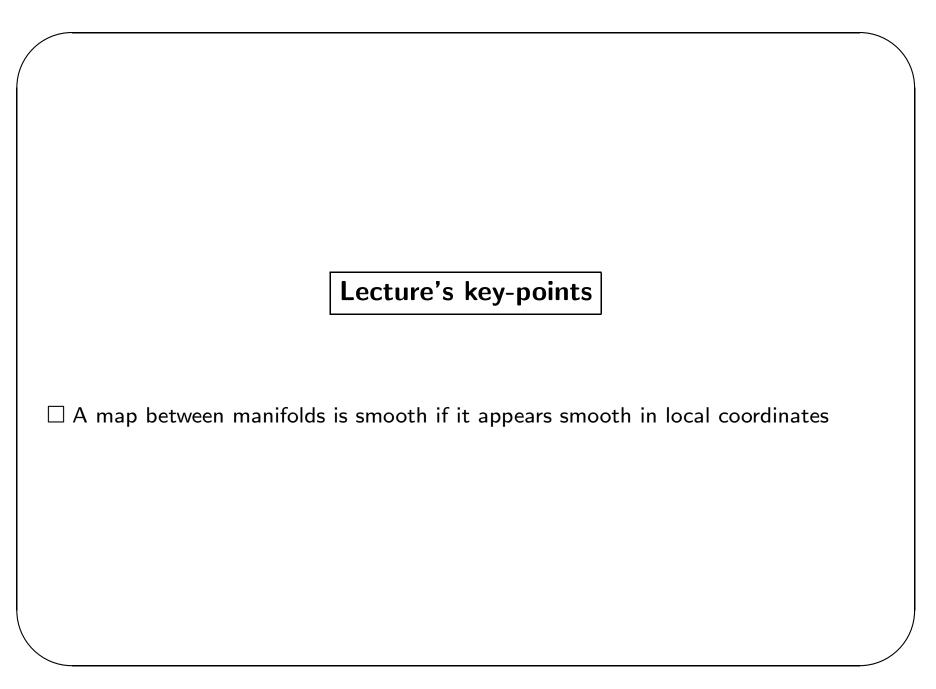
Nonlinear Signal Processing 2006-2007

Smooth maps (Ch.2, "Introduction to Smooth Manifolds", J. Lee, Springer-Verlag)

Instituto Superior Técnico, Lisbon, Portugal

João Xavier

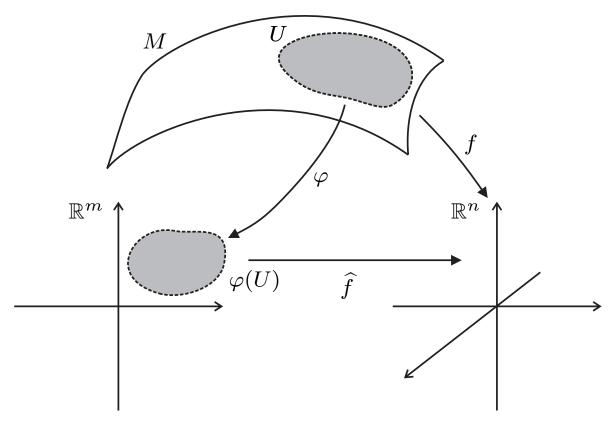
jxavier@isr.ist.utl.pt



 \square **Definition [Smooth function]** Let M be an m-dimensional smooth manifold. A function $f:M\to\mathbb{R}^n$ is said to be smooth if, for every smooth chart (U,φ) , the function

$$\widehat{f}: \varphi(U) \subset \mathbb{R}^m \to \mathbb{R}^n \qquad \widehat{f} = f \circ \varphi^{-1}$$

is smooth. The map \widehat{f} is called the coordinate representation of f

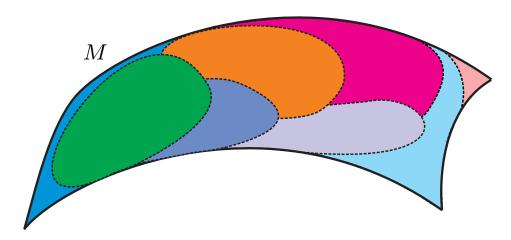


 \square **Definition** $[C^{\infty}(M)]$ The set of all smooth real valued functions $f:M\to\mathbb{R}$ is denoted by $C^{\infty}(M)$. Note that $C^{\infty}(M)$ is a vector space over \mathbb{R} and a ring under pointwise multiplication:

$$f,g \in C^{\infty}(M) \Rightarrow af + bg \in C^{\infty}(M)$$
 for all $a,b,\in \mathbb{R}$ and $fg \in C^{\infty}(M)$

