## Nonlinear Signal Processing 2007-2008

New Spaces from Old

(Ch.3, "Introduction to Topological Manifolds", J. Lee, Springer-Verlag)

Instituto Superior Técnico, Lisbon, Portugal

João Xavier

jxavier@isr.ist.utl.pt

## Lecture's key-points

 $\Box\ 3$  canonical mechanisms to construct new topological spaces from old ones:

- ▷ subspaces
- ▷ Cartesian products
- ▷ quotients

 $\Box$  Questions about continuity in the new spaces can be answered in the old ones

 $\Box$  Definition [Topology generated by a class of subsets] Let X be a nonempty set and C a class of subsets of X. The topology generated by C, written  $\mathcal{T}(C)$ , is defined as the smallest topology containing the class C



 $\Box$  Lemma [Characterization of generated topologies] Let X be a nonempty set and C a class of subsets of X. Then  $\mathcal{T}(C)$  is the class of all unions of finite intersections of sets in C.

That is,  $U \in \mathcal{T}(\mathcal{C})$  if and only if

$$U = \bigcup_{\alpha \in A} U_{\alpha}, \qquad U_{\alpha} = C_{\alpha}^{1} \cap C_{\alpha}^{2} \cap \cdots \cap C_{\alpha}^{n}, \qquad C_{\alpha}^{i} \in \mathcal{C}.$$

Also, the collection  $\{U_{\alpha}\}$  is a basis for  $\mathcal{T}(\mathcal{C})$ .

 $\Box$  Definition [Subspace topology] Let X be a topological space and  $A \subset X$  be any subset. The subspace topology  $\mathcal{T}_A$  on A is defined as

 $\mathcal{T}_A = \{A \cap U \, : \, U \text{ open in } X\} \, .$ 

Let  $A \subset X$  be any subset. By the subspace A of X we mean the topological space  $(A, \mathcal{T}_A)$  where  $\mathcal{T}_A$  is the subspace topology on A.



**Example:** consider the subspace A = [0, 2[ of  $X = \mathbb{R}$  $\triangleright$  The set [0,1[ is not open in X $\triangleright$  The set [0, 1[ is open in A: it can be written as  $[0,1[=\underbrace{[0,2[}]{A} \cap \underbrace{]-1,1[}{U: \text{ open in } X}]$ **Example (unit sphere):** consider the subspace  $S^{n-1}(\mathbb{R}) = \{x \in \mathbb{R}^n : ||x|| = 1\}$ of  $\mathbb{R}^n$ .  $\triangleright$  The set  $U_i^+ = \{x \in S^{n-1}(\mathbb{R}) : x_i > 0\}$  is open in  $S^{n-1}(\mathbb{R})$ :  $U_i^+ = \mathsf{S}^{n-1}(\mathbb{R}) \cap \underbrace{\{x \in \mathbb{R}^n : x_i > 0\}}_{\text{open in } \mathbb{R}^n}$ 

□ Example (orthogonal matrices): consider the subspace

$$\mathsf{O}(n) = \{ X \in \mathbb{R}^{n \times n} : X^\top X = I_n \}$$

of  $\mathbb{R}^{n \times n}$ .

$$\triangleright \text{ The set } \mathsf{SO}(n) = \{ X \in \mathsf{O}(n) : \det(X) > 0 \} \text{ is open in } \mathsf{O}(n) :$$
$$\mathsf{SO}(n) = \mathsf{O}(n) \cap \underbrace{\{ X \in \mathbb{R}^{n \times n} : \det(X) > 0 \}}_{i \in \mathbb{R}^{n \times n}}$$

open in  $\mathbb{R}^{n imes n}$ 

 $\Box$  Trivial but important fact: if A is a subspace of X, then

 $\iota_A : A \to X \qquad \iota_A(x) = x$ 

is a continuous map

 $\Box$  Theorem [Characteristic property of subspace topologies] Let X, Y be topological spaces. Let A be a subspace of X. Then, a map  $f : Y \to A$  is continuous if and only if  $\hat{f} = \iota_A \circ f$  is continuous



