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Lecture’s key-points

[J A connected space is made of one piece
[J A compact space behaves muck like a “finite space”

[J Continuous maps preserve connectedness and compactness

.




GDefinition [Connected space] Let X be a topological space. A separation of X is
a pair of nonempty, disjoint, open subsets U,V C X such that X = U U V. X is said
to be disconnected if there exists a separation of X, and connected otherwise

[] Definition [Connected subset] Let X be a topological space. A subset A C X is
said to be connected if the subspace A is connected: there do not exist open sets

\U,VinXsuchthatAﬂU;é@, ANV £0, (AnU)N(ANV) =1, ACUUV/
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GExample: R™ is connected

[] Example (simple disconnected subset): the subset
A={(z,y) eR® : z € [-3,1[U]2,5], y = 0}

of R? is disconnected. Equivalently, the topological space A (endowed with the
subspace topology) is disconnected
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[] Example (more interesting disconnected subset): the subset
O(n) ={X eR"™" . XX =1,}

of R™*™ is disconnected. Equivalently, the topological space O(n) (endowed with the
subspace topology) is disconnected.
The open sets

>U ={X e R"*™ : det X < 0}

>V ={X € R"*™ : det X > 0}
provide a separation of O(n)

(note that O(n) NU # 0 and O(n) NV # 0; why ?)

. /
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[J Proposition [Characterization of connectedness] A topological space X is

connected if and only if the only subsets of X that are both open and closed are ()
and X

[ Example: want to prove that all points in a connected space X have property P
> define S = {x € X : x has property P}
> show S is non-empty
> show S is closed

> show S is open

Conclude that S = X

[] Example: let X be a connected space and A : X — S(n,R) a continuous map.
Suppose that the eigenvalues of A(x) belong to {0,1} for any z € X. Then,
rank A(x) is constant over z € X

.
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GProposition [Characterization of connected subsets of R] A nonempty subset of\
R is connected if and only if it is an interval

[J Definition [Path connected space] Let X be a topological space and p,q € X. A
path in X from p to g is a continuous map f : [0,1] — X, f(0) =p and f(1) = q.
We say that X is path connected if for any p,q € X there is a path in X from p to q.

p = f(0)

[1 Theorem [Easy sufficient criterion for connectedness] If X is a path connected

onlogical space, then X is connected /




GExample: convex sets are connected
>S(n,R) ={X cR™" : X =X"}
> UT(n,R) = {X € R"X™ : X upper-triangular and X;; > 0}

[J Example (special orthogonal matrices): SO(n) = {X € O(n) : det(X) =1} is
connected because there is a path in SO(n) from I, to any X € SO(n)

[J Example (non-singular matrices with positive determinant):
GLT(n,R) = {X € R™ "™ : det(X) > 0} is connected because there is a path in
GL™ (n,R) from I,, to any X € GL™(n,R)

[] Example (special Euclidean group):

SE(n) = @ 0 : Q €S0(n),0 € R™

0 1

Qconnected because there is a path in SE(n) from [,,41 to any X € SE(n)

/
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GTheorem [Main theorem on connectedness] Let X, Y be topological spaces and\
let f : X — Y be a continuous map. If X is connected, then f(X) (as a subspace
of Y') is connected

[J Example (unit-sphere): S”~1(R) = {x € R™ : ||z|| = 1} is connected, because it
is the image of the connected space R”*! — {0} through the continuous map

fiRMYL {0} R f(z) = —

]

[] Example (ellipsoid): any non-flat ellipsoid in R™ can be described as
E={Au+zo : ueS" '(R)}

where g € R" is the center of the ellipsoid and A € GL(n,R) defines the shape and
spatial orientation of E.

Thus E is connected because it is the image of the connected space S*~!(R) through
the continuous map

\ f:S" IR =R  f(z) = Az + xo. /




/DExample (projective space RP™): RP"™ is connected because it is the image of the\

connected space R*T1 — {0} through the continuous projection map

m : R*"t — {0} — RP" m(x) = [x]

[] Proposition [Properties of connected spaces]

(a) Suppose X is a topological space and U,V are disjoint open subsets of X.
If A is a connected subset of X contained in U UV, then either AC U or ACV

(b) Suppose X is a topological space and A C X is connected. Then A is

connected

(c) Let X be a topological space, and let {A;} be a collection of connected
subsets with a point in common. Then |J, A; is connected

(d) The Cartesian product of finitely many connected topological spaces is

connected

\ (e) Any quotient space of a connected topological space is connected /
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/DTheorem [Intermediate value theorem] Let X be a connected topological space\
and f is a continuous real-valued function on X. If p,q € X then f takes on all
values between f(p) and f(q)

[] Example (antipodal points at the same temperature): let
T : S'(R)CR? =R
be a continuous map on the unit-circle in R%. Then, there exist a point p € S'(R)

such that T'(p) = T(—p).

Consequence: there are two antipodal points in the Earth's equator line at the same

temperature

[] Definition [Components] Let X be a topological space. A component of X is a
maximally connected subset of X, that is, a connected set that is not contained in

any larger connected set.

