Nonlinear Signal Processing 2007-2008

Connectedness and compactness

(Ch.4, "Introduction to Topological Manifolds", J. Lee, Springer-Verlag)

Instituto Superior Técnico, Lisbon, Portugal

João Xavier

jxavier@isr.ist.utl.pt

Lecture's key-points

 \Box A connected space is made of one piece

 \Box A compact space behaves muck like a "finite space"

 \Box Continuous maps preserve connectedness and compactness

 \Box Definition [Connected space] Let X be a topological space. A separation of X is a pair of nonempty, disjoint, open subsets $U, V \subset X$ such that $X = U \cup V$. X is said to be disconnected if there exists a separation of X, and connected otherwise

 $\Box \text{ Definition [Connected subset] Let } X \text{ be a topological space. A subset } A \subset X \text{ is said to be connected if the subspace } A \text{ is connected: there do not exist open sets} U, V \text{ in } X \text{ such that } A \cap U \neq \emptyset, \quad A \cap V \neq \emptyset, \quad (A \cap U) \cap (A \cap V) = \emptyset, \quad A \subset U \cup V$

 \Box **Example:** \mathbb{R}^n is connected

□ **Example (simple disconnected subset)**: the subset

$$A = \{(x, y) \in \mathbb{R}^2 : x \in [-3, 1[\cup]2, 5], y = 0\}$$

of \mathbb{R}^2 is disconnected. Equivalently, the topological space A (endowed with the subspace topology) is disconnected

□ Example (more interesting disconnected subset): the subset

$$\mathsf{O}(n) = \{ X \in \mathbb{R}^{n \times n} : X^\top X = I_n \}$$

of $\mathbb{R}^{n \times n}$ is disconnected. Equivalently, the topological space O(n) (endowed with the subspace topology) is disconnected.

The open sets

 $\triangleright U = \{ X \in \mathbb{R}^{n \times n} : \det X < 0 \}$

$$\triangleright V = \{ X \in \mathbb{R}^{n \times n} : \det X > 0 \}$$

provide a separation of O(n)

(note that $O(n) \cap U \neq \emptyset$ and $O(n) \cap V \neq \emptyset$; why ?)

 \Box **Proposition [Characterization of connectedness]** A topological space X is connected if and only if the only subsets of X that are both open and closed are \emptyset and X

```
\Box Example: want to prove that <u>all</u> points in a connected space X have property P
```

```
\triangleright \text{ define } S = \{ x \in X : x \text{ has property } P \}
```

```
\triangleright show S is non-empty
```

```
\triangleright show S is closed
```

```
\triangleright show S is open
```

Conclude that S = X

 \Box Example: let X be a connected space and $A : X \to S(n, \mathbb{R})$ a continuous map. Suppose that the eigenvalues of A(x) belong to $\{0, 1\}$ for any $x \in X$. Then, rank A(x) is constant over $x \in X$ \square Proposition [Characterization of connected subsets of \mathbb{R}] A nonempty subset of \mathbb{R} is connected if and only if it is an interval

 \Box Definition [Path connected space] Let X be a topological space and $p, q \in X$. A path in X from p to q is a continuous map $f : [0,1] \to X$, f(0) = p and f(1) = q. We say that X is path connected if for any $p, q \in X$ there is a path in X from p to q.

 \Box Theorem [Easy sufficient criterion for connectedness] If X is a path connected topological space, then X is connected

Example: convex sets are connected

 $\triangleright \mathsf{S}(n,\mathbb{R}) = \{ X \in \mathbb{R}^{n \times n} : X = X^{\top} \}$

 $\triangleright \mathsf{U}^+(n,\mathbb{R}) = \{ X \in \mathbb{R}^{n \times n} : X \text{ upper-triangular and } X_{ii} > 0 \}$

 \Box Example (special orthogonal matrices): $SO(n) = \{X \in O(n) : det(X) = 1\}$ is connected because there is a path in SO(n) from I_n to any $X \in SO(n)$

□ Example (non-singular matrices with positive determinant): $GL^+(n, \mathbb{R}) = \{X \in \mathbb{R}^{n \times n} : det(X) > 0\}$ is connected because there is a path in $GL^+(n, \mathbb{R})$ from I_n to any $X \in GL^+(n, \mathbb{R})$