☐ Lemma [It is sufficient to check smoothness on a smooth atlas] Let

 $\mathcal{A} = \{(U_i, \varphi_i)\}$ be a smooth atlas for M. Then, $f: M \to \mathbb{R}^n$ is smooth if and only if $\widehat{f}_i = f \circ \varphi_i^{-1}$ is smooth for each i



☐ Example (map out of the unit-sphere): the inclusion map

$$\iota: S^{n-1}(\mathbb{R}) \to \mathbb{R}^n \qquad \iota(x) = x$$

is smooth

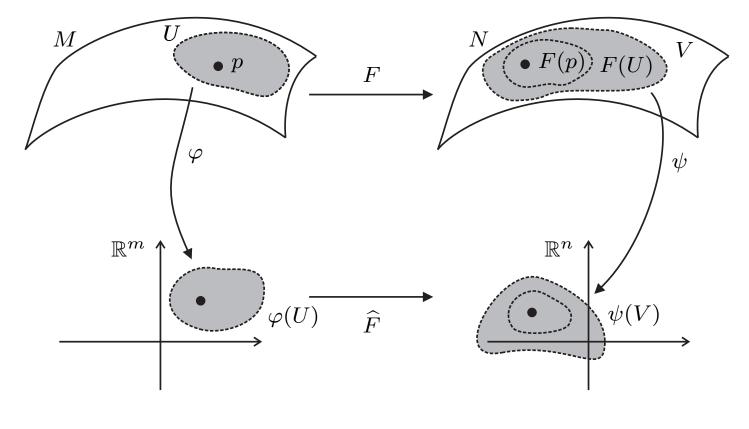
☐ Example (unit-sphere again): the function

$$f: \mathsf{S}^{n-1}(\mathbb{R}) \to \mathbb{R}^{n \times n} \qquad f(u) = uu^{\top}$$

 \square **Definition [Smooth map]** Let $F:M\to N$ be a map between smooth manifolds.

The map F is said to be smooth if, for every $p\in M$, there exist smooth charts (U,φ) containing p and (V,ψ) containing F(p) such that $F(U)\subset V$ and

$$\widehat{F}: \varphi(U) \to \psi(V) \qquad \widehat{F} = \psi \circ F \circ \varphi^{-1}$$



☐ Example (map into the unit-sphere): the map

$$F: \mathbb{R}^n - \{0\} \to S^{n-1}(\mathbb{R}) \qquad F(x) = \frac{x}{\|x\|}$$

is smooth

☐ Example (map in and out of the unit-circle): the map

$$F: \mathsf{S}^1(\mathbb{R}) o \mathsf{S}^1(\mathbb{R}) \qquad F\left(egin{bmatrix} x \ y \end{bmatrix} \right) = egin{bmatrix} -y \ x \end{bmatrix}$$

is smooth

 \square **Example (product manifolds):** let M and N be smooth manifolds.

The projection map

$$\pi_M: M \times N \to M \qquad \pi_M(p,q) = p$$

For fixed $q \in N$, the inclusion map

$$\iota_q: M \to M \times N \qquad \iota(p) = (p,q)$$

is smooth

 \square **Example (inclusion map):** let M be an n-dimensional smooth manifold and W be an open submanifold of M. The inclusion map

$$\iota : W \to M \qquad \iota(p) = p$$

is smooth

Proof: Let $p \in W$ and choose a smooth chart in M containing p, say (U,φ) . Then, $(V,\varphi|_V)$ is a smooth chart in W, where $V=W\cap U$. Note that $\iota(V)=V\subset U$. Also, the coordinate representation of ι with respect to the smooth charts $(V,\varphi|_V)$ in W and (U,φ) in M is given by

$$\widehat{\iota}(x^1,\ldots,x^n) = \varphi \circ \iota \circ \varphi|_V^{-1}(x^1,\ldots,x^n) = (x^1,\ldots,x^n)$$

which is smooth.

☐ **Lemma [Smoothness implies continuity]** A smooth map between smooth manifolds is continuous.

Proof: Let $F: M \to N$ be a smooth map. Choose any $p \in M$. We will show that there exists an open subset U of M containing p such that $F|_U: U \to N$ is continuous (recall the local criterion for continuity from lecture 2). Since F is smooth, there exist smooth charts (U,φ) containing p and (V,ψ) containing F(p) such that $F(U) \subset V$ and $\widehat{F} = \psi \circ F \circ \varphi^{-1}$ is smooth. In particular, \widehat{F} is continuous. Thus, $F|_U = \psi^{-1} \circ \widehat{F} \circ \varphi$ is continuous (composition of continuous maps).

 \Box Lemma [Composition of smooth maps is smooth] If $F:M\to N$ and $G:N\to P$ are smooth maps, then $G\circ F:M\to P$ is smooth

 \square Lemma [Restriction of a smooth map to an open submanifold is smooth] Let $F:M\to N$ be a smooth map between smooth manifolds. If W is an open subset of M, then $F|_W:W\to N$ is smooth.