\* Intuition: continuity of the "hard" map f can be investigated through the easier  $\widehat{f}$ 



 $\Box$  Definition [Topological embedding] Let X and Y be topological spaces. An injective, continuous map  $f : X \to Y$  is said to be a topological embedding if it is a homeomorphism onto its image f(X) (endowed with the subspace topology)

\* Intuition: we can interpret  $X \simeq f(X)$  as a subspace of Y (X is simply another label for a subspace of Y)

**Example:** consider

- $\triangleright X = \{1,2,3\}$  with the discrete topology  $\mathcal{T}_X = 2^X$
- $\triangleright Y = \{1, 2, 3, 4, \dots, 10\}$  with the trivial topology  $\mathcal{T}_Y = \{\emptyset, Y\}$

 $\triangleright$  the map  $f : X \to Y$ , f(x) = x is injective and continuous

 $\triangleright$  the map f is **not** a homeomorphism onto the subspace  $f(X) = \{1, 2, 3\}$  of Y

 $\Box$  Lemma [Other properties of the subspace topology] Suppose A is a subspace of the topological space X.

(a) The inclusion map  $\iota_A : A \to X$  is continuous (in fact, a topological embedding)

(b) If  $\widehat{f} : X \to Y$  is continuous then  $f = \widehat{f}|_A : A \to Y$  is continuous



□ Example (map out of the unit sphere): the map

$$f: \mathbf{S}^{n-1}(\mathbb{R}) \to \mathbb{R}^{n \times n} \qquad f(x) = xx^{\top}$$

is continuous



□ Example (concatenating the techniques...): the map

 $f: \mathbf{O}(n) \to \mathbf{S}^{n-1}(\mathbb{R}) \qquad f(X) = f([x_1 \, x_2 \, \cdots \, x_n \,]) = x_1$ 

is continuous because

Step 1:

$$\widehat{f} : \mathbb{R}^{n \times n} \to \mathbb{R}^n \qquad f(X) = x_1$$

is **clearly** continuous

Step 2:

$$\widehat{f}|_{\mathsf{O}(n)} : \mathsf{O}(n) \to \mathbb{R}^n \qquad \widehat{f}|_{\mathsf{O}(n)}(X) = x_1$$

is continuous due to



## Step 3:

$$f: \mathcal{O}(n) \to \mathcal{S}^{n-1}(\mathbb{R}) \qquad f(X) = x_1$$

is continuous due to



## □ Lemma [Other properties of the subspace topology (cont.)]

(c) If  $B \subset A$  is a subspace of A, then B is a subspace of X; in other words, the subspace topologies that B inherits from A and from X agree

(d) If  $\mathcal{B}$  is a basis for the topology of X, then

$$\mathcal{B}_A = \{ B \cap A : B \in \mathcal{B} \}$$

is a basis for the topology of  $\boldsymbol{A}$ 

(e) If X is Hausdorff and 2nd countable then A is Hausdorff and 2nd countable

 $\Box$  Example (a simple topological manifold):  $S^{n-1}(\mathbb{R})$  is a topological manifold of dimension n-1

 $\Box$  Example (another topological manifold?): the set of  $2 \times 2$  special orthogonal matrices

$$\mathsf{SO}(2) = \left\{ X \in \mathbb{R}^{2 \times 2} : X^{\top} X = I_2, \, \det(X) = 1 \right\}$$

is a topological manifold of dimension  $1\ {\rm because}\ {\rm the}\ {\rm map}$ 

$$f: S^{1}(\mathbb{R}) \to SO(2)$$
  $f\left(\begin{bmatrix} x\\ y \end{bmatrix}\right) = \begin{bmatrix} x & -y\\ y & x \end{bmatrix}$ 

is a homeomorphism

 $\Box$  Definition [Product topology] Let  $X_1, X_2, \ldots, X_n$  be topological spaces. The product topology on the Cartesian product  $X_1 \times X_2 \times \cdots \times X_n$  is the topology generated by the collection of rectangles

 $\mathcal{C} = \{U_1 \times U_2 \times \cdots \cup U_n : U_i \text{ is open in } X_i\}.$ 

The set  $X_1 \times \cdots \times X_n$  equipped with the product topology is called a product space.



