Nonlinear Signal Processing 2007-2008

Topological Spaces

(Ch.2, "Introduction to Topological Manifolds", J. Lee, Springer-Verlag)

Instituto Superior Técnico, Lisbon, Portugal

João Xavier

jxavier@isr.ist.utl.pt

Lecture's key-points **Topology** = structure attached to a set to make sense of **continuity** issues: ▷ convergence of sequences \triangleright continuity of maps ▷... \Box Does **not** give access to **smoothness** issues: ▷ differential of a functional \triangleright derivative of a map ▷...

 \Box Definition [Topology] A topology on a set X is a collection \mathcal{T} of subsets of X s.t.:

- (a) \emptyset and X are elements of \mathcal{T}
- (b) \mathcal{T} is closed under finite intersections:

$$U_1, \ldots, U_n \in \mathcal{T} \quad \Rightarrow \quad U_1 \cap \cdots \cap U_n \in \mathcal{T}$$

(c) T is closed under arbitrary unions:

$$\{U_{\alpha}\}_{\alpha\in A}\subset \mathcal{T} \quad \Rightarrow \quad \bigcup_{\alpha\in A}U_{\alpha}\in \mathcal{T}$$

where \mathcal{A} is any index set (may be infinite, not countable)

 $\Box \text{ Toy examples: } X = \{a, b, c\}$ $\triangleright \mathcal{T} = \{\emptyset, \{b\}, \{a, b\}, X\} \text{ is a topology on } X$ $\triangleright \mathcal{T} = \{\emptyset, \{a, b\}, X\} \text{ is a topology on } X$ $\triangleright \mathcal{T} = \{\emptyset, \{a\}, \{c\}, X\} \text{ is not a topology on } X$

- \triangleright (trivial topology) $\mathcal{T} = \{\emptyset, X\}$
- \triangleright (discrete topology) $\mathcal{T} = 2^X =$ collection of all subsets of X

 \Box A set X can accept many topologies

 \Box Definition [Topological space] A pair (X, \mathcal{T}) consisting of a set X and a topology \mathcal{T} on X is called a topological space.

- \triangleright The elements of ${\mathcal T}$ are called open sets by definition
- \triangleright If ${\mathcal T}$ is understood from the context, we simply say X is a topological space

 \Box Important example: $(\mathbb{R}^n, \mathcal{T})$ with \mathcal{T} as the collection of all usual open sets in \mathbb{R}^n

 $\Box \text{ Important example: } \mathbb{R}^{m \times n} = \{X : X \text{ is a } m \times n \text{ matrix with real entries} \}$ $\triangleright \text{ We use } \mathbb{R}^{m \times n} \simeq \mathbb{R}^{mn}$ $\triangleright \text{ To illustrate: } \mathbb{R}^{3 \times 2} \simeq \mathbb{R}^{6}$

$$X = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{bmatrix} \simeq \operatorname{vec}(X) = \begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \\ x_{12} \\ x_{22} \\ x_{32} \end{bmatrix}$$

\Box Important example: \mathbb{C}^n

- $\triangleright \ \mathrm{We} \ \mathrm{use} \ \mathbb{C}^n \simeq \mathbb{R}^{2n}$
- \triangleright To illustrate: $\mathbb{C}^3 \simeq \mathbb{R}^6$

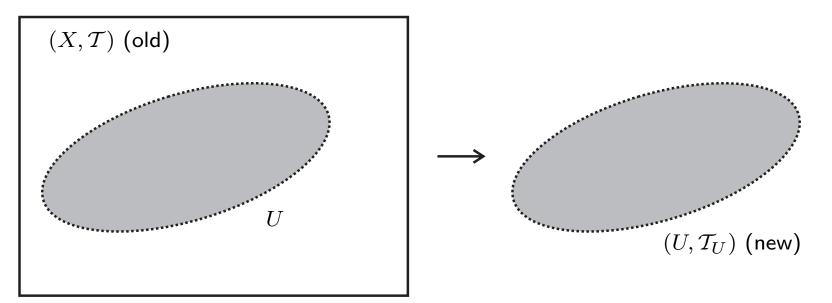
$$z = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} x_1 + iy_1 \\ x_2 + iy_2 \\ x_3 + iy_3 \end{bmatrix} \simeq \iota(z) = \begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \\ y_2 \\ x_3 \\ y_3 \end{bmatrix}$$

