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Lecture’s key-points

[] The implicit function theorem is an useful tool

[] Two main approaches for creating embedded submanifolds:
> image of smooth embedding

> pre-image of smooth constant rank map
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/DTheorem [Inverse Function Theorem] Let U and V' be open subsets of R™ and \

F :U—V asmooth map. Let pe U. If

8F1 —(p) 8F : () gi : (p)
(2)1;2 (p) (Z)Z; 22 (p) - gi ,,j (p)
DF(p) =
i %(p) %Z;(p) g];:(p) |

is nonsingular, then there exist neighborhoods Ug C U of p and Vo C V of ¢ =
such that F' : Uy — Vj is a diffeomorphism. Furthermore, we have

DF~!(yo) = (DF (z0)) ™"

\where xo = F~1(yo) for each yo € Vg

F(p)

/
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x Intuition: the bijectivity of DF (p) carries over locally to F




/DExample (Inverse function theorem as a generalization of the linear case): let \
F :R" —-R" F(x) = Ax

where A : n X n is nonsingular. By simple linear algebra, the linear map F'is
(globally) bijective. Note that

DF(p) = A
for any p € R"

[1 Example (simple illustration): consider the smooth map
F:R? = R?  F(z,y) = (22 + 9% zy).
Then,
2 2y 2 0

DF(1,0) = =

x 0 1
Y (2,9)=(1,0)

is non-singular, which means that F' is a diffeomorphism near (1,0). Note that F'is

\not a bijective map: F(1,1) = F(—1,-1) /
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/DTheorem [Implicit Function Theorem] Let W C R™ x R* be an open set and \

F : W — Rk

suppose that

Dy F(p,q) =

\isnonsingular.

a smooth map. Let (p,q) = (p1 e

(:C)y) — (aj17"'7xn7y17"’7yk:)

OF1!

oy (P, q)

OFF

oy (P, q)

7pn7q17‘ c

F

OF1

052 (P, q)

OF1
8yk

o Flayy) = (F' @), Fhay)

,qk> e W with F(p, q) — 0 and

(p,q) \




-

Then, there exist neighborhoods Uy of p and Vjj of ¢ and a smooth map
® : Uy — Vpy such that Ug x Vo C W and

(z,y) € Up X Vo, F(x,y) =0

if and only if y = ®(x).

Furthermore, we have D®(p) = — (D, F(p,q))”* D+ F(p,q), where

D, F(p,q) =

(

OF1
Oxl

(p,q)

O F2
Oxl

(p,q)

OFk
Ox!

(p,q)

OF1
Ox?

(p,q)

O F?
O

(p,q)

1
8Fn (P, q) )
ox

O F?
ox™

(p,q)
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‘s

F.-R'xRF -RF R[] :[A B]

Y

xT
)

Y

where A : kK X n and the matrix B : k X k is nonsingular.

By simple linear algebra,

F(z,y) =0 ifandonlyif y=—-B 1Az

That is,
F(zx,y) =0 ifandonlyif y=®&(x),
where
d:R" >R ®(x)=-B Az
Note that

B =DyF(p,q) and DiF(p,q)=A
for all (p,q) € R™ x R¥

Example (Implicit function theorem as a generalization of the linear case):

let




GExample (simple eigenvalues are smooth): Let Xy € R™*™ be a symmetric \

matrix and ug be an unit-norm eigenvector associated with the simple eigenvalue Ag:
Xoup = 0 UO =
ouo = Aouo and wugug = 1.

Then, there exists:
> a neighborhood Uy C R™"*™ of X
> a neighborhood Vi C R™ X R of (ug, Aog)

> a smooth map
d:Ug— Vo  B(X)= (u(X),AX))
such that u(Xg) = ug, AN(Xo) = Ao, and
Xu(X) = A X)u(X), uX)'uX)=1 for all X € Up.
The derivative of the map ¢ at X is given by

ug ® (Aoln — Xo)™

T T
Ug ®u0

. /
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D®(Xo) =




GExample (signal processing application - asymptotic performance analysis): \
> Data model: ylk] = 0s[k] + w[k] k=1,2,...,K

o ylk] = (y1lk], y2lk], ..., ynlk]) € R™ = observation vector

o0 € Si_l(R) = unknown deterministic parameter (channel)
Si_l(R) ={x=(z1,...,2n) €R" : ||z|| =1 and z,, > 0}

o slk] € R = zero-mean, unit-power Gaussian random process

o wlk] € R™ = random Gaussian process ~ N 0,0%1,)

y2

\ y:Y[k] " [k] /
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KThe maximum-likelihood (ML) estimate of 6, \

