Nonlinear Signal Processing
2007-2008

New Spaces from Old
(Ch.3, “Introduction to Topological Manifolds”, J. Lee, Springer-Verlag)

Instituto Superior Técnico, Lisbon, Portugal

Joao Xavier

jxavier@isr.ist.utl.pt




Lecture’s key-points

[] 3 canonical mechanisms to construct new topological spaces from old ones:
> subspaces
> Cartesian products

> quotients

[J Questions about continuity in the new spaces can be answered in the old ones
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/D Definition [Topology generated by a class of subsets] Let X be a nonempty set\
and C a class of subsets of X. The topology generated by C, written 7 (C), is defined
as the smallest topology containing the class C

7(C)

G Example: if X = {a,b,c}, C = {{a},{c}} then T(C) ={0,{a},{c},{a,c}, X} /
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[] Lemma [Characterization of generated topologies] Let X be a nonempty set and
C a class of subsets of X. Then 7 (C) is the class of all unions of finite intersections

of sets in C.

That is, U € 7(C) if and only if

U= | Ua, Us=Clnc2n...c", C! ecC.

Also, the collection {U,} is a basis for 7 (C).

. /




GDefinition [Subspace topology] Let X be a topological space and A C X be anh
subset. The subspace topology 74 on A is defined as

Ta={ANU : U openin X}.

Let A C X be any subset. By the subspace A of X we mean the topological space
(A,7T4) where T4 is the subspace topology on A.

A (arbitrary)
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[J Example: consider the subspace A = [0,2[ of X =R
> The set [0, 1] is not open in X

> The set [0, 1] is open in A: it can be written as

[071[: [0a2[ M ]_171[
N~ N——
A U: openin X

[] Example (unit sphere): consider the subspace
S"U(R) = {z €R" : |z = 1}
of R™.
> The set U;" = {z € S""1(R) : z; > 0} is open in S*~}(R):

Ut =S""1'R) N {x €R™ : z; >0}

-~

\ open in R"
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[] Example (orthogonal matrices): consider the subspace
O(n) ={X eR"™" : X' X =1,}
of R"*™,
> The set SO(n) = {X € O(n) : det(X) > 0} is open in O(n):

SO(n) =0(n) N {X e R™™ : det(X) > 0}

"

open in R™*™




GTrivial but important fact: if A is a subspace of X, then \

ta : A— X talz) ==z

IS a continuous map

[] Theorem [Characteristic property of subspace topologies] Let X,Y be
topological spaces. Let A be a subspace of X. Then,amap f : ¥ — A'is
continuous if and only if f =14 o f is continuous

Y

LA

antuition: continuity of the “hard” map f can be investigated through the easier jA’/
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[J Example (map into the unit sphere): the map
f R {0} = S"TH(R) fl@) =

IS continuous

R™ — {0}

]?(x) = xz/ ||z is clearly continuous

f(x) = x/||z|| is continuous

Sn—l(R) > R"™

.
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[] Definition [Topological embedding] Let X and Y be topological spaces. An
injective, continuous map f : X — Y is said to be a topological embedding if it is a
homeomorphism onto its image f(X) (endowed with the subspace topology)

x Intuition: we can interpret X ~ f(X) as a subspace of Y (X is simply another
label for a subspace of Y')

[] Example: consider
> X = {1,2,3} with the discrete topology Tx = 2%
>Y ={1,2,3,4,...,10} with the trivial topology 7y = {0,Y}
>themap f : X — Y, f(x) = x is injective and continuous

> the map f is not a homeomorphism onto the subspace f(X) ={1,2,3} of Y

. /

10




4 N

[] Lemma [Other properties of the subspace topology] Suppose A is a subspace of
the topological space X.

(a) The inclusion map t4 : A — X is continuous (in fact, a topological
embedding)

(b) If f: X — Y is continuous then f = J?|A : A — Y is continuous

LA
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[J Example (map out of the unit sphere): the map
f:S"H(R) - RMX™ flz) =zx'
Is continuous

~

f(z) = xzx' is clearly continuous

R™ ’Ran
len—1 ~
sn—1(R) f= |sn—1(R)

Sn_l(R)
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GExample (concatenating the techniques...): the map
f:O(m) —S"YR)  f(X)=f(leraz - w0 )) = 21

iIs continuous because

Step 1:

iR SR F(X) =z
is clearly continuous
Step 2:

lo(n) + O(n) — R” flon)(X) = z1
iIs continuous due to
f
R X1 > R™
LOo(n) ~
flo(n)

~
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Step 3:
f:0O(n) — " H(R) f(X) =m
is continuous due to
RTL
|O(n) [’Sn_l(R)
O(n) > S”_l(R)
J
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[J Lemma [Other properties of the subspace topology (cont.)]