\square Important example: $\mathbb{C}^{m \times n} = \{Z : Z \text{ is a } m \times n \text{ matrix with complex entries}\}$	})
$ ho$ We use $\mathbb{C}^{m imes n} \simeq \mathbb{C}^{mn} \simeq \mathbb{R}^{2mn}$	
\triangleright To illustrate: $\mathbb{C}^{3 imes 2} \simeq \mathbb{C}^{6} \simeq \mathbb{R}^{12}$	
	$\begin{bmatrix} x_{11} \end{bmatrix}$
	$ y_{11} $
	x_{21}
$Z = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \\ z_{31} & z_{32} \end{bmatrix} = \begin{bmatrix} x_{11} + iy_{11} & x_{12} + iy_{12} \\ x_{21} + iy_{21} & x_{22} + iy_{22} \\ x_{31} + iy_{31} & x_{32} + iy_{32} \end{bmatrix} \simeq \operatorname{vec}(Z) = \begin{bmatrix} z_{11} \\ z_{21} \\ z_{31} \\ z_{12} \\ z_{22} \\ z_{32} \end{bmatrix}$	y_{21}
$\begin{bmatrix} z_{11} & z_{12} \end{bmatrix} \begin{bmatrix} x_{11} + iy_{11} & x_{12} + iy_{12} \end{bmatrix}$	$\left x_{31} \right $
$\begin{vmatrix} z = \begin{vmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{vmatrix} = \begin{vmatrix} x_{11} + iy_{11} & x_{12} + iy_{12} \\ x_{21} + iy_{21} & x_{22} + iy_{22} \end{vmatrix} \simeq \operatorname{vec}(Z) = \begin{vmatrix} z_{31} \\ z_{31} \end{vmatrix} \simeq \iota(\operatorname{vec}(Z)) = z_{31} $	y_{31}
$\begin{bmatrix} - & z_{21} & z_{22} \\ z_{31} & z_{32} \end{bmatrix} \begin{bmatrix} w_{21} + iy_{21} & w_{22} + iy_{22} \\ x_{31} + iy_{31} & x_{32} + iy_{32} \end{bmatrix} \begin{bmatrix} -iy_{1}(-) & z_{12} \\ z_{12} \end{bmatrix} \begin{bmatrix} -iy_{1}(-) & z_{12} \\ z_{12} \end{bmatrix}$	$ x_{12} $
$\begin{bmatrix} z_{22} \end{bmatrix}$	$ y_{12} $
$\lfloor z_{32} \rfloor$	$ x_{22} $
	$ y_{22} $
	$ x_{32} $
	$\lfloor y_{32} \rfloor$

Example: subspace topologies

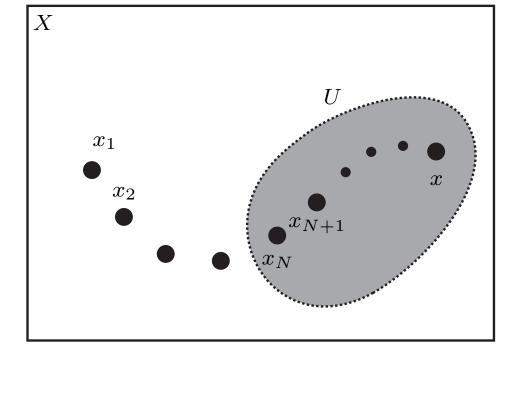
- \triangleright (X, T) is a topological space
- $\triangleright U$ is an open set (that is, $U \in \mathcal{T}$)
- $\triangleright \mathsf{let} \ \mathcal{T}_U = \{ V \in \mathcal{T} \ : \ V \subset U \} = \{ W \cap U \ : \ W \in \mathcal{T} \}$

 \triangleright then (U, \mathcal{T}_U) is a topological space



 \Box Hereafter, this construction is summarized by saying that "U is a subspace of X" * Intuition: the new topological space is "genetically" compatible with the old one

 \Box Definition [Convergent sequence] Let X be a topological space. A sequence $\{x_n : n = 1, 2, 3, ...\}$ of points in X is said to converge to $x \in X$ if for every open set U containing x there exists N such that $x_i \in U$ for all $i \ge N$