é\K' — argmax p(ylaayKae)a
0 €St H(R)

is easily seen to be given by the unit-norm eigenvector (with last coordinate positive)
which is associated with the maximum eigenvalue of the sample covariance matrix

_ 1 & -

In the sequel, we write §K = qb(]/%K), where ¢ stands for the map just described

> We are interested in evaluating the mean-square error (MSE) of the estimate
~ 2
MSE = E{HHK 0| } .

Since it is difficult to obtain the exact distribution of the statistic 6, we resort to an

(symptotic analysis (K — +00) /
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KA fundamental tool in asymptotic analysis is the d-method: let xx € R™ denote h

sequence of random vectors satisfying
VK (zx — p) % N(0,3)

d . . . .
where — means convergence in distribution (as K — +o0), and let f : R® — R™
denote a map which is of class C'! near u. Then,

VE (f(zx) = f(1) % N (0, DF () EDF ()" )

where D f(u) stands for the derivative of f at the point u

VK (vec (]?iK) — vec(R)) i./\/'(O,E)
for a certain covariance matrix ¥ (not shown here) and where
R=E {y[k]y[k]T} — 007 + 021,

denotes the correlation matrix corresponding to our data model. Furthermore, note
\that the maximum eigenvalue of R is Amax = 1 + 02

> In our context, it can be shown (trivial application of the central limit theorem) that

/
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4 N

> The previous example has shown that ¢ is smooth in a neighborhood of R and its
derivative is given by

DH(R) = 60" ® (AmaxIn — R)T.
Thus, we have
VK (§K - 9) N (o, ng(R)Eng(R)T)
from which follows the approximation (for a given K)
~ 1
O — 0 ~ N (o, EDqﬁ(R)Zng(R)T) .

That is,

—~ 2
MSE = E{H@K—OH}

— (] (5x-0) (3x -0) ' })

%tr (D¢(R)ED¢(R)T)

2
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ﬁSimulation example: observation y has dimension n =10, 0 = (1//n, ..., 1/\/5)\
the signal-to-noise ratio SNR = E{||es||2} /E{||w||2} — 1/(no?) is fixed at 10 dB
and the sample size K is varied between K,;; = 10 and Knax = 100

0012 T T T T T T T T

0.01 -\ . . 4

0.008

0.006

0.004

MSE: predicted (solid,squares) and observed (dashed)

0.002

0 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
K (number of observations)
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4 N

[] Theorem [Rank theorem] Let U C R™ and V' C R"™ be open sets, and

F : U — V asmooth map with constant rank k, that is, rank (DF(x)) = k for each
x € U. Let p € U. Then, there exist neighborhoods Uy C U of p and Vy C V of

q = F(p) and diffeomorphisms ¢ : Uy — (70 and ¢ : Vj — ‘A/o such that

poFopt (ml,...,xk,wk+1,...,xn) = (xl,...,mk,O,...,O) :
The neighborhoods Uy and Vj can be chosen such that: (i) Up = CI*(0) and

Vo = C™(0) or (ii) Uy = B?(0) and Vo = B (0), for any chosen € > 0

x Intuition: looks like a nonlinear generalization of the SVD for linear maps

. /
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4 N

[1 Definition [Rank of a smooth map, immersions, submersions] Let F' : M — N
be a smooth map between smooth manifolds. The rank of F' at p € M is the
dimension of the linear subspace Im F\ (T, M) C Tg(p)N. Equivalently, it is the rank

of the Jacobian matrix rank DF (¢(p)) in any smooth chart.
We say that F' has constant rank k if the rank of F' at any p € M is k.

> the smooth map F' : M — N is called an immersion if F is injective at every
point. Equivalently, if rank F' = dim M at every point

> the smooth map F' : M — N is called a submersion if F is surjective at every
point. Equivalently, if rank F' = dim N at every point

. /
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GExample (an immersion of the unit-sphere): consider the map
F : S"Y(R) — R*X" F(u) =uu'.