 $\Box$  Note that  ${\mathcal C}$  is a basis for the product topology

 $\Box$  Theorem [Characteristic property of product topologies] Let  $X_1 \times \cdots \times X_n$  be a product space and let Y be a topological space. Then, the map  $f : Y \to X_1 \times \cdots \times X_n$  is continuous if and only if each map  $f_i : Y \to X_i$ ,  $f_i = \pi_i \circ f$  is continuous



 $\Box \pi_i : X_1 \times X_2 \times \cdots \times X_n \to X_i, \ \pi_i(x_1, x_2, \dots, x_n) = x_i$  denotes the projection map onto the *i*th factor  $X_i$ 

**Example (decomposing a vector in amplitude and direction)**: the map

$$f: \mathbb{R}^n - \{0\} \to \mathbb{R}^+ \times \mathsf{S}^{n-1}(\mathbb{R}) \qquad f(x) = \left( \|x\|, \frac{x}{\|x\|} \right)$$

is continuous because

$$\triangleright f_1 : \mathbb{R}^n - \{0\} \to \mathbb{R}^+, f_1(x) = ||x|| \text{ is continuous}$$
$$\triangleright f_2 : \mathbb{R}^n - \{0\} \to \mathsf{S}^{n-1}(\mathbb{R}), f_2(x) = \frac{x}{||x||} \text{ is continuous}$$

 $\Box$  Lemma [Other properties of the product topology] Let  $X_1, \ldots, X_n$  be topological spaces.

(a) The projection maps  $\pi_i : X_1 \times \cdots \times X_n \to X_i$  are continuous and open

(b) Let 
$$x_j \in X_j$$
 be fixed for  $j 
eq i$ . The map

 $f: X_i \to X_1 \times \cdots \times X_n, \qquad f(x) = (x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n)$ 

is a topological embedding

 $\Box \text{ Lemma [Other properties of the product topology (cont.)]}$ (c) If  $\mathcal{B}_i$  is a basis for the topology of  $X_i$ , then the class

 $\mathcal{B} = \{B_1 \times \cdots \times B_n : B_i \in \mathcal{B}_i\}$ 

is a basis for the topology of the product space  $X_1 \times \cdots \times X_n$ 

(d) If  $A_i$  is a subspace of  $X_i$ , for i = 1, ..., n, the product topology and the subspace topology on  $A_1 \times \cdots \times A_n \subset X_1 \times \cdots \times X_n$  are identical

(e) If each  $X_i$  is Hausdorff and second countable then the product space  $X_1 \times \cdots \times X_n$  is also Hausdorff and second countable

 $\Box$  Definition [Product map] If  $f_i : X_i \to Y_i$  are maps for i = 1, ..., n, their product map, written  $f_1 \times \cdots \times f_n$ , is defined as

$$f_1 \times \cdots \times f_n : X_1 \times \cdots \times X_n \to Y_1 \times \cdots \times Y_n,$$

$$(f_1 \times \cdots \times f_n) (x_1, \ldots, x_n) = (f_1(x_1), \ldots, f_n(x_n)).$$

□ **Proposition [Product map]** A product of continuous maps is continuous, and a product of homeomorphisms is a homeomorphism

 $\Box$  **Proposition [Product manifolds]** If  $M_1, \ldots, M_k$  are topological manifolds of dimensions  $n_1, \ldots, n_k$ , respectively, the product space  $M_1 \times \cdots \times M_k$  is a topological manifold of dimension  $n_1 + \cdots + n_k$ 

 $\triangleright$  Intuition: if each  $M_i$  has  $n_i$  "degrees of freedom", then  $M_1 \times \cdots \times M_k$  has  $n_1 + \cdots + n_k$  "degrees of freedom"

 $\Box$  Definition [Saturated sets, fibers] Let X and Y be sets and  $\pi : X \to Y$  be a surjective map.

A subset  $\pi^{-1}(y) \subset X$  for  $y \in Y$  is called a fiber of  $\pi$ .