 $\Box x_n \to x$ means any open neighborhood U of x contains the tail of $\{x_n\}$

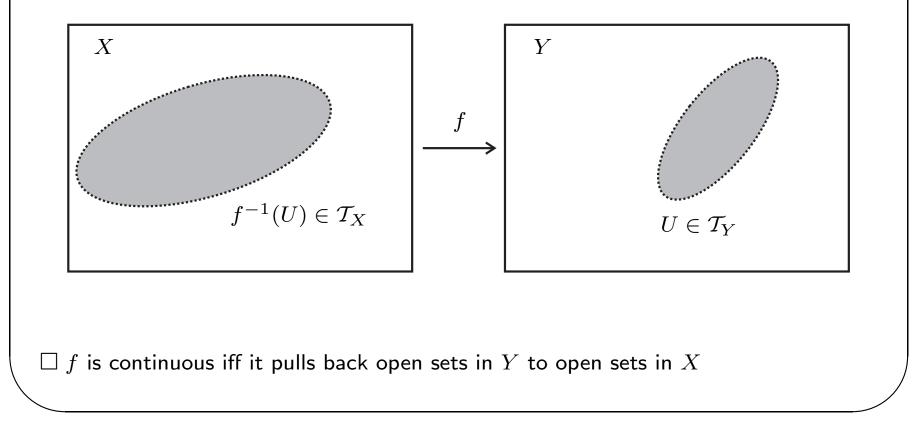
 \Box Important example: in \mathbb{R}^n (or $\mathbb{R}^{m \times n}, \mathbb{C}^n, \mathbb{C}^{m \times n}$), life proceeds as usual

□ Funny example: in a trivial space, every sequence converges to every point

 \Box Definition [Continuous maps] If X and Y are topological spaces, a map $f: X \to Y$ is said to be continuous if for every open set $U \subset Y$,

 $f^{-1}(U) = \{x \in X : f(x) \in U\}$

is open in X



$$\Box \text{ Important example: in } \mathbb{R}^{n} \text{ (or } \mathbb{R}^{m \times n}, \mathbb{C}^{n}, \mathbb{C}^{m \times n}\text{), life proceeds as usual}$$

$$\triangleright f : \mathbb{R}^{n} \to \mathbb{R}, f(x, y, z) = 3x^{2}z - 2y^{3} + 5xy^{2}z$$

$$\triangleright f : \mathbb{R}^{m \times n} \to \mathbb{R}^{m_{k} \times n_{k}}, f(X) = X^{[k]}, m_{k} = \begin{pmatrix} m \\ k \end{pmatrix}, n_{k} = \begin{pmatrix} n \\ k \end{pmatrix}$$
To illustrate: for
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

$$A^{[2]} = \begin{bmatrix} \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} & \det \begin{bmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{bmatrix} & \det \begin{bmatrix} a_{11} & a_{14} \\ a_{21} & a_{24} \end{bmatrix} & \cdots & \det \begin{bmatrix} a_{13} & a_{14} \\ a_{23} & a_{24} \end{bmatrix} \\ \det \begin{bmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{bmatrix} & \det \begin{bmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{bmatrix} & \det \begin{bmatrix} a_{11} & a_{14} \\ a_{31} & a_{34} \end{bmatrix} & \cdots & \det \begin{bmatrix} a_{13} & a_{14} \\ a_{33} & a_{34} \end{bmatrix} \\ \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} & \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} & \det \begin{bmatrix} a_{21} & a_{24} \\ a_{31} & a_{34} \end{bmatrix} & \cdots & \det \begin{bmatrix} a_{23} & a_{24} \\ a_{33} & a_{34} \end{bmatrix} \end{bmatrix}$$

 $\Box \text{ Application: } \mathsf{Rank}_{\geq k}(m,n,\mathbb{R}) = \left\{ X \in \mathbb{R}^{m \times n} \ : \ \mathsf{rank}(X) \geq k \right\} \text{ is open because}$

- $\triangleright f : \mathbb{R}^{m imes n}
 ightarrow \mathbb{R}^{m_k imes n_k}$ is continuous
- $\triangleright U = \mathbb{R}^{m_k \times n_k} \{0\}$ is open
- $\triangleright \operatorname{\mathsf{Rank}}_{\geq k}(m,n,\mathbb{R}) = f^{-1}(U)$