□ Example (special Euclidean group):

$$\mathsf{SE}(n) = \left\{ \begin{bmatrix} Q & \delta \\ 0 & 1 \end{bmatrix} : Q \in \mathsf{SO}(n), \delta \in \mathbb{R}^n \right\}$$

is connected because there is a path in SE(n) from I_{n+1} to any $X \in SE(n)$

 \Box Theorem [Main theorem on connectedness] Let X, Y be topological spaces and let $f : X \to Y$ be a continuous map. If X is connected, then f(X) (as a subspace of Y) is connected

 \Box Example (unit-sphere): $S^{n-1}(\mathbb{R}) = \{x \in \mathbb{R}^n : ||x|| = 1\}$ is connected, because it is the image of the connected space $\mathbb{R}^{n+1} - \{0\}$ through the continuous map

$$f : \mathbb{R}^{n+1} - \{0\} \to \mathbb{R}^n \qquad f(x) = \frac{x}{\|x\|}$$

 \Box **Example (ellipsoid):** any non-flat ellipsoid in \mathbb{R}^n can be described as

$$\mathsf{E} = \left\{ Au + x_0 : u \in \mathsf{S}^{n-1}(\mathbb{R}) \right\}$$

where $x_0 \in \mathbb{R}^n$ is the center of the ellipsoid and $A \in GL(n, \mathbb{R})$ defines the shape and spatial orientation of E.

Thus E is connected because it is the image of the connected space $S^{n-1}(\mathbb{R})$ through the continuous map

$$f : S^{n-1}(\mathbb{R}) \to \mathbb{R}^n \qquad f(x) = Ax + x_0.$$

 \Box Example (projective space \mathbb{RP}^n): \mathbb{RP}^n is connected because it is the image of the connected space $\mathbb{R}^{n+1} - \{0\}$ through the continuous projection map

 $\pi : \mathbb{R}^{n+1} - \{0\} \to \mathbb{R}\mathbb{P}^n \qquad \pi(x) = [x]$

□ Proposition [Properties of connected spaces]

(a) Suppose X is a topological space and U, V are disjoint open subsets of X. If A is a connected subset of X contained in $U \cup V$, then either $A \subset U$ or $A \subset V$

(b) Suppose X is a topological space and $A \subset X$ is connected. Then \overline{A} is connected

(c) Let X be a topological space, and let $\{A_i\}$ be a collection of connected subsets with a point in common. Then $\bigcup_i A_i$ is connected

(d) The Cartesian product of finitely many connected topological spaces is connected

(e) Any quotient space of a connected topological space is connected

 \Box Theorem [Intermediate value theorem] Let X be a connected topological space and f is a continuous real-valued function on X. If $p, q \in X$ then f takes on all values between f(p) and f(q)

Example (antipodal points at the same temperature): let

 $T \,:\, \mathsf{S}^1(\mathbb{R}) \subset \mathbb{R}^2 \to \mathbb{R}$

be a continuous map on the unit-circle in \mathbb{R}^2 . Then, there exist a point $p \in S^1(\mathbb{R})$ such that T(p) = T(-p).

Consequence: there are two antipodal points in the Earth's equator line at the same temperature

 \Box Definition [Components] Let X be a topological space. A component of X is a maximally connected subset of X, that is, a connected set that is not contained in any larger connected set.

* Intuition: X consists of a union of disjoint "islands"/components

□ **Example (orthogonal group):** the orthogonal group

$$\mathsf{O}(n) = \{ X \in \mathsf{M}(n, \mathbb{R}) : X^T X = I_n \}$$

has two components:

$$SO(n) = \{X \in O(n, \mathbb{R}) : \det X = 1\}$$
$$O^{-}(n) = \{X \in O(n, \mathbb{R}) : \det X = -1\}$$

 \Box **Proposition [Properties of components]** Let X be any topological space.