A subset  $U \subset X$  is saturated if  $U = \pi^{-1}(V)$  for some  $V \subset Y$  (U=union of fibers)



**Example:** consider the surjective map

$$\pi : \mathbb{R}^2 \to \mathbb{R}_0^+ \qquad \pi(x) = \|x\|$$

▷ the fibers of  $\pi$  are the circles centered at the origin and the origin itself ▷ the annulus  $U = \{x \in \mathbb{R}^2 : 1 < ||x|| \le 2\}$  is a saturated set

 $\triangleright$  each coordinate axis of  $\mathbb{R}^2$  is non-saturated

 $\Box$  Definition [Quotient topology] Let X be a topological space, Y be any set, and  $\pi : X \to Y$  be a surjective map. The quotient topology on Y induced by the map  $\pi$  is defined as



 $\Box$  Example (real projective space  $\mathbb{RP}^n$ ): introduce the equivalence relation  $\sim$  in  $X = \mathbb{R}^{n+1} - \{0\}$ 

 $x \sim y$  if and only if  $x = \lambda y$  for some  $\lambda \neq 0$ 

 $\triangleright$  let  $\mathbb{RP}^n = X/\sim$  denote the set of equivalence classes

 $\triangleright$  the map  $\pi$  :  $X \to \mathbb{RP}^n$ ,  $x \mapsto \pi(x) = [x]$  is surjective

 $\triangleright \mathbb{RP}^n$  becomes a topological space by letting  $\pi$  induce the quotient topology

 $\triangleright$  the fibers of  $\pi$  are straight lines in  $\mathbb{R}^{n+1} - \{0\}$ 

 $\Box$  Definition [Quotient map] Let X and Y be topological spaces. A surjective map  $f: X \to Y$  is called a quotient map if the topology of Y coincides with  $\mathcal{T}_f$  (the quotient topology induced by f). This is equivalent to saying that U is open in Y if and only if  $f^{-1}(U)$  is open in X

 $\Box$  Lemma [Characterization of quotient maps] Let X and Y be topological spaces. A continuous surjective map  $f : X \to Y$  is a quotient map if and only if it takes saturated open sets to open sets, or saturated closed sets to closed sets

 $\Box$  Lemma [Easy sufficient conditions for quotient maps] If  $f : X \to Y$  is a surjective continuous map that is also an open or closed map, then it is a quotient map

 $\Box$  Lemma [Composition property of quotient maps] Suppose  $\pi_1 : X \to Y$  and  $\pi_2 : Y \to Z$  are quotient maps. Then their composition  $\pi_2 \circ \pi_1 : X \to Z$  is also a quotient map

 $\Box$  Theorem [Characteristic property of quotient topologies] Let  $\pi : X \to Y$  be a quotient map. For any topological space B, a map  $f : Y \to B$  is continuous if and only if  $\hat{f} = f \circ \pi$  is continuous.



 $\ast$  Intuition: continuity of the "hard" map f can be investigated through the easier  $\widehat{f}$ 

 $\Box$  Example (real projective space  $\mathbb{RP}^n$ ): for  $[x] \in \mathbb{RP}^n$ , let line([x]) be the straight line spanned by x and let  $x_0 \in \mathbb{R}^{n+1}$  be fixed

The map

$$f : \mathbb{RP}^n \to \mathbb{R}$$
  $f([x]) = dist(x_0, line([x]))$ 

is continuous



 $\Box$  Corollary [Passing to the quotient] Suppose  $\pi : X \to Y$  is a quotient map, B is a topological space, and  $\hat{f} : X \to B$  is any continuous map that is constant on the fibers of  $\pi$  (that is, if  $\pi(p) = \pi(q)$  then  $\hat{f}(p) = \hat{f}(q)$ ). Then, there exists an unique continuous map  $f : Y \to B$  such that  $\hat{f} = f \circ \pi$ :



 $\Box$  Example (elementary descent to  $\mathbb{RP}^n$ ): let  $x_0 \in \mathbb{R}^{n+1} - \{0\}$  be fixed. The map

$$\widehat{f}: \mathbb{R}^{n+1} - \{0\} \to \mathbb{R}$$
  $\widehat{f}(x) = \arccos\left(\frac{|x_0^T x|}{\|x_0\| \|x\|}\right)$ 

is continuous and descends to a continuous map in  $\mathbb{RP}^n$ 

 $\Box$  Definition [Group] A group is an ordered pair (G, \*) consisting of a set G and a binary operation  $* : G \times G \to G$  such that

