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Lecture’s key-points

! A connected space is made of one piece

! A compact space behaves muck like a “finite space”

! Continuous maps preserve connectedness and compactness
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! Definition [Connected space] Let X be a topological space. A separation of X is

a pair of nonempty, disjoint, open subsets U, V ⊂ X such that X = U ∪ V . X is said

to be disconnected if there exists a separation of X, and connected otherwise

U

V

A

! Definition [Connected subset] Let X be a topological space. A subset A ⊂ X is

said to be connected if the subspace A is connected: there do not exist open sets

U, V in X such that A∩U $= ∅, A∩V $= ∅, (A∩U)∩ (A∩V ) = ∅, A ⊂ U ∪V
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! Example: Rn is connected

! Example (simple disconnected subset): the subset

A = {(x, y) ∈ R
2 : x ∈ [−3, 1[∪ ]2, 5], y = 0}

of R2 is disconnected. Equivalently, the topological space A (endowed with the

subspace topology) is disconnected

U
V

A
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! Example (more interesting disconnected subset): the subset

O(n) = {X ∈ R
n×n : X"X = In}

of Rn×n is disconnected. Equivalently, the topological space O(n) (endowed with the

subspace topology) is disconnected.

The open sets

! U = {X ∈ Rn×n : det X < 0}

! V = {X ∈ Rn×n : det X > 0}

provide a separation of O(n)

(note that O(n) ∩ U $= ∅ and O(n) ∩ V $= ∅; why ?)
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! Proposition [Characterization of connectedness] A topological space X is

connected if and only if the only subsets of X that are both open and closed are ∅

and X

! Example: want to prove that all points in a connected space X have property P

! define S = {x ∈ X : x has property P}

! show S is non-empty

! show S is closed

! show S is open

Conclude that S = X

! Example: let X be a connected space and A : X → S(n, R) a continuous map.

Suppose that the eigenvalues of A(x) belong to {0, 1} for any x ∈ X. Then,

rank A(x) is constant over x ∈ X
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! Proposition [Characterization of connected subsets of R] A nonempty subset of

R is connected if and only if it is an interval

! Definition [Path connected space] Let X be a topological space and p, q ∈ X. A

path in X from p to q is a continuous map f : [0, 1] → X, f(0) = p and f(1) = q.

We say that X is path connected if for any p, q ∈ X there is a path in X from p to q.

p = f(0)

q = f(1)

! Theorem [Easy sufficient criterion for connectedness] If X is a path connected

topological space, then X is connected
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! Example: convex sets are connected

! S(n, R) = {X ∈ Rn×n : X = X"}

! U+(n, R) = {X ∈ Rn×n : X upper-triangular and Xii > 0}

! Example (special orthogonal matrices): SO(n) = {X ∈ O(n) : det(X) = 1} is

connected because there is a path in SO(n) from In to any X ∈ SO(n)

! Example (non-singular matrices with positive determinant):

GL+(n, R) = {X ∈ Rn×n : det(X) > 0} is connected because there is a path in

GL+(n, R) from In to any X ∈ GL+(n, R)

! Example (special Euclidean group):

SE(n) =








Q δ

0 1



 : Q ∈ SO(n), δ ∈ R
n






is connected because there is a path in SE(n) from In+1 to any X ∈ SE(n)
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! Theorem [Main theorem on connectedness] Let X, Y be topological spaces and

let f : X → Y be a continuous map. If X is connected, then f(X) (as a subspace

of Y ) is connected

! Example (unit-sphere): Sn−1(R) = {x ∈ Rn : ‖x‖ = 1} is connected, because it

is the image of the connected space Rn+1 − {0} through the continuous map

f : R
n+1 − {0} → R

n f(x) =
x

‖x‖

! Example (ellipsoid): any non-flat ellipsoid in Rn can be described as

E =
{
Au + x0 : u ∈ Sn−1(R)

}

where x0 ∈ Rn is the center of the ellipsoid and A ∈ GL(n, R) defines the shape and

spatial orientation of E.

