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Lecture’s key-points

! 3 canonical mechanisms to construct new topological spaces from old ones:

! subspaces

! Cartesian products

! quotients

! Questions about continuity in the new spaces can be answered in the old ones
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! Definition [Topology generated by a class of subsets] Let X be a nonempty set

and C a class of subsets of X. The topology generated by C, written T (C), is defined

as the smallest topology containing the class C

2X

C

T (C)

! Example: if X = {a, b, c}, C = {{a}, {c}} then T (C) = {∅, {a}, {c}, {a, c}, X}
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! Lemma [Characterization of generated topologies] Let X be a nonempty set and

C a class of subsets of X. Then T (C) is the class of all unions of finite intersections

of sets in C.

That is, U ∈ T (C) if and only if

U =
⋃

α∈A

Uα, Uα = C1
α ∩ C2

α ∩ · · ·Cn
α , Ci

α ∈ C.

Also, the collection {Uα} is a basis for T (C).
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! Definition [Subspace topology] Let X be a topological space and A ⊂ X be any

subset. The subspace topology TA on A is defined as

TA = {A ∩ U : U open in X} .

Let A ⊂ X be any subset. By the subspace A of X we mean the topological space

(A, TA) where TA is the subspace topology on A.

A (arbitrary)U (open)

V (open)

X
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! Example: consider the subspace A = [0, 2[ of X = R

! The set [0, 1[ is not open in X

! The set [0, 1[ is open in A: it can be written as

[0, 1[= [0, 2[
︸ ︷︷ ︸
A

∩ ] − 1, 1[
︸ ︷︷ ︸

U : open in X

! Example (unit sphere): consider the subspace

Sn−1(R) = {x ∈ R
n : ‖x‖ = 1}

of Rn.

! The set U+
i =

{
x ∈ Sn−1(R) : xi > 0

}
is open in Sn−1(R):

U+
i = Sn−1(R) ∩ {x ∈ R

n : xi > 0}
︸ ︷︷ ︸

open in Rn
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! Example (orthogonal matrices): consider the subspace

O(n) = {X ∈ R
n×n : X$X = In}

of Rn×n.

! The set SO(n) = {X ∈ O(n) : det(X) > 0} is open in O(n):

SO(n) = O(n) ∩
{
X ∈ R

n×n : det(X) > 0
}

︸ ︷︷ ︸
open in Rn×n
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! Trivial but important fact: if A is a subspace of X, then

ιA : A → X ιA(x) = x

is a continuous map

! Theorem [Characteristic property of subspace topologies] Let X, Y be

topological spaces. Let A be a subspace of X. Then, a map f : Y → A is

continuous if and only if f̂ = ιA ◦ f is continuous

Y

A X

f

ιA

f̂

∗ Intuition: continuity of the “hard” map f can be investigated through the easier f̂
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! Example (map into the unit sphere): the map

f : R
n − {0} → Sn−1(R) f(x) =

x

‖x‖

is continuous

Rn − {0}

Sn−1(R) Rn

f(x) = x/ ‖x‖ is continuous

ι

f̂(x) = x/ ‖x‖ is clearly continuous
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! Definition [Topological embedding] Let X and Y be topological spaces. An

injective, continuous map f : X → Y is said to be a topological embedding if it is a

homeomorphism onto its image f(X) (endowed with the subspace topology)

∗ Intuition: we can interpret X * f(X) as a subspace of Y (X is simply another

label for a subspace of Y )

! Example: consider

! X = {1, 2, 3} with the discrete topology TX = 2X

! Y = {1, 2, 3, 4, . . . , 10} with the trivial topology TY = {∅, Y }

! the map f : X → Y , f(x) = x is injective and continuous

! the map f is not a homeomorphism onto the subspace f(X) = {1, 2, 3} of Y
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! Lemma [Other properties of the subspace topology] Suppose A is a subspace of

the topological space X.