□ Special cases:

▷ General Linear group

 $\mathsf{GL}(n,\mathbb{R}) = \{ X \in \mathbb{R}^{n \times n} : \det(X) \neq 0 \} = \mathsf{Rank}_{>n}(n,n,\mathbb{R})$

 \triangleright k-frames in \mathbb{R}^n

$$\mathsf{F}(n,k,\mathbb{R}) = \left\{ X \in \mathbb{R}^{n \times k} \, : \, \mathsf{rank}(X) = k \right\} = \mathsf{Rank}_{\geq k}(n,k,\mathbb{R})$$

 \Box Important example: if U is a subspace of X, then

$$\iota : U \to X, \quad \iota(x) = x$$

is continuous

* Intuition: the "genetic" compatibility makes the natural link ι : $U \rightarrow X$ continuous

Example: the topologies really matter

$$\triangleright X = \{a, b, c\}$$
$$\triangleright \mathcal{T}_1 = \{\emptyset, \{b\}, \{a, b\}, X\}$$

 $\triangleright \mathcal{T}_2 = \{\emptyset, \{a, b\}, X\}$

Then,

 \triangleright The map id : $(X, \mathcal{T}_1) \rightarrow (X, \mathcal{T}_2)$ is continuous

 \triangleright The map id : $(X, \mathcal{T}_2) \rightarrow (X, \mathcal{T}_1)$ is not continuous

 \Box Lemma [Elementary properties of continuous maps] Let X, Y, and Z be topological spaces.

- (a) Any constant map $f : X \to Y$ is continuous
- (b) The identity map id : $X \to X$ is continuous
- (c) If $f : X \to Y$ and $g : Y \to Z$ are continuous, so is $g \circ f : X \to Z$

 \Box Application:

 $\triangleright f \, : \, X \to Y$ is continuous

 $\triangleright U$ is a subspace of X

 \triangleright Then, $f|_U : U \rightarrow Y$ is continuous

To illustrate: $f : \operatorname{GL}(n, \mathbb{R}) \to \mathbb{R}$, $f(X) = \operatorname{tr}(X)$ is continuous

 \Box Lemma [Local criterion for continuity] A map $f : X \to Y$ between topological spaces is continuous if and only if each point of X has a neighborhood on which the restriction of f is continuous

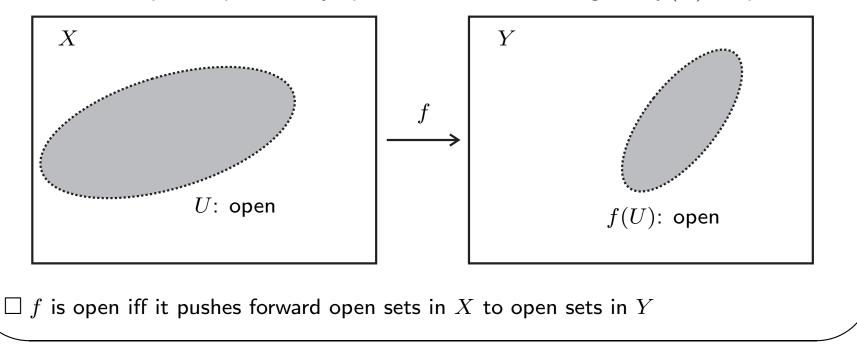
* Intuition: continuity is a local property

 \Box **Definition [Homeomorphism]** If X and Y are topological spaces, a homeomorphism from X to Y is a continuous bijective map $f : X \to Y$ with <u>continuous inverse</u>

* Intuition: X, Y are the "same" topological space (Y is simply another label for X)

 \Box Example: $X = \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ and $Y = \mathbb{R}$ are homeomorphic

 \Box Definition [Open map] If X and Y are topological spaces, a map $f : X \to Y$ is said to be an open map if for any open set $U \subset X$, the image set f(U) is open in Y



□ Examples:

- $\triangleright f\,:\,\mathbb{R}^{n+m}
 ightarrow\mathbb{R}^n$, f(x,y)=x is open
- $\triangleright f$: $\mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is not open because f(] 1, 1[) = [0, 1[