We already know that F' is smooth. The map F'is also an immersion

[1 Example (a submersion onto the unit-sphere): consider the map

F:R"— {0} = S" L(R) F(z)= IIz—H

We already know that F'is smooth. The map F'is also a submersion

[1 Example (product manifolds): let M and N be smooth manifolds.
For fixed g € N, the inclusion map

tg : M — M x N t(p) = (p,q)

is an immersion. The projection map

Qa submersion

v M X N — M v (p,q) =D

19



GLemma [Composition of immersions and submersions] The composition of \

immersions is an immersion. The composition of submersions is a submersion

[J Theorem [Inverse function theorem for manifolds] Let ' : M — N be a smooth
map between manifolds. Let p € M and suppose Fi : TpM — T, N is an
isomorphism (equivalently, a bijective linear map). Then there exist neighborhoods
Ug of p and Vy of F(p) such that F' |y, : Up — Vo is a diffeomorphism

x Intuition: the bijectivity of F. transpires locally to F'
F* . TpM — TF(p)N

! : —>
] (isomorphism)
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F: M—N
>

(local diffeomorphism)

QRemark that the inverse map F~1 : Vi — Up is smooth /
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4 N

[] Example (Cholesky decomposition is a diffeomorphism):

> The Cholesky decomposition asserts that for any P € P(n,R) there is an unique
L € LT (n,R) such that
P=LL".

Thus, we can define a map
Cholesky : P(n,R) — LT (n,R)

which, given a positive-definite P, computes its Cholesky factor L s.t. P = LLT.

The purpose of this example is to show that the map Cholesky is smooth

> We already know that the map
F:LT(n,R) - P(n,R) F(L)=LL"

is bijective (linear algebra) and smooth. Remark that the map Cholesky is the inverse
map of F

. /
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4 N

> Also, by exploiting the isomorphisms
T, LT (n,R) ~L(n,R) and Tpg,)P(n,R) >~ S(n,R),

we have computed a representation of the push-forward map
F TLO L"‘(n,]R) — TF(LO)P(naR) as

Fy : L(n,R) = S(n,R)  F.(A)=AL]J + LoA"

> If we show that F is an isomorphism, we can use the last theorem to conclude
that Cholesky = FF~1 is smooth (because it is smooth on a neighborhood of any
given point Py = F(Lg) € P(n,R))

> To prove that the linear map F is bijective it suffices to prove that Fi is
injective because dimL(n,R) = dim S(n, R)

. /
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4 N

> To prove that F\ is injective, we must show that Ker F, = {0}. So, let
A € L(n,R) satisfy Fy(A) =0, that is,

ALJ + LoAT =0.

Pre-multiplying by Lal and post-multiplying by (L(—)'_)_l both sides of the equation
yields

—1 —1A) "
(Lo'a) + (Lg'a) =o.
Note that Lgl is a lower-triangular matrix and W = Lo_lA also (product of two
lower-triangular matrices). But,
U4+0' =0 and T: lower-triangular = W = 0.

As a consequence, A = LoV = 0.

We conclude that the map Cholesky is smooth. In fact, it is a diffeomorphism

(because its inverse F' is also smooth)

. /
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4 N

[1 Theorem [Rank theorem for manifolds] Suppose that the smooth map
F : M — N has constant rank k, with dim M = m and dim N = n. Then, for any

given p € M, there exist smooth charts (U, ¢) containing p and (V, ) containing
F(p) such that the coordinate representation F' = 1) o F' o o1 is given by

o1 2 k _k+1 m\ _ 1,2 k
F(a:,a:,...,x , X R )—(zv,a:,...,:c, 0,...,0 )

n — k zeros

24
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[1 Theorem [Constant rank and immersions, submersions and diffeomorphisms] Let
F : M — N be a smooth map of constant rank.

(a) If F' is injective, then it is an immersion
(b) If F'is surjective, then it is a submersion

(c) If F is bijective, then it is a diffeomorphism

[1 Example (an immersion of the unit-circle): consider the map
F : S'(R) — R?*? F(u) = [u Ju}
where

J =
1 0

> The map F' is smooth (why?). The goal of this example is to show that F' is an

immersion, without computing in coordinates

N /
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/ > Note that F' is injective. If we prove that F' has constant rank, we are done (SD

last theorem). Let p,q € S'(R). We must show that the two linear maps
Fip : TS'(R) = Tr,R?*?  and  Fug @ T4S'(R) — T R?*?

have the same rank

> The trick consists in noting that, for any fixed rotation Q € SO(2), we have
FolLg = LgoF or, equivalently, the commutative diagram:

L

Q
SL(R) » SI(R)
F F
R2X2 P  R2X2
Lq

here Lo : S*(R) — SY(R), Lo(u) = Qu and Lo : R2X2 - R2%2 T (X) = Q

N

X

/
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/ > Note that both Lg and EQ are smooth (why?). In fact they are

diffeomorphisms because their inverse maps correspond to LQT and f/QT,
respectively, which are smooth

> Now, choose (Q such that Lg(p) = q. The previous diagram induces the next
one, expressed in terms of push-forwards:

Lo«

T,S(R) » T,S5'(R)
F*p F*q
TF(p)R2X2 — > TF(q)RQXQ
Lo«

Equivalently: ZQ* o Fyp = Fyq o Lg«. Since EQ* and Lg. are isomorphisms,

rank (ZQ* o F*p) = rank (Fyp) and rank (Fiq o Lg.) = rank (Fiq).

\The conclusion is rank (Fip) = rank (Fiq)

\

28



GDefinition [Local section] Let w1 : M — N be a smooth map between smooth \
manifolds. A smooth local section of 7 is a pair (V,0) where V C N is open and
o : V. — M is a smooth map satisfying mw o o0 = idy,.

\
/

M

S|
L
=
-i“/
I
.

(q)

=)

pmmmEEEEE———
-
-

- -ﬁ.---------------
=

-y
bl
-~

|

)
—
G

=)

klntuition: o is a smooth choice of a representative in each fiber of « /
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4 N

[1 Lemma [Properties of submersions: part I] Let 7 : M — N be a smooth map
between smooth manifolds. Suppose 7 is a submersion. Then, 7 is an open map.
Moreover, for every p € M, there exists a local section (V, o) of 7w such that p € (V)

[J Lemma [Properties of submersions: part Il] Let M, N, P be smooth manifolds
and w : M — N be a surjective submersion. Then, a map F' : N — P is smooth if

and only if F = F o7 is smooth

M

)

N » P
F

x Intuition: smoothness of the “hard” map F' can be investigated via the easier F’

. /
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4 N

[1 Example (an immersion of the unit-sphere): consider the map
F : S"1(R) - R"*X" F(u) =uu'.

We already know that F' is smooth. Here is an alternative proof of smoothness of F'

>

7R — {0} = S"YR)  7(x)= ﬁ
x
Is a surjective submersion

>
~ ~ zx
F : R" - {0} - R™"*" F(x) = TS

x

is clearly smooth

Dﬁ:FOW

. /
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GDefinition [Embedded submanifold] Let M be an n-dimensional smooth manifoh
A subset S C M is called an embedded k-submanifold of M if, for each point p € S,
there is a smooth chart (U, ¢) centered at p with ¢(U) = C?(0) and

o(UNS) = {(xt,2?,...,aF L . a") : oF Tl =2k 2 = ... = 2" = 0}.

p(U) = C¢ (O) A e(UNS)

v

klntuition: the subset S C M can be flattened (locally) /
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G Example:

Troublemaker
M =R? 4

-

v

S is not an embedded submanifold of R?2

[1 Example (linear subspaces): if S C R" is a linear subspace with (linear)
dimension k then, S is an embedded k-submanifold of R™.

> the linear subspace of symmetric matrices
S(n,R) ={X e R"™*" : X =X}
is an embedded n(n + 1)/2-submanifold of R™*™

> same holds for the linear subspace of skew-symmetric matrices

\ K(n,R) = {X € R"™" ; X = —X T}

33



4 N

[J Example (unit-sphere): S”~1(R) = {z € R™ : ||z|| = 1} is an embedded
(n — 1)-submanifold of R™

[1 Lemma [Embedding submanifolds are local constructions] Let M be a smooth
manifold. The subset S C M is a embedded submanifold of M if and only if each
p € S has a neighborhood U C M such that SN U is an embedded submanifold of U

[l Lemma [Open subsets are embedded submanifolds] Let U C M be an open
subset of the n-dimensional smooth manifold M. Then, U is an embedded
n-submanifold of M

[J Example (positive definite matrices): the set of positive definite matrices
P(n,R) ={X € S(n,R) : X >0}
is an embedded n(n 4 1)/2-submanifold of S(n,R)

. /
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[1 Definition [Embedding] A smooth map F' : N — M between smooth manifolds is
said to be an embedding if it is an immersion and a topological embedding (a
homeomorphism of N onto its image N = F(IN), viewed as a subspace of M).