(a) The inclusion map ιA : A → X is continuous (in fact, a topological

embedding)

(b) If f̂ : X → Y is continuous then f = f̂ |A : A → Y is continuous

X

A

f̂
Y

f = f̂ |A
ιA
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! Example (map out of the unit sphere): the map

f : Sn−1(R) → R
n×n f(x) = xx$

is continuous

Rn

Sn−1(R)

f̂(x) = xx$ is clearly continuous
Rn×n

f = f̂ |Sn−1(R)

ιSn−1(R)
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! Example (concatenating the techniques...): the map

f : O(n) → Sn−1(R) f(X) = f([ x1 x2 · · · xn ]) = x1

is continuous because

Step 1:

f̂ : R
n×n → R

n f(X) = x1

is clearly continuous

Step 2:

f̂ |O(n) : O(n) → R
n f̂ |O(n)(X) = x1

is continuous due to

Rn×n

O(n)

f̂
Rn

f̂ |O(n)

ιO(n)
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Step 3:

f : O(n) → Sn−1(R) f(X) = x1

is continuous due to

O(n) Sn−1(R)

Rn

f̂ |O(n) ιSn−1(R)

f
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! Lemma [Other properties of the subspace topology (cont.)]

(c) If B ⊂ A is a subspace of A, then B is a subspace of X; in other words, the

subspace topologies that B inherits from A and from X agree

(d) If B is a basis for the topology of X, then

BA = {B ∩ A : B ∈ B}

is a basis for the topology of A

(e) If X is Hausdorff and 2nd countable then A is Hausdorff and 2nd countable

! Example (a simple topological manifold): Sn−1(R) is a topological manifold of

dimension n − 1
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! Example (another topological manifold?): the set of 2 × 2 special orthogonal

matrices

SO(2) =
{

X ∈ R
2×2 : X$X = I2, det(X) = 1

}

is a topological manifold of dimension 1 because the map

f : S1(R) → SO(2) f







x

y







 =



x −y

y x





is a homeomorphism

16



!

"

#

$

! Definition [Product topology] Let X1, X2, . . . , Xn be topological spaces. The

product topology on the Cartesian product X1 × X2 × · · ·× Xn is the topology

generated by the collection of rectangles

C = {U1 × U2 × · · ·Un : Ui is open in Xi}.

The set X1 × · · ·× Xn equipped with the product topology is called a product space.

X1 × X2

! Note that C is a basis for the product topology
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! Theorem [Characteristic property of product topologies] Let X1 × · · ·× Xn be a

product space and let Y be a topological space. Then, the map

f : Y → X1 × · · ·× Xn is continuous if and only if each map fi : Y → Xi,

fi = πi ◦ f is continuous

Y

X1 × · · ·× Xn Xi

f

πi

fi

! πi : X1 × X2 × · · ·× Xn → Xi, πi(x1, x2, . . . , xn) = xi denotes the projection

map onto the ith factor Xi
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! Example (decomposing a vector in amplitude and direction): the map

f : R
n − {0} → R

+ × Sn−1(R) f(x) =

(
‖x‖ ,

x

‖x‖

)

is continuous because

! f1 : Rn − {0} → R+, f1(x) = ‖x‖ is continuous

! f2 : Rn − {0} → Sn−1(R), f2(x) = x
‖x‖

is continuous

! Lemma [Other properties of the product topology] Let X1, . . . , Xn be

topological spaces.

(a) The projection maps πi : X1 × · · ·× Xn → Xi are continuous and open

(b) Let xj ∈ Xj be fixed for j ,= i. The map

f : Xi → X1 × · · ·× Xn, f(x) = (x1, . . . , xi−1, x, xi+1, . . . , xn)

is a topological embedding
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! Lemma [Other properties of the product topology (cont.)]