 \Box Definition [Closed set] A subset F of a topological space X is said to be closed if its complement X - F is open

 \Box Example:

$$\mathsf{Rank}_{\leq k}(m, n, \mathbb{R}) = \left\{ X \in \mathbb{R}^{m \times n} : \mathsf{rank}(X) \leq k \right\}$$

is closed because

$$\mathsf{Rank}_{\leq k}(m, n, \mathbb{R}) = \mathbb{R}^{m \times n} - \underbrace{\mathsf{Rank}_{\geq k+1}(m, n, \mathbb{R})}_{\mathsf{open}}$$

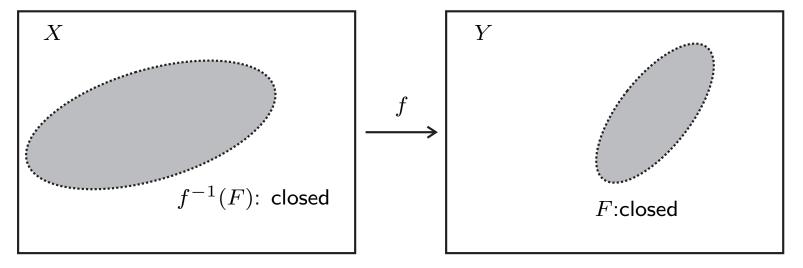
 \Box Lemma [Elementary properties of closed sets] Let X be a topological space.

(a) X and \emptyset are closed

(b) if F_1, \ldots, F_n are closed, then $F_1 \cup \cdots \cup F_n$ is closed

(c) if $\{F_{\alpha}\}_{\alpha \in A}$ is any collection of closed sets, then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed

□ Lemma [Characterization of continuous maps through closed sets] A map between topological spaces is continuous if and only if the inverse image of every closed set is closed



 $\Box f \text{ is continuous iff it pulls back closed sets in } Y \text{ to closed sets in } X$ $\Box \text{ Example: } \text{Rank}_{\leq k}(m, n, \mathbb{R}) = f_{k+1}^{-1}(\{0\}) \text{ is closed in } \mathbb{R}^{m \times n}$

 \Box Definition [Closed map] If X and Y are topological spaces, a map $f : X \to Y$ is said to be a closed map if for any closed set $F \subset X$, the image set f(F) is closed in Y

 \Box Example: $f : \mathbb{R}^{n+m} \to \mathbb{R}^n$, f(x,y) = x is not closed

 \Box Definition [Elementary topological concepts] Let X be a topological space and $A \subset X$.

 \triangleright the closure of A in X, written \overline{A} or cl(A), is

 $\overline{A} = \bigcap \{B : A \subset B \text{ and } B \text{ is closed in } X\}$

* Intuition: \overline{A} is the "smallest" closed set containing A

 \triangleright the interior of A, written Int A, is

 $Int A = \bigcup \{C : C \subset A \text{ and } C \text{ is open in } X\}$

* Intuition: Int(A) is the "largest" open set contained in A

 \triangleright the exterior of A, written Ext A, is $\mathsf{Fxt} A = X - \overline{A}$ \triangleright the boundary of A, written ∂A , is $\partial A = X - (\operatorname{Int} A \cup \operatorname{Ext} A)$ \Box Example: $X = \mathbb{R}^2$, $A = [-1, 1] \times [-1, 1]$ $\triangleright \overline{A} = [-1, 1] \times [-1, 1]$ $\triangleright \operatorname{Int} A =] - 1, 1[\times] - 1, 1[$ $\triangleright \mathsf{Ext} A = (\mathbb{R} - [-1, 1]) \times \mathbb{R} \bigcup \mathbb{R} \times (\mathbb{R} - [-1, 1])$

 $\triangleright \; \partial A = [-1,1] \times \{\pm 1\} \; \bigcup \; \{\pm 1\} \times [-1,1]$

 \Box Lemma [Characterization of closure] Let X be a topological space and $A \subset X$. A point $x \in \overline{A}$ if and only if every open set containing x intersects A

 \Box Example: $X = \mathbb{R}^{n \times n}$, $A = GL(n, \mathbb{R})$, $\overline{A} = \mathbb{R}^{n \times n}$