(c) If B C Ais a subspace of A, then B is a subspace of X; in other words, the
subspace topologies that B inherits from A and from X agree

(d) If B is a basis for the topology of X, then
Ba={BNA: BecB}
is a basis for the topology of A

(e) If X is Hausdorff and 2nd countable then A is Hausdorff and 2nd countable

[J Example (a simple topological manifold): S™~1(R) is a topological manifold of
dimension n — 1

. /
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[] Example (another topological manifold?): the set of 2 x 2 special orthogonal
matrices

SO(2) = {X cR2X2 . XTX = I, det(X) = 1}

is a topological manifold of dimension 1 because the map
f: SHR) — SO(2) f =

iIs a homeomorphism

.
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GDefinition [Product topology] Let X1, Xo,..., X, be topological spaces. The \
product topology on the Cartesian product X7 X X9 X --- X X, is the topology

generated by the collection of rectangles

C={U;s xUz x---Uy : U; is open in X;}.

The set X1 X --- X X,, equipped with the product topology is called a product space.

.........

..................................

..........................

..........................

E Note that C is a basis for the product topology

X1><X2
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[J Theorem [Characteristic property of product topologies] Let X; X --- X X, be a

product space and let Y be a topological space. Then, the map
f:Y — X1 x---x X, is continuous if and only if each map f; : ¥ — X,
fi = m; o f is continuous

Y
Ji
f
X1 X X Xn > X’L
Uy
O : X1 X Xox---x X, = X, mi(x1,22,...,Tn) = x; denotes the projection

map onto the ith factor X;

.

/

18



[] Example (decomposing a vector in amplitude and direction): the map

_ x
PRS0} o RYXSI®) (@) = (lell )
Is continuous because
> f1 : R® — {0} — R™, fi(xz) = ||z|| is continuous
> fo : R® — {0} — S*""L(R), fo(z) = % is continuous

||

[] Lemma [Other properties of the product topology] Let X1,..., X, be
topological spaces.

(a) The projection maps m; : X1 X --- X X;, — X, are continuous and open
(b) Let z; € X; be fixed for j # i. The map
f:X;—X1 XX Xn, flx) = (x1,...,Ti—1,T, Tit1,---,%n)

is a topological embedding

.
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[] Lemma [Other properties of the product topology (cont.)]

(c) If B; is a basis for the topology of X, then the class
BZ{Bl X -+ X By BiEBi}
is a basis for the topology of the product space X1 X --- X X,

(d) If A; is a subspace of X;, for ¢ = 1,...,n, the product topology and the
subspace topology on A1 X --- X A,, C X1 X --- X X,, are identical

(e) If each X; is Hausdorff and second countable then the product space
X1 X -+ X X, is also Hausdorff and second countable

[] Definition [Product map] If f; : X; — Y; are maps for i = 1,...,n, their product
map, written f1 X --- X fp, is defined as

fix-Xfn: Xig XXX, —Y X XY,

(fl XX f?’b) (xla“'?xn) — (fl(xl),,fn(xn))

. /
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[] Proposition [Product map] A product of continuous maps is continuous, and a
product of homeomorphisms is a homeomorphism

[J Proposition [Product manifolds] If M, ..., M} are topological manifolds of
dimensions n1,...,ny, respectively, the product space M7 X --- X M} is a

topological manifold of dimension ny + - - - + ny

> Intuition: if each M; has n; ‘“degrees of freedom”, then My X --- X M}, has
ni1 +---+ ng “degrees of freedom”

. /
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GDefinition [Saturated sets, fibers] Let X and Y be setsand 7 : X — Y be a \

surjective map.
A subset 771 (y) C X for y € Y is called a fiber of 7.

A subset U C X is saturated if U = 7w~ (V) for some V C Y (U=union of fibers)
X

Fiber 71 (y) - _ Saturated (= 1(V))

V4

Non-saturated

22
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[] Example: consider the surjective map

.