(c) If Bi is a basis for the topology of Xi, then the class

B = {B1 × · · ·× Bn : Bi ∈ Bi}

is a basis for the topology of the product space X1 × · · ·× Xn

(d) If Ai is a subspace of Xi, for i = 1, . . . , n, the product topology and the

subspace topology on A1 × · · ·× An ⊂ X1 × · · ·× Xn are identical

(e) If each Xi is Hausdorff and second countable then the product space

X1 × · · ·× Xn is also Hausdorff and second countable

! Definition [Product map] If fi : Xi → Yi are maps for i = 1, . . . , n, their product

map, written f1 × · · ·× fn, is defined as

f1 × · · ·× fn : X1 × · · ·× Xn → Y1 × · · ·× Yn,

(f1 × · · ·× fn) (x1, . . . , xn) = (f1(x1), . . . , fn(xn)) .
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! Proposition [Product map] A product of continuous maps is continuous, and a

product of homeomorphisms is a homeomorphism

! Proposition [Product manifolds] If M1, . . . , Mk are topological manifolds of

dimensions n1, . . . , nk, respectively, the product space M1 × · · ·× Mk is a

topological manifold of dimension n1 + · · · + nk

! Intuition: if each Mi has ni “degrees of freedom”, then M1 × · · ·× Mk has

n1 + · · · + nk “degrees of freedom”
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! Definition [Saturated sets, fibers] Let X and Y be sets and π : X → Y be a

surjective map.

A subset π−1(y) ⊂ X for y ∈ Y is called a fiber of π.

A subset U ⊂ X is saturated if U = π−1(V ) for some V ⊂ Y (U=union of fibers)

Fiber π−1(y)

Non-saturated

y

π

X

Saturated (π−1(V ))

V
Y

22



!

"

#

$

! Example: consider the surjective map

π : R
2 → R

+
0 π(x) = ‖x‖

! the fibers of π are the circles centered at the origin and the origin itself

! the annulus U = {x ∈ R2 : 1 < ‖x‖ ≤ 2} is a saturated set

! each coordinate axis of R2 is non-saturated
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! Definition [Quotient topology] Let X be a topological space, Y be any set, and

π : X → Y be a surjective map. The quotient topology on Y induced by the map π

is defined as

Tπ = {U ⊂ Y : π−1(U) is open in X}

π

X

π−1(U)

U
Y
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! Example (real projective space RP
n): introduce the equivalence relation ∼ in

X = Rn+1 − {0}

x ∼ y if and only if x = λy for some λ ,= 0

! let RP
n = X/ ∼ denote the set of equivalence classes

! the map π : X → RP
n, x /→ π(x) = [x] is surjective

! RP
n becomes a topological space by letting π induce the quotient topology

! the fibers of π are straight lines in Rn+1 − {0}

! Definition [Quotient map] Let X and Y be topological spaces. A surjective map

f : X → Y is called a quotient map if the topology of Y coincides with Tf (the

quotient topology induced by f). This is equivalent to saying that U is open in Y if

and only if f−1(U) is open in X
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! Lemma [Characterization of quotient maps] Let X and Y be topological spaces.

A continuous surjective map f : X → Y is a quotient map if and only if it takes

saturated open sets to open sets, or saturated closed sets to closed sets

! Lemma [Easy sufficient conditions for quotient maps] If f : X → Y is a

surjective continuous map that is also an open or closed map, then it is a quotient

map

! Lemma [Composition property of quotient maps] Suppose π1 : X → Y and

π2 : Y → Z are quotient maps. Then their composition π2 ◦ π1 : X → Z is also a

quotient map
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! Theorem [Characteristic property of quotient topologies] Let π : X → Y be a

quotient map. For any topological space B, a map f : Y → B is continuous if and

only if f̂ = f ◦ π is continuous.

X

Y B

π

f

f̂

∗ Intuition: continuity of the “hard” map f can be investigated through the easier f̂
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! Example (real projective space RP
n): for [x] ∈ RP

n, let line([x]) be the straight

line spanned by x and let x0 ∈ Rn+1 be fixed

The map

f : RP
n → R f([x]) = dist(x0, line([x]))

is continuous

Rn+1 − {0}

RPn R

π

f

f̂(x) =
∥∥∥
(
In − xx"

‖x‖2

)
x0

∥∥∥ is clearly continuous
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! Corollary [Passing to the quotient] Suppose π : X → Y is a quotient map, B is a

topological space, and f̂ : X → B is any continuous map that is constant on the

fibers of π (that is, if π(p) = π(q) then f̂(p) = f̂(q)). Then, there exists an unique

continuous map f : Y → B such that f̂ = f ◦ π:

X

Y B

π

f

f̂

! Example (elementary descent to RP
n): let x0 ∈ Rn+1 − {0} be fixed. The map

f̂ : R
n+1 − {0} → R f̂(x) = arccos

( ∣∣xT
0 x
∣∣

‖x0‖ ‖x‖

)

is continuous and descends to a continuous map in RP
n
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! Definition [Group] A group is an ordered pair (G, ∗) consisting of a set G and a

binary operation ∗ : G × G → G such that

(a) (associativity) for every x, y, z ∈ G we have (x ∗ y) ∗ z = x ∗ (y ∗ z)

(b) (identity) there is e ∈ G such that e ∗ x = x ∗ e = x for all x ∈ G

(c) (inverse) for each x ∈ G there is a y ∈ G such that x ∗ y = y ∗ x = e

If understood from the context,

! (G, ∗) is simply denoted by G

! we write xy instead of x ∗ y

! Lemma [Elementary properties of groups] Let (G, ∗) be a group.

(a) The identity element is unique (and is usually denoted by e)

(b) The inverse is unique (and is usually denoted by x−1)
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! Example (general linear group): GL(n, R) = {X ∈ Rn×n : det X ,= 0} is a group

with matrix multiplication as the group operation

! the identity element of the group is In

! the inverse of A is A−1

! Example (group of orthogonal matrices): O(n) = {X ∈ Rn×n : X$X = In} is

a group with matrix multiplication as the group operation

! Example (group of special orthogonal matrices):

SO(n) = {X ∈ O(n) : det(X) = 1}

is a group with matrix multiplication as the group operation

! Example (upper triangular matrices with positive diagonal entries):

U+(n, R) = {X ∈ R
n×n : X is upper-triangular and Xii > 0 for all i }

is a group with matrix multiplication as the group operation
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! Example (group of rigid motions in Rn):

SE(n) =








Q δ

0 1



 : Q ∈ SO(n), δ ∈ R
n






is a group with matrix multiplication as the group operation

! the identity element of the group is


In 0

0 1





! the inverse of



Q δ

0 1



 is



Q$ −Q$δ

0 1
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! Definition [Subgroup, left translation, right translation, homomorphism, kernel

of a homomorphism] Let (G, ∗) be a group.

! a subgroup of G is a set H ⊂ G such that e ∈ H, x ∗ y ∈ H whenever

x, y ∈ H, and x−1 ∈ H whenever x ∈ H

! for each g ∈ G, we define the left translation map Lg : G → G, Lg(x) = g ∗ x.

Similarly, we have the right translation map Rg : G → G, Rg(x) = x ∗ g

! let (H, ∗̃) denote a group with identity element ẽ. A map F : G → H is said to

be a homomorphism if F (x ∗ y) = F (x)∗̃F (y) for all x, y ∈ G. The kernel of F is

defined as

Ker F = {x ∈ G : F (x) = ẽ} .

Note that Ker F is a subgroup of G.

! Example (subgroups of the general linear group): O(n), SO(n) and U+(n, R) are

subgroups of GL(n, R). SE(n) is a subgroup of GL(n + 1, R)
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! Example (homomorphism): the map

F : GL(n, R) → GL(1, R) F (X) = det(X)

is a homomorphism. Its kernel is the subgroup

SL(n, R) = {X : det(X) = 1}

! Example (generalization of the previous result): the map

F : GL(n, R) → GL







 n

k



 , R



 f(X) = X[k]

is a homomorphism (Cauchy-Binet formula)
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! Definition [Topological group] Let G be a group which is at the same time a

topological space. Then, G is said to be a topological group if the maps

(a) ι : G → G ι(x) = x−1

(b) m : G × G → G m(x, y) = xy

are continuous

! Examples: GL(n, R), O(n), SO(n), U+(n, R), SE(n) are topological groups

! Definition [Group action] Let G be a group and X be a set. A left action of G on

X is a map θ : G × X → X such that

(a) θ(e, x) = x for all x ∈ X

(b) θ(g, θ(h, x)) = θ(gh, x) for all g, h ∈ G and x ∈ X

If the action θ is clear from the context, we use gx instead of θ(g, x)

If G is a topological group and X is a topological space, the action is said to be

continuous if θ is continuous.
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! Example (GL(n, R) acts on Rn): the map

θ : GL(n, R) × R
n → R

n θ(A, x) = Ax

defines a continuous left action of GL(n, R) on Rn.