Thus E is connected because it is the image of the connected space Sn−1(R) through

the continuous map

f : Sn−1(R) → R
n f(x) = Ax + x0.
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! Example (projective space RP
n): RP

n is connected because it is the image of the

connected space Rn+1 − {0} through the continuous projection map

π : R
n+1 − {0} → RP

n π(x) = [x]

! Proposition [Properties of connected spaces]

(a) Suppose X is a topological space and U, V are disjoint open subsets of X.

If A is a connected subset of X contained in U ∪ V , then either A ⊂ U or A ⊂ V

(b) Suppose X is a topological space and A ⊂ X is connected. Then A is

connected

(c) Let X be a topological space, and let {Ai} be a collection of connected

subsets with a point in common. Then
⋃

i Ai is connected

(d) The Cartesian product of finitely many connected topological spaces is

connected

(e) Any quotient space of a connected topological space is connected
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! Theorem [Intermediate value theorem] Let X be a connected topological space

and f is a continuous real-valued function on X. If p, q ∈ X then f takes on all

values between f(p) and f(q)

! Example (antipodal points at the same temperature): let

T : S1(R) ⊂ R
2 → R

be a continuous map on the unit-circle in R2. Then, there exist a point p ∈ S1(R)

such that T (p) = T (−p).

Consequence: there are two antipodal points in the Earth’s equator line at the same

temperature

! Definition [Components] Let X be a topological space. A component of X is a

maximally connected subset of X, that is, a connected set that is not contained in

any larger connected set.

∗ Intuition: X consists of a union of disjoint “islands”/components
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! Example (orthogonal group): the orthogonal group

O(n) = {X ∈ M(n, R) : XT X = In}

has two components:

SO(n) = {X ∈ O(n, R) : det X = 1}

O−(n) = {X ∈ O(n, R) : det X = −1}

! Proposition [Properties of components] Let X be any topological space.

(a) Each component of X is closed in X

(b) Any connected subset of X is contained in a single component

! Definition [Compact space] A topological space X is said to be compact if every

open cover of X has a finite subcover. That is, if U is any given open cover of X,

then there are finitely many sets U1, . . . , Uk ∈ U such that X = U1 ∪ · · · ∪ Uk
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! Definition [Compact subset] Let X be a topological space. A subset A ⊂ X is

said to be compact if the subspace A is compact.

In equivalent terms, the subset A is compact if and only if given any collection of

open subsets of X covering A, there is a finite subcover

! Example: the interval A =]0, 1] ⊂ R is not compact
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! Proposition [Characterization of compact sets in Rn] A subset X in Rn is

compact if and only if X is closed and bounded

! Example (Stiefel manifold): the set

O(n, m) = {X ∈ R
n×m : X"X = Im}

is compact because it is closed and bounded.

! closed because O(n, m) = f−1({Im}) and

f : R
n×m → R

m×m f(X) = X"X

is continuous

! bounded because if X ∈ O(n, m) then ‖X‖2 = tr(X"X) = tr(Im) = m

Note that O(n, 1) = Sn−1(R) and O(n, n) = O(n)

! Theorem [Main theorem on compactness] Let X, Y be topological spaces and let

f : X → Y be a continuous map. If X is compact, then f(X) (as a subspace of Y )

is compact
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! Example (projective space RP
n): the projective space RP

n is compact because it

is the image of the compact set Sn(R) through the continuous projection map

π : Rn+1 − {0} → RP
n

! Proposition [Properties of compact spaces]

(a) Every closed subset of a compact space is compact

(b) In a Hausdorff space X, compact sets can be separated by open sets. That is,

if A, B ⊂ X are disjoint compact subsets, there exist disjoint open sets U, V ⊂ X

such that A ⊂ U and B ⊂ V

(c) Every compact subset of a Hausdorff space is closed

(d) The Cartesian product of finitely many compact topological spaces is compact

(e) Any quotient space of a compact topological space is compact

15



!

"

#

$

! Example (special orthogonal matrices):

SO(n) = {X ∈ O(n) : det X = 1}

is compact because it is a closed subset of the compact space O(n).

