow P & x \mapsto \widehat{F}(x, b) \\
\widehat{F}_{a}: N \rightarrow P & y \mapsto \widehat{F}(a, y)
\end{array}
$$

Example: (Polar decomposition is a diffeomorphism): consider the map

$$
F: \mathrm{P}(n, \mathbb{R}) \times \mathrm{O}(n) \rightarrow \mathrm{GL}(n, \mathbb{R}) \quad F(P, Q)=P Q
$$

The map F is smooth (why?).
We have the following commutative diagram

where

$$
\widehat{F}: \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n} \quad \widehat{F}(X, Y)=X Y
$$

Note that $\mathrm{P}(n, \mathbb{R}), \mathrm{O}(n)$ and $\mathrm{GL}(n, \mathbb{R})$ are embedded submanifolds of $\mathbb{R}^{n \times n}$. Also:

$$
\begin{array}{ll}
\iota_{\mathrm{P}(n, \mathbb{R}) *}\left(T_{P_{0}} \mathrm{P}(n, \mathbb{R})\right) & \simeq \mathrm{S}(n, \mathbb{R}) \\
{ }^{\iota_{\mathrm{O}(n) *}\left(T_{Q_{0}} \mathrm{O}(n)\right)} & \simeq Q_{0} \mathrm{~K}(n, \mathbb{R}) \\
{ }^{\iota_{\mathrm{GL}(n, \mathbb{R})) *}\left(T_{X_{0}} \mathrm{GL}(n, \mathbb{R})\right)} & \simeq \mathbb{R}^{n \times n} .
\end{array}
$$

Thus, the push-forward

$$
F_{*}: T_{\left(P_{0}, Q_{0}\right)} \mathrm{P}(n, \mathbb{R}) \times \mathrm{O}(n) \rightarrow T_{F\left(P_{0}, Q_{0}\right)} \mathrm{GL}(n, \mathbb{R})
$$

can be represented by the linear map

$$
F_{*}: \mathrm{S}(n, \mathbb{R}) \oplus Q_{0} \mathrm{~K}(n, \mathbb{R}) \rightarrow \mathbb{R}^{n \times n} \quad F_{*}(\Delta, \Psi)=\Delta Q_{0}+P_{0} \Psi
$$

Since F_{*} is an injective linear map for any $\left(P_{0}, Q_{0}\right)$, we conclude that F is a diffeomorphism.