This is called the natural action of GL(n, R) on Rn.

! Example (O(n) acts on S(n, R)): let

S(n, R) = {X ∈ R
n×n : X = X$}

denote the set of n × n symmetric matrices with real entries.

The map

θ : O(n) × S(n, R) → S(n, R) θ(Q, S) = QSQ$

defines a continuous left action of O(n) on S(n, R)
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! Lemma [Continuous left actions] Let θ : G × X → X be a continuous left action

of G on X. For each g ∈ G, the map

θg : X → X θg(x) = θ(g, x) = gx

is a homeomorphism.

! Proof: The map θg is bijective because the map θg−1 is a left and right inverse for

it, that is, θg ◦ θg−1 = θg−1 ◦ θg = idX . The map θg is continuous because it is the

composition of two continuous maps: θg = θ ◦ ιg , where ιg : G → G × X,

ιg(x) = (g, x). It is a homeomorphism because its inverse is given by θg−1 , which is

continuous !

XX

θg
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! Definition [Orbits,free/transitive actions,invariants,maximal invariants] Let

θ : G × X → X denote a left action of the group G on a set X.

! The orbit of p ∈ X is the set Gp = {θ(g, p) : g ∈ G}

! The action is said to be transitive if, for any given p, q ∈ X there exists g ∈ G

such that θ(g, p) = q

∗ Intuition: there is only one orbit

! The action is said to be free if θ(g, p) = p implies g = e

∗ Intuition: each orbit is a “copy” of G

! An invariant of the action is a map φ : X → Y (where Y denotes a set) which

is constant on orbits, that is, x, y ∈ Gp imply φ(x) = φ(y)

A maximal invariant of the action is an invariant φ which differs from orbit to

orbit, that is, x ,∈ Gy implies φ(x) ,= φ(y)

∗ Intuition: a maximal invariant permits to index the orbits
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! Example: the natural action of GL(n, R) on Rn is not transitive (it has two orbits,

namely, {0} and Rn − {0}), it is not free and a maximal invariant is φ : Rn → R,

φ(0) = 0 and φ(x) = 1 if x ,= 0

! Example: the action of O(n) on S(n, R) discussed above is not transitive, it is not

free and a maximal invariant is φ : S(n, R) → Rn,

φ(S) = (λ1(S), λ2(S), . . . , λn(S))$ ,

where λ1(S) ≥ λ2(S) ≥ · · · ≥ λn(S) denote the eigenvalues of S sorted in

non-increasing order

! Definition [Orbit space] Let θ : G × X → X denote a continuous action of the

topological group G on the topological space X.

Introduce an equivalence relation on X by declaring x ∼ y if they share the same

orbit, that is, x ∼ y if and only if there exists g ∈ G such that y = θ(g, x).

The set of equivalence classes is denoted by X/G and is called the orbit space of the

action.
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! Lemma [Orbit space] Suppose the topological group G acts continuously on the

left of the topological space X. Let X/G be given the quotient topology.

(a) The projection map π : X → X/G is open

(b) If X is second countable, then X/G is second countable

(c) X/G is Hausdorff if and only if the set

A = {(p, q) ∈ X × X : q = θ(g, p) for some g ∈ G}

is closed in X × X

! Proof: (a) Let U be open in X. We must show that π(U) is open in X/G, that is,

V = π−1(π(U)) is open in X. But

V =
⋃

g∈G

θg(U),

where θg : X → X, θg(x) = gx. Since each θg is a homeomorphism, θg(U) is open

in X. Thus, V is open in X. (b) If B is a countable basis for X, then

π(B) = {π(B) : B ∈ B} is a countable basis for X/G. (c) (⇒) Let (x, y) ,∈ A.