(a) (associativity) for every  $x, y, z \in G$  we have (x \* y) \* z = x \* (y \* z)

(b) (identity) there is  $e \in G$  such that e \* x = x \* e = x for all  $x \in G$ 

(c) (inverse) for each  $x \in G$  there is a  $y \in G$  such that x \* y = y \* x = e

If understood from the context,

 $\triangleright$  (G, \*) is simply denoted by G

 $\triangleright$  we write xy instead of x \* y

 $\Box$  Lemma [Elementary properties of groups] Let (G, \*) be a group.

(a) The identity element is unique (and is usually denoted by e)

(b) The inverse is unique (and is usually denoted by  $x^{-1}$ )

 $\Box$  Example (general linear group):  $GL(n, \mathbb{R}) = \{X \in \mathbb{R}^{n \times n} : \det X \neq 0\}$  is a group with matrix multiplication as the group operation

```
\triangleright the identity element of the group is I_n
```

```
\triangleright the inverse of A is A^{-1}
```

 $\Box$  Example (group of orthogonal matrices):  $O(n) = \{X \in \mathbb{R}^{n \times n} : X^{\top}X = I_n\}$  is a group with matrix multiplication as the group operation

 $\Box$  Example (group of special orthogonal matrices):

 $SO(n) = \{X \in O(n) : det(X) = 1\}$ 

is a group with matrix multiplication as the group operation

□ Example (upper triangular matrices with positive diagonal entries):

 $U^+(n,\mathbb{R}) = \{X \in \mathbb{R}^{n \times n} : X \text{ is upper-triangular and } X_{ii} > 0 \text{ for all i } \}$ 

is a group with matrix multiplication as the group operation

 $\Box$  Example (group of rigid motions in  $\mathbb{R}^n$ ):

$$\mathsf{SE}(n) = \left\{ \begin{bmatrix} Q & \delta \\ 0 & 1 \end{bmatrix} : Q \in \mathsf{SO}(n), \delta \in \mathbb{R}^n \right\}$$

is a group with matrix multiplication as the group operation

 $\triangleright$  the identity element of the group is

$$\begin{bmatrix} I_n & 0 \\ 0 & 1 \end{bmatrix}$$
  

$$\triangleright \text{ the inverse of } \begin{bmatrix} Q & \delta \\ 0 & 1 \end{bmatrix} \text{ is } \begin{bmatrix} Q^\top & -Q^\top \delta \\ 0 & 1 \end{bmatrix}$$

 $\Box$  Definition [Subgroup, left translation, right translation, homomorphism, kernel of a homomorphism] Let (G, \*) be a group.

 $\triangleright$  a subgroup of G is a set  $H\subset G$  such that  $e\in H,\ x*y\in H$  whenever  $x,y\in H,$  and  $x^{-1}\in H$  whenever  $x\in H$ 

 $\triangleright$  for each  $g \in G$ , we define the left translation map  $L_g : G \to G$ ,  $L_g(x) = g * x$ . Similarly, we have the right translation map  $R_g : G \to G$ ,  $R_g(x) = x * g$ 

 $\triangleright$  let  $(H, \widetilde{*})$  denote a group with identity element  $\widetilde{e}$ . A map  $F : G \to H$  is said to be a homomorphism if  $F(x * y) = F(x) \widetilde{*}F(y)$  for all  $x, y \in G$ . The kernel of F is defined as

 $\operatorname{Ker} F = \{ x \in G : F(x) = \widetilde{e} \}.$ 

Note that  $\operatorname{Ker} F$  is a subgroup of G.