Proof: $F|_W = F \circ \iota$ where $\iota : W \to M$ denotes the inclusion map.

 \square Lemma [Local criterion for smoothness] Let $F:M\to N$ be a map between smooth manifolds. The map F is smooth if and only if each point $p\in M$ has an open neighborhood W such that $F|_{W}:W\to N$ is smooth.

Proof: (\Rightarrow) Take W=M. (\Leftarrow) Let $p\in M$. By hypothesis, there exist an open subset W containing p such that $F|_W:W\to N$ is smooth. This means that there exist smooth charts (U,φ) in W containing p and (V,ψ) in N containing F(p) such that $F|_W(U)\subset V$ and $\widehat{F}|_W=\psi\circ F|_W\circ \varphi^{-1}$ is smooth. By the definition of open submanifolds, the chart (U,φ) is also a smooth chart in M and $F|_W=F$. Thus, $F(U)\subset V$ and $\widehat{F}=\psi\circ F\circ \varphi^{-1}=\widehat{F}|_W$ is smooth.

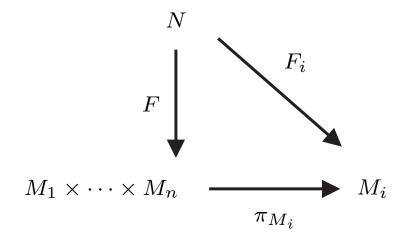
 \square Lemma [Product manifolds] Let N be a smooth manifold and $M_1 \times \cdots \times M_n$ be a product smooth manifold. The map

$$F: N \to M_1 \times \cdots \times M_n$$

is smooth if and only if each map

$$F_i: N \to M_i \qquad F_i = \pi_{M_i} \circ F$$

st Intuition: analysis of F can be decoupled in simpler maps F_i



☐ Example (decomposing a vector in amplitude and direction): the map

$$F: \mathbb{R}^n - \{0\} \to \mathbb{R}^+ \times \mathsf{S}^{n-1}(\mathbb{R}), \qquad F(x) = \left(\|x\|, \frac{x}{\|x\|}\right)$$

 \square **Definition [Diffeomorphism]** Let $F:M\to N$ be a map between smooth manifolds. The map F is said to be a diffeomorphism if F is bijective, smooth and its inverse map $F^{-1}:N\to M$ is smooth

☐ Example (unit-sphere): the map

$$F: \mathsf{S}^1(\mathbb{R}) \to \mathsf{S}^1(\mathbb{R}) \qquad f\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} -y \\ x \end{bmatrix}$$

is a diffeomorphism

☐ Example (decomposing a vector in amplitude and direction): the map

$$F: \mathbb{R}^n - \{0\} \to \mathbb{R}^+ \times \mathsf{S}^{n-1}(\mathbb{R})$$
 $F(x) = \left(\|x\|, \frac{x}{\|x\|}\right)$

is a diffeomorphism

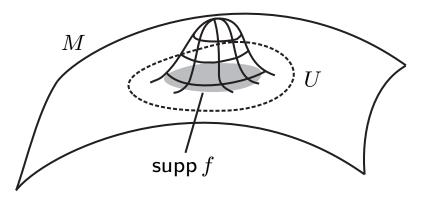
 \square **Definition [Lie group]** Let G be a group which is at the same time a smooth manifold. Then, G is said to be a Lie group if the maps $m:G\times G\to G$, m(x,y)=xy and $\iota:G\to G$, $\iota(x)=x^{-1}$ are smooth.

 \square **Example:** $\mathsf{GL}(n,\mathbb{R})$ is a Lie group

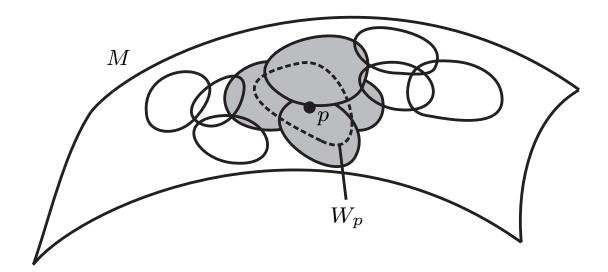
 \square **Definition [Support of functions]** Let M be a smooth manifold and $f:M\to\mathbb{R}^n$ any function. The support of f is defined as

$$\operatorname{supp} f = \overline{\{p \in M \,:\, f(p) \neq 0\}}.$$

If supp $f \subset U$, we say that f is supported in U. If supp f is compact, we say that f is compactly supported.

