Nonlinear Signal Processing 2006-2007

Smooth manifolds (Ch.1, "Introduction to Smooth Manifolds", J. Lee, Springer-Verlag)

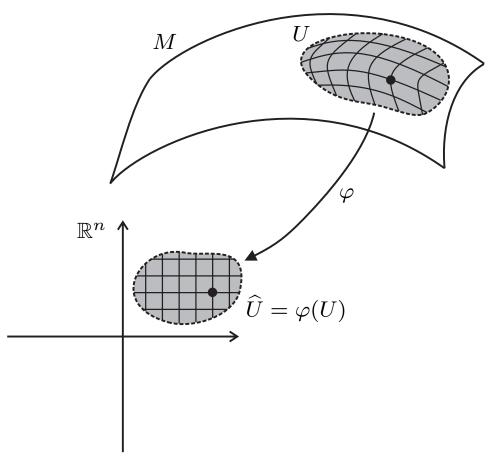
Instituto Superior Técnico, Lisbon, Portugal

João Xavier

jxavier@isr.ist.utl.pt

Lecture's key-points \square A smooth manifold M has (many) local coordinates around each point \square These local coordinates overlap smoothly

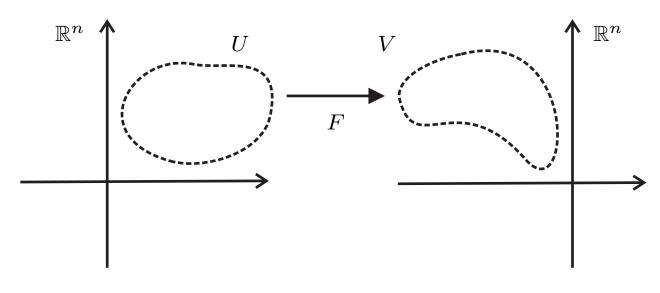
 \square **Definition [Coordinate chart]** Let M be a topological n-manifold. A coordinate chart on M is a pair (U,φ) where U is an open subset of M and $\varphi:U\to \widehat{U}$ is a homeomorphism from U to an open subset $\widehat{U}=\varphi(U)\subset\mathbb{R}^n$



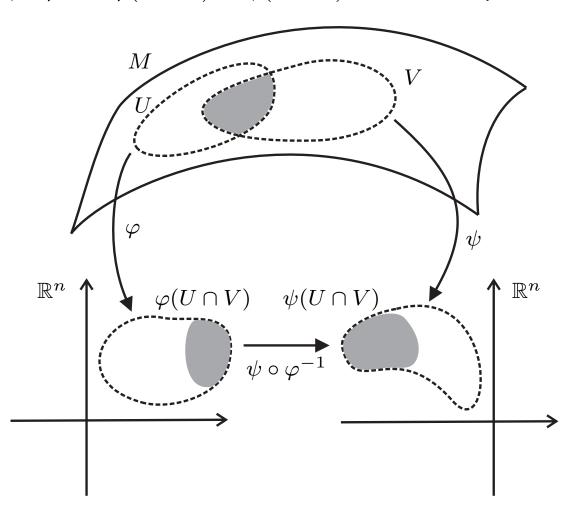
 \square U=coordinate domain, $\varphi=$ coordinate map

 \square Definition [Smooth maps in Euclidean spaces] Let $F:U\subset\mathbb{R}^n\to\mathbb{R}^m$ be a map defined on an open subset $U\subset\mathbb{R}^n$. The map F is said to be smooth if all the component functions of $F=(F^1,F^2,\ldots,F^m)$ have continuous partial derivatives of all orders

 \square **Definition [Diffeomorphisms in Euclidean spaces]** Let $F:U\to V$ be a map defined on open subsets U,V of \mathbb{R}^n . The map F is said to be a diffeomorphism if it is bijective, smooth and its inverse map $F^{-1}:V\to U$ is smooth

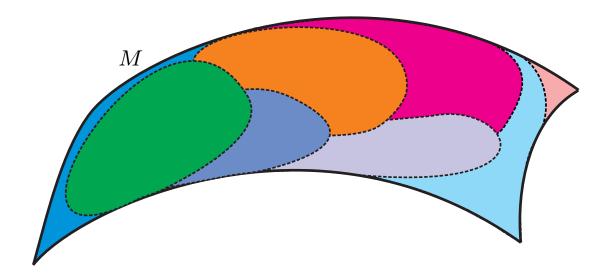


 \square Definition [Smooth compatibility of charts] Let M be a topological manifold. Two charts (U,φ) and (V,ψ) on M are said to be smoothly compatible if either $U\cap V=\emptyset$ or $\psi\circ\varphi^{-1}\,:\,\varphi(U\cap V)\to\psi(U\cap V)$ is a diffeomorphism