 $\Box$  Example (subgroups of the general linear group): O(n), SO(n) and U<sup>+</sup>(n,  $\mathbb{R}$ ) are subgroups of GL(n,  $\mathbb{R}$ ). SE(n) is a subgroup of GL(n + 1,  $\mathbb{R}$ )

**Example (homomorphism):** the map  $F : \mathsf{GL}(n,\mathbb{R}) \to \mathsf{GL}(1,\mathbb{R})$   $F(X) = \det(X)$ is a homomorphism. Its kernel is the subgroup  $\mathsf{SL}(n,\mathbb{R}) = \{X : \det(X) = 1\}$ **Example (generalization of the previous result):** the map  $\Box$  $F : \operatorname{GL}(n, \mathbb{R}) \to \operatorname{GL}\left(\left(\begin{array}{c}n\\k\end{array}\right), \mathbb{R}\right) \qquad f(X) = X^{[k]}$ is a homomorphism (Cauchy-Binet formula)

 $\Box$  Definition [Topological group] Let G be a group which is at the same time a topological space. Then, G is said to be a topological group if the maps

(a) 
$$\iota : G \to G \quad \iota(x) = x^{-1}$$

(b) 
$$m : G \times G \rightarrow G \quad m(x,y) = xy$$

are continuous

 $\Box$  Examples:  $GL(n, \mathbb{R})$ , O(n), SO(n),  $U^+(n, \mathbb{R})$ , SE(n) are topological groups

 $\Box$  Definition [Group action] Let G be a group and X be a set. A left action of G on X is a map  $\theta$  :  $G \times X \to X$  such that

(a) 
$$\theta(e, x) = x$$
 for all  $x \in X$ 

(b)  $\theta(g, \theta(h, x)) = \theta(gh, x)$  for all  $g, h \in G$  and  $x \in X$ 

If the action  $\theta$  is clear from the context, we use gx instead of  $\theta(g, x)$ 

If G is a topological group and X is a topological space, the action is said to be continuous if  $\theta$  is continuous.

 $\Box$  Example (GL $(n, \mathbb{R})$  acts on  $\mathbb{R}^n$ ): the map

$$\theta$$
 :  $\mathsf{GL}(n,\mathbb{R}) \times \mathbb{R}^n \to \mathbb{R}^n \qquad \theta(A,x) = Ax$ 

defines a continuous left action of  $GL(n, \mathbb{R})$  on  $\mathbb{R}^n$ .

This is called the natural action of  $GL(n, \mathbb{R})$  on  $\mathbb{R}^n$ .

 $\Box$  Example (O(n) acts on S(n,  $\mathbb{R}$ )): let

 $\mathsf{S}(n,\mathbb{R}) = \{ X \in \mathbb{R}^{n \times n} : X = X^{\top} \}$ 

denote the set of  $n \times n$  symmetric matrices with real entries.

The map

$$\theta \,:\, \mathsf{O}(n) imes \mathsf{S}(n,\mathbb{R}) o \mathsf{S}(n,\mathbb{R}) \qquad heta(Q,S) = QSQ^{ op}$$

defines a continuous left action of O(n) on  $S(n, \mathbb{R})$ 

 $\Box$  Lemma [Continuous left actions] Let  $\theta$  :  $G \times X \to X$  be a continuous left action of G on X. For each  $g \in G$ , the map

$$\theta_g : X \to X \qquad \theta_g(x) = \theta(g, x) = gx$$

is a homeomorphism.

▷ Proof: The map  $\theta_g$  is bijective because the map  $\theta_{g^{-1}}$  is a left and right inverse for it, that is,  $\theta_g \circ \theta_{g^{-1}} = \theta_{g^{-1}} \circ \theta_g = \operatorname{id}_X$ . The map  $\theta_g$  is continuous because it is the composition of two continuous maps:  $\theta_g = \theta \circ \iota_g$ , where  $\iota_g : G \to G \times X$ ,  $\iota_g(x) = (g, x)$ . It is a homeomorphism because its inverse is given by  $\theta_{g^{-1}}$ , which is continuous  $\Box$ 



 $\Box$  Definition [Orbits,free/transitive actions,invariants,maximal invariants] Let  $\theta$  :  $G \times X \to X$  denote a left action of the group G on a set X.