It is closed because SO(n) = f−1({1}) and

f : O(n) → R f(X) = det X

is continuous

! Theorem [Extreme value theorem] If X is a compact space and f : X → R is

continuous, then f attains its maximum and minimum values on X

! Proposition [Characterization of compactness in 2nd countable Hausdorff

spaces] Let X be a 2nd countable Hausdorff space. The following are equivalent:

(a) X is compact

(b) Every sequence in X has a subsequence that converges to a point in X
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! Example: continuity of singular values

! Lemma Let X, Y be 2nd countable Hausdorff spaces. Furthermore, let Y be

compact. Let F : X × Y → R be a continuous function. For each x ∈ X, we define

the function Fx : Y → R, Fx(y) = F (x, y). The function

f : X → R f(x) = max
y∈Y

Fx(y)

is continuous

! The function λmax : S(n, R) → R, X ,→ λmax(X) is continuous

! For A ∈ S(n, R), order its eigenvalues

λn(A)
︸ ︷︷ ︸
λmin(A)

≤ λn−1(A) ≤ · · · ≤ λ2(A) ≤ λ1(A)
︸ ︷︷ ︸
λmax(A)

The function λk : S(n, R) → R, X ,→ λk(X) is continuous

! For A ∈ Rn×m, order its singular values

σp(A) ≤ · · · ≤ σ2(A) ≤ σ1(A)
︸ ︷︷ ︸
σmax(A)

(p = min{n, m})

The function σk : Rn×m → R, X ,→ σk(X) is continuous
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! Example: Principal Component Analysis (PCA) is a continuous map

! Lemma Let X, Y be 2nd countable Hausdorff spaces. Furthermore, let Y be

compact. Let F : X × Y → R be a continuous function. For each x ∈ X, we define

the function Fx : Y → R, Fx(y) = F (x, y). Suppose that, for each x ∈ X, there

exists only one global minimizer in Y of the function Fx. Let φ : X → Y be the map

which, given x ∈ X, returns the (unique) global minimizer in Y of the function Fx.

The map φ is continuous.

! Let P = [ p1 p2 . . . pk] ∈ Rn×k denote a constellation of k points in Rn. A

one-dimensional principal component analysis (PCA) of P consists in extracting the

“dominant” straight line in P , i.e., the straight line spanned by a vector

x̂(P ) ∈ arg min

x ∈ Rn − {0}

k∑

j=1

∥∥∥∥pj −
xx"

‖x‖2 pj

∥∥∥∥

2

= arg max

x ∈ Rn − {0}

x"PP"x

‖x‖2
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! The straight line is unique if λmax(PP") is simple: order the eigenvalues

λn(PP")
︸ ︷︷ ︸
λmin(PP!)

≤ λn−1(PP") ≤ · · · ≤ λ2(PP") ≤ λ1(PP")
︸ ︷︷ ︸
λmax(PP!)

The dominant straight line is unique for those constellations P belonging to

P =
{

P ∈ R
n×k : λ1(PP") > λ2(PP")

}

Note that the set P is open in Rn×k

! We have a map PCA : P → RP
n−1

P ∈ P PCA π(x̂(P )) ∈ RP
n−1
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! The map PCA is continuous, because

Step 1: The map

F : RP
n−1 × R

n×k → R F ([x], P ) =
k∑

j=1

∥∥∥∥pj −
xxT

‖x‖2 pj

∥∥∥∥

2

is continuous (as we have already seen in a previous example)

Step 2: Its restriction to the subspace RP
n−1 × P ⊂ RP

n−1 × Rn×k is also

continuous (for brevity of notation, we keep the same symbol F ):

F : RP
n−1 × P → R F ([x], P ) =

k∑

j=1

∥∥∥∥pj −
xxT

‖x‖2 pj

∥∥∥∥

2

.

Step 3: PCA : P → RP
n−1 extracts, for each P ∈ P, the (unique) minimizer of FP

in RP
n−1. Since RP

n−1 is compact, the last lemma shows that PCA is continuous
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