[J Lemma [Useful criterion for detecting embeddings] Let the smooth map
F : M — N be an injective immersion. If M is compact, F' is an embedding.

[J Example (an embedding of the unit-circle): consider the map
F:SYR) —RP2 Fu)=lu Ju
where

J =
1 0

We already know that F' is a smooth immersion. Since S (R) is compact, F is an

embedding

35




4 N

[] Theorem [Embedded submanifolds are smooth manifolds] Let the subset S C M
be an embedded k-dimensional submanifold of M, where dim M = n.

Then, as a subspace of M, S is a topological manifold of dimension k£ and it has an
unique smooth structure such that the inclusion map ¢+ : S — M is a smooth

embedding.

With this smooth structure on S, let (U, ¢) be a smooth chart in M with
P(U) = C7(0) and

o(UNS) = {(xt,2?,...,aF L a") : oF Tl =2k 2 = ... = 2" = 0}.

Then, (SN U, 7o ) is a smooth chart in S, where

[1 Theorem [Smooth embeddings provide embedded submanifolds] The image of a
smooth embedding is an embedded submanifold

. /

36




GExample (SO(2) is an embedded submanifold of R2%?): the subset \

50(2) = cos(f) —sin(0)
sin(#)  cos(0)

is an embedded submanifold of R?*2 because SO(2) = F(S!'(R)) where F is the
embedding

F:S'R) - R?**?2  F(u) = [u Ju] , J =

[J Lemma [Composition of embeddings] The composition of embeddings is an

embedding.

[1 Theorem [Constant-rank level set theorem] Let F' : M — N be a smooth map
with constant rank k. Then, for each ¢ € Im F', the level set

F~ ) ={peM: F(p) =c}

Qa closed, embedded submanifold of dimension dim M — k /
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4 N

[1 Example (Stiefel): let
O(n,m)={X eR"™™ : XX =1,,}
be the set of n X m orthonormal frames in R™.

Then O(n,m) is an embedded submanifold of R™*™ and

m(m + 1)
5 :

dimO(n,m) = nm —

The manifold O(n, m) is known as the Stiefel manifold

[ ] Example (special orthogonal group SO(n)): since SO(n) is an open subset of the
smooth manifold O(n), it is an embedded submanifold of O(n) and

_ n(n—l).

dimSO(n) = dimO(n) 5

Since O(n) is embedded in R™*, SO(n) is an embedded submanifold of R™*™

. /
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[] Example (matrices with fixed rank): let
Rank—g(n,m,R) = {X € R™*™ : rank X = k}

be the set of n X m matrices with rank k.

Then Rank_(n, m,R) is an embedded submanifold of R™"*™ and

dimRank_i(n,m,R) = (m+n —k)k

39



GLemma [Identifications for tangent spaces] Let F' : M — N be a smooth map\
with constant rank k. Let ¢ € Im F'. Thus, the level set S = F'~!(c) is an embedded

submanifold of M and the dimension of S is d = dim M — k.

Since the inclusion ¢ : S — M is an embedding (in particular, an immersion), it
follows that, for any p € S, the push-forward ¢x : TS — T'p M is injective and

L« (TpS) C Tp M

is a d-dimensional subspace of 1), M. We usually make the identification
TpS =~ 14(TpS). Further, in our case, t« (T S) = Ker Fyp. Thus, T, S =~ Ker Fyp.

QTPS after being push-forwarded by v« appears as a subspace of T}, M /
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[1 Example (unit-sphere):
> S”"~1(R) is a level set of the constant-rank map
F:R"—-{0} - R Flz)=z'=z
> thus, we have
T,S" 1 (R) ~ Ker Fy,
for any p € S*71(R)

> using the identifications
T,R" — {0} ~R" and Tp,R~R
the push-forward Fip @ TpR™ — {0} — T'p(,)R is represented by the linear map

Fip :R*" =R  Fup(8)=6"p+p's

> hence,
T,S" Y (R) ~ Ker Fup = {6 €R™ : p' § =0}

N

/
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/ TpS?(R) ~ vx (TpS*(R)) C TpM

|
\ §=(8,...,0") eRr ~ 51O | 4. pen O e TpM

1 ox™
T
9 p p
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/DExample (orthogonal group): \

> O(n) is a level set of the constant-rank map

F :GL(n,R) = R™™™  F(X)=X'X

> thus, we have
ToO(n) ~ Ker Fg
for any Q € O(n)

> using the identifications
ToGL(n,R) ~R™ ™  and TF(Q)R”X” ~ R"X"
the push-forward F.q : ToGL(n,R) — Trg)R™*™ is represented by the linear map
F.g : R™X™ _ RXn F.o(A)=A"TQ+Q'A
> hence,

ToO(n) ~ Ker Fg = {QK : K € K(n,R)} = QK(n,R)

. /
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4 N

[] Proposition [Restricting the domain and/or range of smooth maps] Let
F : M — N be a smooth map.