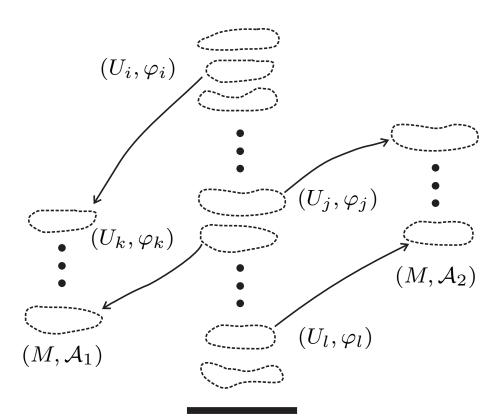
 \square **Definition [Smooth atlas, maximal smooth atlas]** Let M be a topological manifold. A smooth atlas $\mathcal A$ on M is a collection of smoothly compatible charts whose domains cover M.

A smooth atlas \mathcal{A} is said to be maximal if it does not exist a smooth atlas $\widetilde{\mathcal{A}}$ strictly larger that \mathcal{A} ($\mathcal{A} \subset \widetilde{\mathcal{A}}$ and $\mathcal{A} \neq \widetilde{\mathcal{A}}$)



 \square **Definition [Smooth manifold]** A smooth manifold is a pair (M,\mathcal{A}) where M is a topological manifold and \mathcal{A} is a maximal smooth atlas on M

* Intuition: a smooth manifold is a topological manifold which can be covered by coordinate charts which fit nicely together



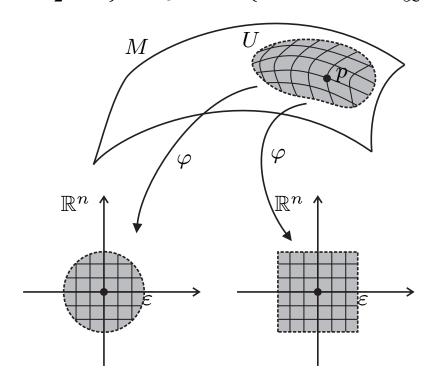
Stack of all coordinate charts of M

- \Box Theorem [Maximal smooth atlas] Let M be a topological manifold. If $\mathcal A$ is a smooth atlas on M, then there exists an unique maximal smooth atlas on M which contains $\mathcal A$
- * Intuition: a straight-line through the origin can be specified by a single non-zero point (you don't need to furnish <u>all</u> points)

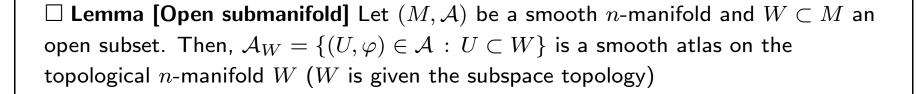
 \square **Example:** \mathbb{R}^n is a smooth manifold of dimension n**Example:** \mathbb{R}^n is a smooth manifold of dimension n (this is not a typo!) **Example (vector space):** a real vector space of dimension n is a smooth manifold of dimension n. $\triangleright \mathsf{S}(n,\mathbb{R}) = \{ X \in \mathbb{R}^{n \times n} : X = X^{\top} \}$ **Example (unit-sphere):** the unit-sphere $S^{n-1}(\mathbb{R}) = \{ x \in \mathbb{R}^n : ||x|| = 1 \}$ is a smooth manifold of dimension n-1**Definition [Smooth chart]** Let (M, A) be a smooth manifold. Any coordinate

chart (U,φ) contained in the given maximal smooth atlas $\mathcal A$ is called a smooth chart

Lemma [Existence of special smooth charts] Let (M,\mathcal{A}) be a smooth manifold of dimension m. If (U,φ) is a smooth chart and $V\subset U$ is an open subset, then $(V,\varphi|_V)$ is a smooth chart. For any $p\in M$ and $\varepsilon>0$ there exists a smooth chart (U,φ) containing p such that $\varphi(U)=B^m_\varepsilon(0)$ or $\varphi(U)=C^m_\varepsilon(0)$, where $B^m_\varepsilon(0)=\left\{x\in\mathbb{R}^m\,:\,\|x\|_2<\varepsilon\right\}$ $C^m_\varepsilon(0)=\left\{x\in\mathbb{R}^m\,:\,\|x\|_\infty<\varepsilon\right\}$



* Intuition: A smooth manifold contains a lot of smooth charts, many of them nice



 \square Theorem [Product manifolds] Let (M, \mathcal{A}_M) and (N, \mathcal{A}_N) be smooth manifolds of dimension m and n. Then,

$$\mathcal{A}_{M\times N} = \{ (U \times V, \varphi \times \psi) : (U, \varphi) \in \mathcal{A}_M, (V, \psi) \in \mathcal{A}_N \}$$

is a smooth atlas on $M\times N$ and it is called the smooth (canonical) product atlas on the topological (m+n)-manifold $M\times N$