Thus, x and y lie in distinct orbits, that is, π(x) ,= π(y). Since X/G is Hausdorff, let

U and V be disjoint neighborhoods of π(x) and π(y), respectively. Then,
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π−1(U) × π−1(V ) is open in X × X, contains (x, y) and does not intersect A

(why?). Thus, the complement of A in X × X is open. (⇐) Let π(x) and π(y) be

two distinct points in X/G. Then, (x, y) ,∈ A. Let U and V be neighborhoods of x

and y, respectively, such that U × V does not intersect A. Then, π(U) and π(V ) are

disjoint neighborhoods of π(x) and π(y), respectively (why?) !

! Example (projective space RP
n): let G = GL(1, R) act continuously on

X = Rn+1 − {0} as θ : G × X → X, θ(λ, x) = λx. Then, RP
n = X/G.

! RP
n is second countable

! RP
n is Hausdorff because

A = {(x, y) ∈ X × X : x and y are in the same orbit}

is closed: it can be written as A = f−1({0}) where f if the continuous map

f : X × X → R f(x, y) = (x$x)(y$y) − (x$y)2
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! Lemma [Product of open maps is open] Let A, B, X, Y be topological spaces.

Let f : A → X and g : B → Y be open maps. Then, the product map

f × g : A × B → X × Y (f × g)(a, b) = (f(a), g(b))

is open.

! Proof: Let W be an open set in A × B. Then, W may be written as a union of

rectangles

W =
⋃

i

Ui × Vi,

where each Ui in open in A and each Vi is open in B. We have

(f × g)(W ) = (f × g)

(
⋃

i

Ui × Vi

)

=
⋃

i

(f × g)(Ui × Vi) =
⋃

i

f(Ui) × g(Vi).

Since f(Ui) is open in X and g(Vi) is open in Y (by hypothesis), then f(Ui) × g(Vi)

is open in X × Y . Since W is an union of open sets, it is open !
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! Lemma [Hybrid spaces] Let the topological group G act continuously on the left

of the topological space X. Let the orbit space X/G be given the quotient topology

and let π : X → X/G be the corresponding projection map. Let Y be any

topological space. Then, the map

π × idY : X × Y → (X/G) × Y (π × idY )(x, y) = (π(x), y)

is a quotient map.

! Proof: To abbreviate notation, let f = π × idY . The map f is clearly surjective and

continuous. Thus, if we show that f is an open map, we are done. Now, both

π : X → X/G and idY : Y → Y are open maps. Since f = π × idY is the product

of open maps, it is itself open !
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! Corollary [Hybrid spaces] Let the topological group G act continuously on the left

of the topological space X. Let the orbit space X/G be given the quotient topology

and let π : X → X/G be the corresponding projection map. Let Y and B be any

topological spaces. Then, the map f : (X/G) × Y → B is continuous if and only if

the map f̂ : X × Y → B, f̂ = f ◦ (π × idY ) is continuous.

X × Y

(X/G) × Y B

π × idY

f

f̂

∗ Intuition: continuity of the “hard” map f can be investigated through the easier f̂
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! Example: write a matrix P ∈ Rn×k in columns P = [ p1 p2 · · · pk ]

Consider the map

f : RP
n−1 × R

n×k → R f([x], P ) =
k∑

j=1

∥∥∥∥pj −
xx$

‖x‖2 pj

∥∥∥∥

2

.

In geometric terms, the map f computes the total squared distance from the

constellation of points {p1, p2, . . . , pk} to the straight line [x]

p1

p2

pkline [x]
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The map f is continuous

Rn − {0}× Rn×k

RP
n−1 × Rn×k R

π × id
Rn×k

f

f̂(x, P ) =
∑k

j=1

∥∥∥∥pj − xxT

‖x‖2 pj

∥∥∥∥
2

is clearly continuous
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