(a) If A is an embedded submanifold of M, then the map
Fla: A= N  Fla(p) = F(p)

iIs smooth.

LA
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4 N

(b) If B is an embedded submanifold of N and F(M) C B, then the map
FI? :M—B  F|"(p)=F(p)

iIs smooth.

F|B

!B

45
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[1 Example (an immersion of the unit-sphere): consider the map

F:S" YR)-R™™  F(u)=uu'.
The map F' is smooth because

Step 1:
F : R® — R*X" F(z)=azz '

is clearly smooth

Step 2: S”!(R) is an embedded submanifold of R™

Step 3: F = ﬁ“sn_l(R)

N

46



-

[ ] Example (a submersion onto the unit-sphere): consider the map

F:R" {0} > S Y(R) F(z)= —.

]

The map F' is smooth because

Step 1:
F:R"— {0} >R" F(z)=—

is clearly smooth

Step 2: S~ !(R) is an embedded submanifold of R"

Step 3: [ = F|S" " (®)

N
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GExample (concatenating the techniques): consider the map

The map F' is smooth because

Step 1:

is clearly smooth

Step 2: O(n) is an embedded submanifold of R™*™, hence,
Flo(m : O(n) — R™, Flogm)(X) = 21

is smooth

)

]RTLX?”L —> Rn

LO(n)

\ O(n)

ﬁ|0(n)

F : O(n) —» S" }(R) F(X)=F([z1x2 - zn]) = x1.

F:R"™ oR* F(X)=F(zi22 - zn]) =z

\
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Step 3: S~ !(R) is an embedded submanifold of R™ and ﬁ|0(n) (O(n)) Cc S H(R);
hence,

~ Sn—l
F=F,, "

is smooth
R’n
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[1 Example (using identifications for computations): let ' : A — B be a smooth
map between smooth manifolds. Assume that A and B are embedded in M and N,
respectively. Suppose that there exists a smooth map F : M — N such that the
following diagram commutes (i.e., tg 0 F = F o14)

F
M > N
A A
LA lB
A » B
F

50



4 N

For any p € A, we have the corresponding diagram in terms of the push-forwards

~

F
LA*(TPA) C TpM > LB*(TF(p)B) C TF(p)N
A A
L Ax L B x
A » Trp)B
F

This means that we can represent the push-forward map Fi : T, A — Tp(,) B by the
push-forward map

F. : tax(TpA) — 1« (Trp)B)-

. /
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GExample (an immersion of the unit-sphere): consider the map
F : S"1(R) — R*X" F(x) =z '.
> We have the commutative diagram
F
R™ > RNXn

LSn— 1 (R)

S~ 1(R)

> It is easy to obtain the push-forward of F at any point p € R™:

F. : T,R" ~R" — TR = R F(5)=06p" +pd'

> On the other hand,

\ T,S" 'R)~ {6 €R" : p' 6§ =0}
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> In conclusion, we can represent the push-forward
Fi : TpS" Y (R) — TR X"
by the linear map

Fr : {6 :p'6=0} =R  F.(6)=0dp' +ps'

> As an example, we can exploit the representation above to prove that the smooth
map F' is an immersion, that is, F is injective (its kernel is zero-dimensional):

Fi(8)=0 = 6&p +ps' =0
= p' (5pT —I—p5T) =0
= &' =0.

We used the facts that p' 6 =0 and p' p = 1.