 $\triangleright$  The orbit of  $p \in X$  is the set  $Gp = \{\theta(g, p) : g \in G\}$ 

 $\triangleright$  The action is said to be transitive if, for any given  $p,q\in X$  there exists  $g\in G$  such that  $\theta(g,p)=q$ 

\* Intuition: there is only one orbit

 $\triangleright$  The action is said to be free if  $\theta(g,p) = p$  implies g = e

\* Intuition: each orbit is a "copy" of G

 $\triangleright$  An invariant of the action is a map  $\phi : X \to Y$  (where Y denotes a set) which is constant on orbits, that is,  $x, y \in Gp$  imply  $\phi(x) = \phi(y)$ 

A maximal invariant of the action is an invariant  $\phi$  which differs from orbit to orbit, that is,  $x \notin Gy$  implies  $\phi(x) \neq \phi(y)$ 

\* Intuition: a maximal invariant permits to index the orbits

 $\Box$  Example: the natural action of  $GL(n, \mathbb{R})$  on  $\mathbb{R}^n$  is not transitive (it has two orbits, namely,  $\{0\}$  and  $\mathbb{R}^n - \{0\}$ ), it is not free and a maximal invariant is  $\phi : \mathbb{R}^n \to \mathbb{R}$ ,  $\phi(0) = 0$  and  $\phi(x) = 1$  if  $x \neq 0$ 

 $\Box$  Example: the action of O(n) on  $S(n, \mathbb{R})$  discussed above is not transitive, it is not free and a maximal invariant is  $\phi : S(n, \mathbb{R}) \to \mathbb{R}^n$ ,

 $\phi(S) = (\lambda_1(S), \lambda_2(S), \dots, \lambda_n(S))^\top,$ 

where  $\lambda_1(S) \ge \lambda_2(S) \ge \cdots \ge \lambda_n(S)$  denote the eigenvalues of S sorted in non-increasing order

 $\Box$  Definition [Orbit space] Let  $\theta$  :  $G \times X \to X$  denote a continuous action of the topological group G on the topological space X.

Introduce an equivalence relation on X by declaring  $x \sim y$  if they share the same orbit, that is,  $x \sim y$  if and only if there exists  $g \in G$  such that  $y = \theta(g, x)$ .

The set of equivalence classes is denoted by X/G and is called the orbit space of the action.

 $\Box$  Lemma [Orbit space] Suppose the topological group G acts continuously on the left of the topological space X. Let X/G be given the quotient topology.

(a) The projection map  $\pi$  :  $X \to X/G$  is open

(b) If X is second countable, then X/G is second countable

(c) X/G is Hausdorff if and only if the set

$$A = \{(p,q) \in X \times X \ : \ q = \theta(g,p) \text{ for some } g \in G\}$$

is closed in  $X\times X$ 

▷ Proof: (a) Let U be open in X. We must show that  $\pi(U)$  is open in X/G, that is,  $V = \pi^{-1}(\pi(U))$  is open in X. But

$$V = \bigcup_{g \in G} \theta_g(U),$$

where  $\theta_g : X \to X$ ,  $\theta_g(x) = gx$ . Since each  $\theta_g$  is a homeomorphism,  $\theta_g(U)$  is open in X. Thus, V is open in X. (b) If B is a countable basis for X, then  $\pi(\mathcal{B}) = \{\pi(B) : B \in \mathcal{B}\}$  is a countable basis for X/G. (c) ( $\Rightarrow$ ) Let  $(x, y) \notin A$ . Thus, x and y lie in distinct orbits, that is,  $\pi(x) \neq \pi(y)$ . Since X/G is Hausdorff, let U and V be disjoint neighborhoods of  $\pi(x)$  and  $\pi(y)$ , respectively. Then,  $\pi^{-1}(U) \times \pi^{-1}(V)$  is open in  $X \times X$ , contains (x, y) and does not intersect A (why?). Thus, the complement of A in  $X \times X$  is open. ( $\Leftarrow$ ) Let  $\pi(x)$  and  $\pi(y)$  be two distinct points in X/G. Then,  $(x, y) \notin A$ . Let U and V be neighborhoods of x and y, respectively, such that  $U \times V$  does not intersect A. Then,  $\pi(U)$  and  $\pi(V)$  are disjoint neighborhoods of  $\pi(x)$  and  $\pi(y)$ , respectively (why?)