\*Intuition: X consists of a union of disjoint “islands” /components /
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[J Example (orthogonal group): the orthogonal group
O(n) ={X e M(n,R) : XT'X =1,}
has two components:

SO(n) ={X € O(n,R) : det X =1}
O (n)={X € O(n,R) : det X = —1}

[] Proposition [Properties of components] Let X be any topological space.
(a) Each component of X is closed in X

(b) Any connected subset of X is contained in a single component

[] Definition [Compact space] A topological space X is said to be compact if every
open cover of X has a finite subcover. That is, if i/ is any given open cover of X,

then there are finitely many sets Uy,..., U, € U suchthat X =U; U--- U Uy
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[] Definition [Compact subset] Let X be a topological space. A subset A C X is

said to be compact if the subspace A is compact.

In equivalent terms, the subset A is compact if and only if given any collection of

open subsets of X covering A, there is a finite subcover

[] Example: the interval A =]0,1] C R is not compact /
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GProposition [Characterization of compact sets in R™] A subset X in R"” is \

compact if and only if X is closed and bounded

[1 Example (Stiefel manifold): the set
O(n,m) = {X €R™™ ; XTX = I,,}

Is compact because it is closed and bounded.

> closed because O(n, m) = f~1({In}) and
f: RWX™M L RMX™M f(X)=XTX
Is continuous
> bounded because if X € O(n,m) then || X||? =tr(X T X) = tr(I;n) = m
Note that O(n,1) = S*~1(R) and O(n,n) = O(n)

Qcompact

[] Theorem [Main theorem on compactness] Let X, Y be topological spaces and let
f : X — Y be a continuous map. If X is compact, then f(X) (as a subspace of Y')

/
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[J Example (projective space RP™): the projective space RP™ is compact because it
is the image of the compact set S™(RR) through the continuous projection map
7w : R — {0} — RP™

[] Proposition [Properties of compact spaces]
(a) Every closed subset of a compact space is compact

(b) In a Hausdorff space X, compact sets can be separated by open sets. That is,
if A, B C X are disjoint compact subsets, there exist disjoint open sets U,V C X
such that ACU and BCV

(c) Every compact subset of a Hausdorff space is closed

(d) The Cartesian product of finitely many compact topological spaces is compact

(e) Any quotient space of a compact topological space is compact

. /
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/DExample (special orthogonal matrices): \

SO(n) ={X € O(n) : det X =1}
is compact because it is a closed subset of the compact space O(n).
It is closed because SO(n) = f~1({1}) and

f:0(n)—R f(X) =det X

IS continuous

[] Theorem [Extreme value theorem] If X is a compact space and f : X — R is

continuous, then f attains its maximum and minimum values on X

[] Proposition [Characterization of compactness in 2nd countable Hausdorff
spaces] Let X be a 2nd countable Hausdorff space. The following are equivalent:

(a) X is compact

\ (b) Every sequence in X has a subsequence that converges to a point in X /
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ﬁExample: continuity of singular values \

> Lemma Let X, Y be 2nd countable Hausdorff spaces. Furthermore, let Y be

compact. Let ' : X XY — R be a continuous function. For each x € X, we define
the function F, : Y — R, Fz(y) = F(x,y). The function

fiX—R f(@)=maxFa)

Is continuous
> The function Amax : S(n,R) — R, X — Apax(X) is continuous
> For A € S(n,R), order its eigenvalues

An(A) S An—1(A4) < - < A2(A4) < A (A)
N—— S——
Amin(A) AmaX(A)
The function A\ : S(n,R) — R, X +— A (X) is continuous
> For A € R™*™  order its singular values

op(A) < -+ < 02(A) < 01(A)  (p = min{n, m})
N——
O'max(A)

Qhe function o : R"*™ — R, X +— o (X) is continuous /
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GExample: Principal Component Analysis (PCA) is a continuous map \

> Lemma Let X, Y be 2nd countable Hausdorff spaces. Furthermore, let Y be
compact. Let ' : X XY — R be a continuous function. For each x € X, we define
the function F, : Y — R, Fy(y) = F(x,y). Suppose that, for each x € X, there
exists only one global minimizer in Y of the function F,. Let ¢ : X — Y be the map
which, given x € X, returns the (unique) global minimizer in Y of the function Fj.
The map ¢ is continuous.

> Let P = [p1p2 ... pr] € R?*F denote a constellation of k points in R™. A
one-dimensional principal component analysis (PCA) of P consists in extracting the
“dominant” straight line in P, i.e., the straight line spanned by a vector

b '
z(P) € arg min Z pj — ij
z € R" — {0} 77!
r' PPz

= arg max

\\‘ cern—qop oI Y,
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> The straight line is unique if Amax(PP ") is simple: order the eigenvalues

AM(PPT) < A 1(PPT) <. ... < Xo(PP") < A (PP")
N——— SN———
Amin(PPT) AmaX(PPT)

The dominant straight line is unique for those constellations P belonging to

P = {P c Rk . A (PPT) > /\Q(PPT)}

Note that the set P is open in R™?*F

> We have a map PCA : P — RP"* 1!

PeP —> PCA » 7(z(P)) € RP*~1

. /
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> The map PCA is continuous, because

Step 1: The map

pj — 5 Pj

k
F:RP" ' xR R F([z],P)=)_ o
j=1

rxl
||

is continuous (as we have already seen in a previous example)

Step 2: Its restriction to the subspace RP"~! x P C RP"~! x R"*F is also
continuous (for brevity of notation, we keep the same symbol F):

k
F:RP"'xP—-R F(z],P)=)
j=1

ICUT

bj — 5 Pj
|||

Step 3: PCA : P — RP" ! extracts, for each P € P, the (unique) minimizer of Fp
in RP"~1. Since RP" ! is compact, the last lemma shows that PCA is continuous

. /
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