. /
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GExample (a submersion onto the unit-sphere): consider the map

F:R"— {0} S Y(R) F(z) = ”z—”
> We have the commutative diagram
R™ — {0} » R”
lsn—1(R)
F
S*»—1(R)

> It is easy to obtain the push-forward of F at any point p € R"” — {0}:

Fy : T,R" — {0} ~R"™ — Tﬁ(p)R” ~ R"

F(5) = — (In ppT>5 ! (I~ FG)F()T) 5

\ Pl IpII? lvall
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> On the other hand,

TrpS" '(R) ~ {y €R™ : F(p)'~y =0}

> In conclusion, we can represent the push-forward
Fy« : R" — {0} — TF(p)Sn_l(R)

by the linear map

Fo i R"— {0} = {y: F(p) Ty =0}  F.(5) = ﬁ (I — F)F()T) 6.

> As an example, we can exploit the representation above to prove that the smooth
map F is a submersion, that is, F is surjective: choose v such that F(p)' v = 0.
Letting § = ||p|| v, we have Fi(§) =~

. /
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GExample (another submersion onto the unit-sphere): consider the map \
F:0(n)—S"YR) F(X)=Xe,
where e; = (1,0,...,0)".

> The map F'is smooth and we have the commutative diagram

A~

F
R7Xn » R"
LO(n) [/S”_l(R)
O(n) » S 1(R)
F

where F(X) = Xe;

> The push-forward of F at any point Xg € R™"*™ is easily obtained:

ﬁ’* . TXOR?’LXTL ~ R?’LXTL N Tﬁv(XO)Rnxn ~ Rnxn

\ F.(A) = Aey /
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> Now, for Qo = [q1 g2 -+ qn] € O(n),

TQOO(n) QoK(n,R)
TognS™ 1(®) = {5 ¢T6=0}

> Thus, we can represent the push-forward
F* : TQOO(n) — TF(QO)Sn_l(R)
by the linear map

Fy @ QoK(n,R) = {6 : ¢{ § =0}  Fu(QoK) =QoKer

> Exploiting the representation above, it is straightforward to show that F is
surjective and, therefore, I’ is a submersion

. /
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[1 Lemma [Embedded submanifolds of product manifolds] If A is embedded in M
and B is embedded in N, then A X B is embedded in M x N

[J Example (tangent space identifications for product manifolds): let
(p,q) € M x N. We have the identification

Tip,gyM X N =2Tp M & TyN
due to the isomorphism

T« X TN - T(p,q)M XN —T,MDTyN

M X TN (Z(p,g)) = (T01+(Z(p,))s TN+ (Z(p,q)))

. /

58




TN * (Z(p,q)> A <_7TN* Z(p.9)
qe Ips >
M * l T Lgx
® >
p UM * (Z(p,q)) M

The inverse map is given by

tgx B Ipx + IpM STqN — T, )M X N g% D Ipx (Xp, Yq) = 1gx (Xp) + 39+ (Yq),

where
g : M — M XN x — (x,q)

\ Jp: N— MxN y— (p,y)

/
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/The discussed identification T, )M X N =T, M @ T4 N can be used as follows. \
Suppose we have a smooth map F' : M X N — P. We want to compute the
push-forward of F' at the point (p, q), that is, the linear map

B 2 Tip,gyM X N = Tpp q) P Zp,q) — Fx(Zp,q))-

Since T(, )M X N = Tp M & TqN, we know that it can be represented by a linear
map

The next diagram illustrates the idea:

ToMOTyN  ——p TpggM X N —p  TppqP
1gx D Jpx Fy

F« (the identification)
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/To find out how to represent F by this latter map, we reason as follows: \
Fo(Xp,Yq) =~ Fyougs @ gp«(Xp, Yg)

Fy (19« Xp + gpxYq)

(Fo1g)«Xp + (F0p)«Yq

where
Fo=Foiw: M—P x — F(x,q)

and
Fp=Fogy : M—>P  y— F(py).

That is, Fy and F), correspond to I' when we hold fixed the 2nd and 1st argument at
q and p, respectively.

For a specific example, let M = N = P = R™*™ and consider the smooth map
F:MxN—P F(X,Y)=XY.

The push-forward of F' at the point (Xo, Yg) can be represented by the linear map

\ Fy : R™X™ @Rnxn — RXM F*(A,Q) = AYy + X2 /
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[1 Example (embedded submanifolds of product manifolds): let A, B and C be
embedded submanifolds of M, N and P, respectively. Let F' : A x B — C be a
smooth map. Suppose that there exists a smooth map F : M x N — P such that

the following diagram commutes

F
M x N » P
lLAx B TLC
A X B »
F
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Note that A x B is embedded in M x N. Thus, for any given (a,b) € A x B, we
already know that we have the following diagram

F,
taxBx (T(ap)A X B) » o (Tr(a,p)C)
LA x Bx LC %
T(a,p)A X B . » Tr@pnC

which allows us to represent the “hard” linear map
F* : T(a,b)A x B—(C

by the “easier” one

N

~

Fy : tax B« (T(a,b)A X B) C T(a,b)M X N — 1o« (TF(a,b)C) C TF(a,b)P
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/Our goal here is to exploit the tangent space identifications discussed in the previous\
example to find out another representation for Fi.