 $\Box$  Example (projective space  $\mathbb{RP}^n$ ): let  $G = GL(1, \mathbb{R})$  act continuously on  $X = \mathbb{R}^{n+1} - \{0\}$  as  $\theta : G \times X \to X$ ,  $\theta(\lambda, x) = \lambda x$ . Then,  $\mathbb{RP}^n = X/G$ .

 $\triangleright \mathbb{RP}^n$  is second countable

 $\triangleright \mathbb{RP}^n$  is Hausdorff because

 $A = \{(x, y) \in X \times X : x \text{ and } y \text{ are in the same orbit}\}\$ 

is closed: it can be written as  $A = f^{-1}(\{0\})$  where f if the continuous map

$$f: X \times X \to \mathbb{R}$$
  $f(x,y) = (x^{\top}x)(y^{\top}y) - (x^{\top}y)^2$ 

 $\Box$  Lemma [Product of open maps is open] Let A, B, X, Y be topological spaces. Let  $f : A \to X$  and  $g : B \to Y$  be open maps. Then, the product map

$$f \times g \, : \, A \times B \to X \times Y \qquad (f \times g)(a,b) = (f(a),g(b))$$

is open.

 $\triangleright$  Proof: Let W be an open set in  $A \times B$ . Then, W may be written as a union of rectangles

$$W = \bigcup_i U_i \times V_i,$$

where each  $U_i$  in open in A and each  $V_i$  is open in B. We have

$$(f \times g)(W) = (f \times g)\left(\bigcup_{i} U_i \times V_i\right) = \bigcup_{i} (f \times g)(U_i \times V_i) = \bigcup_{i} f(U_i) \times g(V_i).$$

Since  $f(U_i)$  is open in X and  $g(V_i)$  is open in Y (by hypothesis), then  $f(U_i) \times g(V_i)$  is open in  $X \times Y$ . Since W is an union of open sets, it is open  $\Box$ 

 $\Box$  Lemma [Hybrid spaces] Let the topological group G act continuously on the left of the topological space X. Let the orbit space X/G be given the quotient topology and let  $\pi : X \to X/G$  be the corresponding projection map. Let Y be any topological space. Then, the map

 $\pi \times \operatorname{id}_Y : X \times Y \to (X/G) \times Y \qquad (\pi \times \operatorname{id}_Y)(x,y) = (\pi(x),y)$ 

is a quotient map.

▷ Proof: To abbreviate notation, let  $f = \pi \times id_Y$ . The map f is clearly surjective and continuous. Thus, if we show that f is an open map, we are done. Now, both  $\pi : X \to X/G$  and  $id_Y : Y \to Y$  are open maps. Since  $f = \pi \times id_Y$  is the product of open maps, it is itself open  $\Box$ 

 $\Box$  Corollary [Hybrid spaces] Let the topological group G act continuously on the left of the topological space X. Let the orbit space X/G be given the quotient topology and let  $\pi : X \to X/G$  be the corresponding projection map. Let Y and B be any topological spaces. Then, the map  $f : (X/G) \times Y \to B$  is continuous if and only if the map  $\hat{f} : X \times Y \to B$ ,  $\hat{f} = f \circ (\pi \times \operatorname{id}_Y)$  is continuous.



 $\ast$  Intuition: continuity of the "hard" map f can be investigated through the easier  $\widehat{f}$ 

 $\Box$  Example: write a matrix  $P \in \mathbb{R}^{n \times k}$  in columns  $P = [p_1 p_2 \cdots p_k]$ Consider the map

$$f: \mathbb{RP}^{n-1} \times \mathbb{R}^{n \times k} \to \mathbb{R} \qquad f([x], P) = \sum_{j=1}^{k} \left\| p_j - \frac{xx^\top}{\|x\|^2} p_j \right\|^2$$

In geometric terms, the map f computes the total squared distance from the constellation of points  $\{p_1, p_2, \ldots, p_k\}$  to the straight line [x]