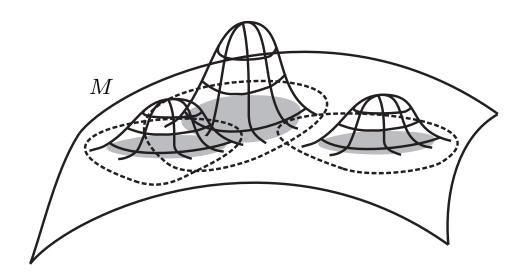


 \square Definition [Locally finite collection of subsets] Let X be a topological space. A collection of subsets $\mathcal{U} = \{U_i\}$ of X is said to be locally finite if each point $p \in X$ has a neighborhood W_p that intersects at most finitely many of the sets U_i .



 \square **Definition [Partition of unity]** Let $\mathcal{U}=\{U_i\}_{i\in I}$ be an open cover of a smooth manifold M. A partition of unity subordinate to \mathcal{U} is a collection $\{\varphi_i:M\to\mathbb{R}\}_{i\in I}$ of smooth functions such that

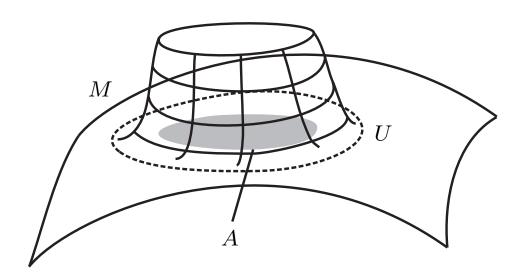
- (i) $0 \le \varphi_i(x) \le 1$ for all $i \in I$ and $x \in M$
- (ii) supp $\varphi_i \subset U_i$
- (iii) the collection $\{\operatorname{supp} \varphi_i\}_{i\in I}$ is locally finite
- (iv) $\sum_{i \in I} \varphi_i(x) = 1$ for all $x \in M$.



 \square Theorem [Existence of partitions of unity] Let $\mathcal{U} = \{U_i\}_{i \in I}$ be any open cover of M. There exists a partition of unity subordinate to \mathcal{U} .

 \square Corollary [Bump functions] Let M be a smooth manifold. Let A be a closed subset of M and U an open subset containing A. There exists a smooth function $\varphi:M\to\mathbb{R}$ such that $\varphi\equiv 1$ on A and $\operatorname{supp}\varphi\subset U$.

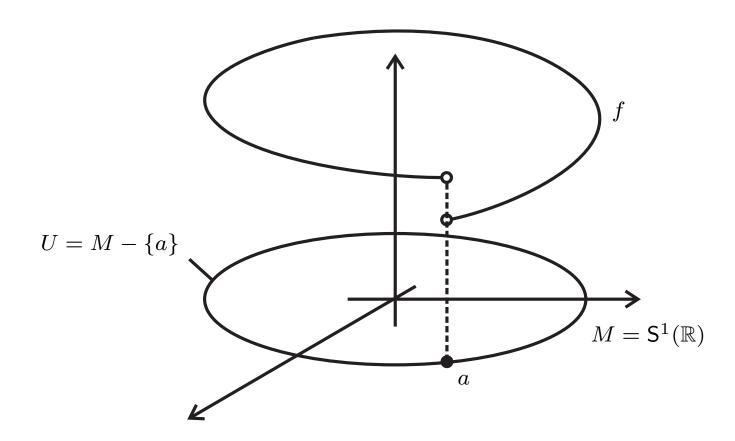
Such φ is called a bump function for A supported in U.



 \square **Example (globalizing local objects):** let M be a smooth manifold, U an open subset of M and $f:U\to\mathbb{R}$ a smooth function. For any $p\in U$, there exists a smooth function $F:M\to\mathbb{R}$ such that F=f on an open neighborhood V of P. Proof: Let V be an open neighborhood of P such that $\overline{V}\subset U$ (note: such V exists

Proof: Let V be an open neighborhood of p such that $\overline{V} \subset U$ (note: such V exists because M is locally compact and Hausdorff. In fact, one may even take \overline{V} to be compact). Let φ be a bump function for \overline{V} supported in U. We define $F:M\to \mathbb{R}$ as $F(x)=\varphi(x)f(x)$ for $x\in U$ and F(x)=0 for $x\not\in \operatorname{supp} \varphi$. The map F is smooth thanks to the local criterion for smoothness.

 \square **Example (cont.):** in general, we cannot hope to extend f from U to the whole manifold M as the next sketch shows (in that example, $M = \mathsf{S}^1(\mathbb{R})$ is the circle and U is the open set $M - \{a\}$).



 \square **Example (cont.):** however, given any point $p \in U$, the map $f: U \to \mathbb{R}$ can be extended to a smooth map $F: M \to \mathbb{R}$ which agrees with f on a neighborhood of p