T R? - RS w(x) = ||z||

> the fibers of 7 are the circles centered at the origin and the origin itself
> the annulus U = {x € R? : 1 < ||z|| < 2} is a saturated set

> each coordinate axis of R? is non-saturated

23




GDefinition [Quotient topology] Let X be a topological space, Y be any set, and\
7 : X — Y be a surjective map. The quotient topology on Y induced by the map =

is defined as
T.={UCY : 7= 1(U) is open in X}

24
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[] Example (real projective space RP"™): introduce the equivalence relation ~ in
X =R+l — {0}

T~y if and only if x = Ay for some \ # 0

> let RP™ = X/ ~ denote the set of equivalence classes
> the map 7 : X — RP", x — w(x) = [z] is surjective
> RP™ becomes a topological space by letting m induce the quotient topology

> the fibers of 7 are straight lines in R” 1 — {0}

[] Definition [Quotient map] Let X and Y be topological spaces. A surjective map
f + X — Y is called a quotient map if the topology of Y coincides with 7; (the
quotient topology induced by f). This is equivalent to saying that U is open in Y if
and only if f=1(U) is open in X

. /
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[J Lemma [Characterization of quotient maps] Let X and Y be topological spaces.
A continuous surjective map f : X — Y is a quotient map if and only if it takes
saturated open sets to open sets, or saturated closed sets to closed sets

[] Lemma [Easy sufficient conditions for quotient maps] If f : X — Y is a
surjective continuous map that is also an open or closed map, then it is a quotient

map

[J Lemma [Composition property of quotient maps] Suppose 71 : X — Y and
mo : Y — Z are quotient maps. Then their composition mo o : X — Z is also a

quotient map

. /
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[J Theorem [Characteristic property of quotient topologies] Let 7 : X — Y be a
quotient map. For any topological space B, a map f : Y — B is continuous if and
only if f = f o is continuous.

X

x Intuition: continuity of the “hard” map f can be investigated through the easier f

. /
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[] Example (real projective space RP"™): for [x] € RP™, let line([x]) be the straight
line spanned by = and let g € R**1 be fixed

The map
f: RP* - R f([x]) = dist(xg, line([zx]))

IS continuous

R+ — {0}

-~ T . .
)= ||, — £ zo|| is clearly continuous
(2 d

RP™ » R

28



/DCorollary [Passing to the quotient] Suppose 7 : X — Y is a quotient map, B isa\
topological space, and f : X — B is any continuous map that is constant on the
fibers of m (that is, if w(p) = 7(q) then ]?(p) — f(q)) Then, there exists an unique
continuous map f : Y — B such that f: fom:

X
!

[J Example (elementary descent to RP"): let o € R™”T! — {0} be fixed. The map

T
iR {0} - R ]?(:13) = arccos <M>

lzoll [|=]

\iscontinuous and descends to a continuous map in RP" /
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[] Definition [Group] A group is an ordered pair (G, *) consisting of a set GG and a
binary operation x : G X G — G such that

(a) (associativity) for every x,y,z € G we have (zxy) * z =z * (y * 2)

(b) (identity) there is e € G such thatexx =z *xe=x forall z € G

(c) (inverse) for each € G thereisay € Gsuchthat zcxy=y*xx =¢e
If understood from the context,

> (G, ) is simply denoted by G

> we write xy instead of x x y

[J Lemma [Elementary properties of groups] Let (G, x) be a group.

(a) The identity element is unique (and is usually denoted by e¢)

(b) The inverse is unique (and is usually denoted by 1)

.
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GExample (general linear group): GL(n,R) = {X € R"*™ : det X # 0} is a gronh

with matrix multiplication as the group operation
> the identity element of the group is I,

> the inverse of A is A—1

[0 Example (group of orthogonal matrices): O(n) = {X ¢ R**" : X' X =1I,}is
a group with matrix multiplication as the group operation

[J Example (group of special orthogonal matrices):
SO(n) ={X € O(n) : det(X) =1}

is a group with matrix multiplication as the group operation

[J Example (upper triangular matrices with positive diagonal entries):

Ut (n,R) = {X € R"*™ : X is upper-triangular and X;; > 0 for all i }

Qa group with matrix multiplication as the group operation /
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[1 Example (group of rigid motions in R™):

SE(n) = ¢ j : @ €S0O(n),6 e R

0

is a group with matrix multiplication as the group operation

> the identity element of the group is

I, O
0 1

0 T QT
> the inverse of IS @ @
0 1 0 1

.
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[] Definition [Subgroup, left translation, right translation, homomorphism, kernel
of a homomorphism] Let (G, %) be a group.