(a) Each component of X is closed in X

(b) Any connected subset of X is contained in a single component

 \Box Definition [Compact space] A topological space X is said to be compact if every open cover of X has a finite subcover. That is, if \mathcal{U} is any given open cover of X, then there are finitely many sets $U_1, \ldots, U_k \in \mathcal{U}$ such that $X = U_1 \cup \cdots \cup U_k$ \Box Definition [Compact subset] Let X be a topological space. A subset $A \subset X$ is said to be compact if the subspace A is compact.

In equivalent terms, the subset A is compact if and only if given any collection of open subsets of X covering A, there is a finite subcover

 \Box **Proposition [Characterization of compact sets in** \mathbb{R}^n] A subset X in \mathbb{R}^n is compact if and only if X is closed and bounded

Example (Stiefel manifold): the set

$$\mathsf{O}(n,m) = \{ X \in \mathbb{R}^{n \times m} : X^\top X = I_m \}$$

is compact because it is closed and bounded.

 \triangleright closed because $O(n,m) = f^{-1}(\{I_m\})$ and

$$f : \mathbb{R}^{n \times m} \to \mathbb{R}^{m \times m} \qquad f(X) = X^{\top} X$$

is continuous

 \triangleright bounded because if $X \in O(n,m)$ then $||X||^2 = tr(X^{\top}X) = tr(I_m) = m$ Note that $O(n,1) = S^{n-1}(\mathbb{R})$ and O(n,n) = O(n)

 \Box Theorem [Main theorem on compactness] Let X, Y be topological spaces and let $f : X \to Y$ be a continuous map. If X is compact, then f(X) (as a subspace of Y) is compact

 \Box Example (projective space \mathbb{RP}^n): the projective space \mathbb{RP}^n is compact because it is the image of the compact set $S^n(\mathbb{R})$ through the continuous projection map $\pi : \mathbb{R}^{n+1} - \{0\} \to \mathbb{RP}^n$

□ Proposition [Properties of compact spaces]

(a) Every closed subset of a compact space is compact

(b) In a Hausdorff space X, compact sets can be separated by open sets. That is, if $A, B \subset X$ are disjoint compact subsets, there exist disjoint open sets $U, V \subset X$ such that $A \subset U$ and $B \subset V$

(c) Every compact subset of a Hausdorff space is closed

(d) The Cartesian product of finitely many compact topological spaces is compact

(e) Any quotient space of a compact topological space is compact

□ Example (special orthogonal matrices):

 $\mathsf{SO}(n) = \{ X \in \mathsf{O}(n) : \det X = 1 \}$

is compact because it is a closed subset of the compact space O(n).

It is closed because $SO(n) = f^{-1}(\{1\})$ and

$$f : \mathbf{O}(n) \to \mathbb{R} \qquad f(X) = \det X$$

is continuous

 \Box Theorem [Extreme value theorem] If X is a compact space and $f : X \to \mathbb{R}$ is continuous, then f attains its maximum and minimum values on X

 \Box Proposition [Characterization of compactness in 2nd countable Hausdorff spaces] Let X be a 2nd countable Hausdorff space. The following are equivalent:

- (a) X is compact
- (b) Every sequence in X has a subsequence that converges to a point in X

Example: continuity of singular values

 \triangleright Lemma Let X, Y be 2nd countable Hausdorff spaces. Furthermore, let Y be compact. Let $F : X \times Y \to \mathbb{R}$ be a continuous function. For each $x \in X$, we define the function $F_x : Y \to \mathbb{R}$, $F_x(y) = F(x, y)$. The function

$$f : X \to \mathbb{R} \quad f(x) = \max_{y \in Y} F_x(y)$$

is continuous

 \triangleright The function λ_{\max} : $\mathsf{S}(n,\mathbb{R}) \to \mathbb{R}$, $X \mapsto \lambda_{\max}(X)$ is continuous

 \triangleright For $A \in S(n, \mathbb{R})$, order its eigenvalues

$$\underbrace{\lambda_n(A)}_{\lambda_{\min}(A)} \leq \lambda_{n-1}(A) \leq \cdots \leq \lambda_2(A) \leq \underbrace{\lambda_1(A)}_{\lambda_{\max}(A)}$$

The function λ_k : $S(n, \mathbb{R}) \to \mathbb{R}$, $X \mapsto \lambda_k(X)$ is continuous