We start by noting that we have the following two diagrams

~ A~

1p Ja
M » M X N N » M XN
LA LAxB LB LAx B
A » AXB B » AXxB
1p Ja
where
1w A— AXB x — (x,b)
M — MXN x +— (x,b)
Ja : B— AXB y — (a,y)

Jo : N> MxN  ye (ay)
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From this, it follows that

/Z\b* @ja*
LAx (TCLA) D LB« (TbB> » LAXBx (T(a,b)A X B)
LAsx X LB« LA X Bx
ToADTyB > T(a,b)A X B
ok D Jax
where

(2% @JCL* : TaA D TbB - T(a,b)A X B (Xaayb) = Zb*(Xa) +-]a*(Yb)
?b* @3\@* T oM BTy N — T(a,b)M X N (Xa,Yb) l—>/’L\b*(Xa) ‘I‘./]\a*(Yb)
Ltas X tpx : To AP Ty B - Ty,M &T, N (Xa,Ys) — (tax(Xa),tBx(Y2))

N
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The equality
LAx Bx O Uhx D Jax :/Z\b* @3\@* OlAx X LBx

expressed in the last diagram can be proved as follows:

LAX Bx O Whx D Jax (Xa,Yb) = LA X Bx (Zb* (Xa) ‘|‘]a*(Yb))

= LAxB*OZb*(Xa)+LAXB*O]a*(Yb)
— (LA><B o Zb)* (Xa) + (LAXB O]a)* (Yb)
= (wota), (Xa)+ (Jaorn), (Yp)

= s (Lax(Xa)) + Jax (tB+(Y3))

= 7I,\b* @ja* (LA*(XG,)JLB*(Yb))

= s D Jax ©lax X tBx(Xa, Ys).

In (a), the chain rule for push-forwards was used. In (b), we used the two
commutative diagrams in page 64.

N
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L Ax

mow, taking the last diagram in page 64 and plugging it on the left of the last \
diagram in page 63 yields

F (the identification)

TaA) ® vp« (T B) > » o (TranP)
A A A
LAx X LBx LA X Bx LO %
T, A® T,B = w0, C
~ T(a,b)A X B F
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Since the arrows marked with ~ denote isomorphisms, this shows that F can be
represented by the linear map

Fye © tax (TaA) DL« (TbB) — L'« (TF(a,b)C)

given by
(LA*(Xa)y LB*(Yb)) = ﬁ* 7l'\b>|< (LA*(Xa)) +3\a* (//B*(Yb)))
= ﬁb* (LA*(Xa)) + ﬁa* (LB*(Yb)) )
where

Fy: M—P z — F(z,b)
Fo, : N— P y — Fl(a,y)
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[ ] Example: (Polar decomposition is a diffeomorphism): consider the map

F : P(n,R) x O(n) — GL(n,R) F(P,Q) = PQ.

The map F' is smooth (why?).

We have the following commutative diagram

F
]Rnx'n XRan > Ran
LP(n,R)xO(n) LGL(n,R)
P(n,R) x O(n) » GL(n,R)
F

where
F : R™*" x R™*™ - R™™  F(X,Y)=XY
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Also:

12

LP(n,R)x* (TPOP(n7R)) S(’I’L,R)
LO(n)x* (TQOO(TL)> QOK(naR)
LGL(n,R))* (TXOGL(TL,R)) =~ R7»X™,

Thus, the push-forward
F* : T(Po,QO)P(n7R> X O(TL) — TF(P(),Q@)GL(TL7R)
can be represented by the linear map

Fi : S(n,R) ® QoK(n,R) — R**" Fy(A, V) = AQo + PoV.

Since F is an injective linear map for any (Py, Qo), we conclude that F'is a

diffeomorphism.

N

Note that P(n,R), O(n) and GL(n,R) are embedded submanifolds of R™*™.

\
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