> a subgroup of GG is a set H C G such that e € H, = *y € H whenever
z,y € H, and ! € H whenever x € H

> for each g € GG, we define the left translation map L, : G — G, Ly(x) = g * x.
Similarly, we have the right translation map R; : G — G, Ry(x) = x *xg

> let (H,*) denote a group with identity element e. A map F : G — H is said to
be a homomorphism if F(z xy) = F(x)xF(y) for all z,y € G. The kernel of F'is
defined as

KerF={x€ G : F(x) =¢€}.
Note that Ker F' is a subgroup of G.

[1 Example (subgroups of the general linear group): O(n), SO(n) and U™ (n,R) are
subgroups of GL(n,R). SE(n) is a subgroup of GL(n + 1,R)

. /
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[J Example (homomorphism): the map
F : GL(n,R) — GL(1,R) F(X) = det(X)
is a homomorphism. Its kernel is the subgroup

SL(n,R) ={X : det(X) =1}

[J Example (generalization of the previous result): the map

F : GL(n,R) — GL : R F(X) = X

is a homomorphism (Cauchy-Binet formula)

.
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/DDefinition [ Topological group] Let G be a group which is at the same time a \
topological space. Then, G is said to be a topological group if the maps

@)::G—G uz)=z"
(b)m : GxG—-G m(z,y) =y

are continuous
[J Examples: GL(n,R), O(n), SO(n), UT(n,R), SE(n) are topological groups

[] Definition [Group action] Let G be a group and X be a set. A left action of GG on
Xisamap 6 : G x X — X such that

(a) O(e,x) =x forallz € X
(b) 0(g,0(h,x)) = 0(gh,x) for all gh € G and x € X
If the action 6 is clear from the context, we use gx instead of 6(g, x)

If G is a topological group and X is a topological space, the action is said to be

\continuous if 0 is continuous. /
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[1 Example (GL(n,R) acts on R™): the map
6 : GL(n,R) x R" — R" (A, z) = Ax

defines a continuous left action of GL(n,R) on R™.

This is called the natural action of GL(n,R) on R”.

[1 Example (O(n) acts on S(n,R)): let
S(n,R) ={X e R"*" : X =X}

denote the set of n X n symmetric matrices with real entries.

The map
6 : O(n) x S(n,R) = S(n,R)  6(Q,5) =QSQ"

defines a continuous left action of O(n) on S(n,R)

.
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GLemma [Continuous left actions] Let 6 : G x X — X be a continuous left actih
of G on X. For each g € (G, the map

Oy : X — X Oq(x) =0(g9,x) = gz
is @ homeomorphism.
> Proof: The map 04 is bijective because the map 09_1 is a left and right inverse for
it, that is, 0g 00,1 =0,100g =idx. The map 04 is continuous because it is the

composition of two continuous maps: 04 = 0 ov4, where 14y : G — G X X,
tg(z) = (g, ). It is a homeomorphism because its inverse is given by 0,1, which is

continuous []
X X
o
O 0 o
o0 s o
O ®e
.. [
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GDefinition [Orbits,free/transitive actions,invariants,maximal invariants] Let \
0 : G x X — X denote a left action of the group G on a set X.

> The orbit of p € X is the set Gp = {6(g,p) : g € G}

> The action is said to be transitive if, for any given p,q € X there exists g € G
such that 6(g,p) = q

x Intuition: there is only one orbit

> The action is said to be free if 8(g,p) = p implies g = e

x Intuition: each orbit is a “copy” of G

> An invariant of the action is a map ¢ : X — Y (where Y denotes a set) which
is constant on orbits, that is, x,y € Gp imply ¢(z) = ¢(y)

A maximal invariant of the action is an invariant ¢ which differs from orbit to
orbit, that is, x & Gy implies ¢(x) # ¢(y)

\ x Intuition: a maximal invariant permits to index the orbits /
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GExample: the natural action of GL(n,R) on R" is not transitive (it has two orbits,\
namely, {0} and R™ — {0}), it is not free and a maximal invariant is ¢ : R™ — R,

$(0) =0 and ¢p(z) = 1 if z £ 0

[1 Example: the action of O(n) on S(n,R) discussed above is not transitive, it is not
free and a maximal invariant is ¢ : S(n,R) — R™,

B(S) = (A1(S9)s X2(S)s -, An(S) T,

where A1(S) > A2(S) > -+ > An(S) denote the eigenvalues of S sorted in
non-increasing order

[1 Definition [Orbit space] Let 8 : G x X — X denote a continuous action of the
topological group G on the topological space X.

Introduce an equivalence relation on X by declaring x ~ y if they share the same
orbit, that is, z ~ y if and only if there exists g € G such that y = 0(g, x).