 \triangleright For $A \in \mathbb{R}^{n \times m}$, order its singular values

$$\sigma_p(A) \le \dots \le \sigma_2(A) \le \underbrace{\sigma_1(A)}_{\sigma_{\max}(A)} \quad (p = \min\{n, m\})$$

The function $\sigma_k : \mathbb{R}^{n \times m} \to \mathbb{R}$, $X \mapsto \sigma_k(X)$ is continuous

Example: Principal Component Analysis (PCA) is a continuous map

▷ Lemma Let X, Y be 2nd countable Hausdorff spaces. Furthermore, let Y be compact. Let $F : X \times Y \to \mathbb{R}$ be a continuous function. For each $x \in X$, we define the function $F_x : Y \to \mathbb{R}$, $F_x(y) = F(x, y)$. Suppose that, for each $x \in X$, there exists only one global minimizer in Y of the function F_x . Let $\phi : X \to Y$ be the map which, given $x \in X$, returns the (unique) global minimizer in Y of the function F_x . The map ϕ is continuous.

▷ Let $P = [p_1 p_2 \dots p_k] \in \mathbb{R}^{n \times k}$ denote a constellation of k points in \mathbb{R}^n . A one-dimensional principal component analysis (PCA) of P consists in extracting the "dominant" straight line in P, i.e., the straight line spanned by a vector

$$\widehat{x}(P) \in \underset{x \in \mathbb{R}^{n} - \{0\}}{\operatorname{arg\,min}} \sum_{j=1}^{k} \left\| p_{j} - \frac{xx^{\top}}{\|x\|^{2}} p_{j} \right\|^{2}$$
$$= \underset{x \in \mathbb{R}^{n} - \{0\}}{\operatorname{arg\,max}} \frac{x^{\top} P P^{\top} x}{\|x\|^{2}}$$

▷ The straight line is unique if $\lambda_{\max}(PP^{\top})$ is simple: order the eigenvalues

$$\underbrace{\lambda_n(PP^{\top})}_{\lambda_{\min}(PP^{\top})} \leq \lambda_{n-1}(PP^{\top}) \leq \cdots \leq \lambda_2(PP^{\top}) \leq \underbrace{\lambda_1(PP^{\top})}_{\lambda_{\max}(PP^{\top})}$$

The dominant straight line is unique for those constellations P belonging to

$$\mathcal{P} = \left\{ P \in \mathbb{R}^{n \times k} : \lambda_1(PP^\top) > \lambda_2(PP^\top) \right\}$$

Note that the set \mathcal{P} is open in $\mathbb{R}^{n \times k}$

 \triangleright We have a map PCA $: \mathcal{P}
ightarrow \mathbb{RP}^{n-1}$

$$P \in \mathcal{P} \longrightarrow \mathsf{PCA} \longrightarrow \pi(\widehat{x}(P)) \in \mathbb{RP}^{n-1}$$

▷ The map PCA is continuous, because

Step 1: The map

$$F : \mathbb{RP}^{n-1} \times \mathbb{R}^{n \times k} \to \mathbb{R} \qquad F([x], P) = \sum_{j=1}^{k} \left\| p_j - \frac{xx^T}{\|x\|^2} p_j \right\|^2$$

is continuous (as we have already seen in a previous example)

Step 2: Its restriction to the subspace $\mathbb{RP}^{n-1} \times \mathcal{P} \subset \mathbb{RP}^{n-1} \times \mathbb{R}^{n \times k}$ is also continuous (for brevity of notation, we keep the same symbol F):

$$F : \mathbb{RP}^{n-1} \times \mathcal{P} \to \mathbb{R} \qquad F([x], P) = \sum_{j=1}^{k} \left\| p_j - \frac{xx^T}{\|x\|^2} p_j \right\|^2$$

Step 3: PCA : $\mathcal{P} \to \mathbb{RP}^{n-1}$ extracts, for each $P \in \mathcal{P}$, the (unique) minimizer of F_P in \mathbb{RP}^{n-1} . Since \mathbb{RP}^{n-1} is compact, the last lemma shows that PCA is continuous