The set of equivalence classes is denoted by X/G and is called the orbit space of the

Q:tion. /
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GLemma [Orbit space] Suppose the topological group G acts continuously on the\
left of the topological space X. Let X/G be given the quotient topology.

(a) The projection map w : X — X /G is open
(b) If X is second countable, then X /G is second countable
(c) X/G is Hausdorff if and only if the set
A={(p,q) € X x X : ¢q=16(g,p) for some g € G}
Is closed in X x X

> Proof: (a) Let U be open in X. We must show that w(U) is open in X /G, that is,
V =a~1(x(U)) is open in X. But

V= U 04(U),
gelG
where 84 : X — X, 04(x) = gx. Since each 0, is a homeomorphism, 6,(U) is open
in X. Thus, V is open in X. (b) If B is a countable basis for X, then
w(B) = {n(B) : B € B} is a countable basis for X/G. (c) (=) Let (z,y) € A.
Thus, x and y lie in distinct orbits, that is, w(x) # 7w(y). Since X/G is Hausdorff, let
U and V' be disjoint neighborhoods of w(x) and mw(y), respectively. Then,
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71 (U) x 7=1(V) is open in X x X, contains (x,y) and does not intersect A
(why?). Thus, the complement of A in X X X is open. (<) Let w(x) and w(y) be
two distinct points in X/G. Then, (x,y) ¢ A. Let U and V' be neighborhoods of x
and y, respectively, such that U X V does not intersect A. Then, m(U) and (V') are
disjoint neighborhoods of m(x) and = (y), respectively (why?)[]

[J Example (projective space RP™): let G = GL(1,RR) act continuously on
X=R""!l —{0}ash: Gx X — X, 0\, z)=Azx. Then, RP" = X/G.

> RIP™ is second countable

> RP™ is Hausdorff because
A={(z,y) € X x X : x and y are in the same orbit}

is closed: it can be written as A = f~1({0}) where f if the continuous map

FiXxX—>R  flz,y) = (" 2)(y y) - (zy)?

. /
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[J Lemma [Product of open maps is open] Let A, B, X,Y be topological spaces.
Let f : A— X and g : B — Y be open maps. Then, the product map

fxg:AxB—XxY  (fxg)a,b)=(f(a),g(b))

is open.

> Proof: Let W be an open set in A X B. Then, W may be written as a union of
rectangles

w =] Ui x Vi,
where each U; in open in A and each V; is open in B. We have

(f x 9)(W) = (f x g) (U Us % %) = U x o) Wi x Vi) = £(U3) x 9(Vi).

Since f(U;) is open in X and g(V;) is open in'Y (by hypothesis), then f(U;) x g(V;)
\isopen in X XY . Since W is an union of open sets, it is open ] /
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[J Lemma [Hybrid spaces] Let the topological group G act continuously on the left
of the topological space X. Let the orbit space X/G be given the quotient topology
and let 7 : X — X/G be the corresponding projection map. Let Y be any
topological space. Then, the map

T xidy : X XY = (X/G)xY (7 xidy)(z,y) = (7(z),y)

Is a quotient map.

> Proof: To abbreviate notation, let f = w X idy. The map f is clearly surjective and
continuous. Thus, if we show that f is an open map, we are done. Now, both

m: X — X/G andidy : Y — Y are open maps. Since f = 7 X idy is the product
of open maps, it is itself open ]

. /
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[] Corollary [Hybrid spaces] Let the topological group GG act continuously on the left
of the topological space X. Let the orbit space X/G be given the quotient topology
and let 7 : X — X/G be the corresponding projection map. Let Y and B be any
topological spaces. Then, the map f : (X/G) X Y — B is continuous if and only if
themap f : X XY — B, f = fo (m x idy) is continuous.

X XY
/

7T><idy

(X/G) xY » B

x Intuition: continuity of the “hard” map f can be investigated through the easier ]?

. /
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GExample: write a matrix P € R™"*F in columns P = [p1p2 - P ]

Consider the map

_I_

k
fiRP" X R™F SR :Z T

In geometric terms, the map f computes the total squared distance from the

constellation of points {p1,p2,...,px} to the straight line [z]
A

: e Dk
line [x] N e

p2 \“ (N

Q ‘
»
>

p1
.\
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The map f is continuous

R™ — {0} x R**F
flz,P) =35,

an—l < RnXk > R

.

33‘$T

Pj = 2P
o

2

is clearly continuous
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