 \Box Lemma [Characterization of boundary] Let X be a topological space and $A \subset X$. A point x is in the boundary of A if and only if every open set containing x contains both a point of A and a point of X - A

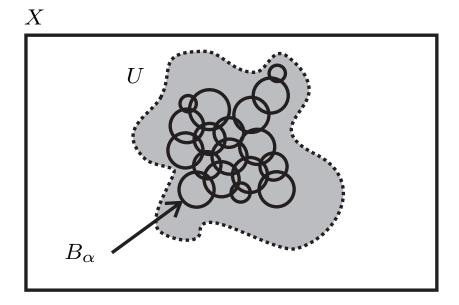
 \Box Example: $X = \mathbb{R}^{m \times n}$, $A = \mathsf{Rank}_{=k}(m, n, \mathbb{R})$, $\partial A = \mathsf{Rank}_{< k}(m, n, \mathbb{R})$

 \Box Definition [Basis] Let (X, \mathcal{T}) be a topological space. A basis for X is a class \mathcal{B} of <u>open</u> sets (thus, $\mathcal{B} \subset \mathcal{T}$) with the property that every non-empty open set in X is a union of sets in the class \mathcal{B} . That is, if $U \subset X$ is open and non-empty, we can write

$$U = \bigcup_{\alpha \in A} B_{\alpha} \qquad \text{for some } B_{\alpha} \in \mathcal{B}.$$

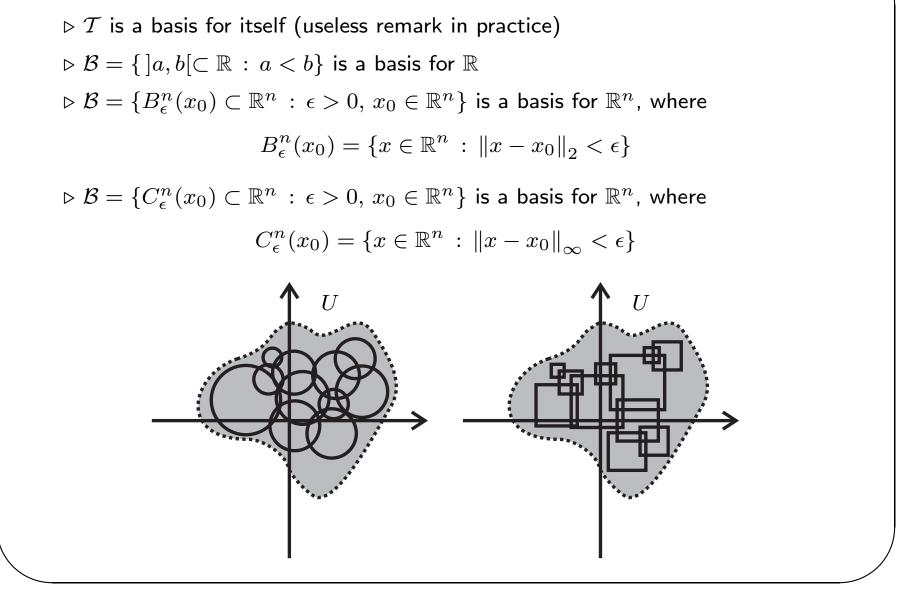
The sets in a basis are called basic open sets.

* Intuition: basis = "DNA" of T, basic open sets = building blocks of all open sets



 \Box The (strange) open set U is an union of basic (nice) sets B_{α}

□ Examples:



 \Box Lemma [Bases simplify the detection of continuous maps and open maps] Let X and Y be topological spaces. Let \mathcal{B}_X be a basis for X and \mathcal{B}_Y be a basis for Y.

(a) A map $f : X \to Y$ is continuous if and only if $f^{-1}(V)$ is open for every basic set $V \in \mathcal{B}_Y$

(b) A map $g : X \to Y$ is open if and only if the image g(W) is open for every basic set $W \in \mathcal{B}_X$

 \Box Example (pointwise maximum of continuous functions is continuous): let X be a topological space and $f_i : X \to \mathbb{R}$ be continuous for i = 1, 2, ..., n. Then,

$$f: X \to \mathbb{R} \qquad f(x) = \max\{f_1(x), f_2(x), \dots, f_n(x)\}$$

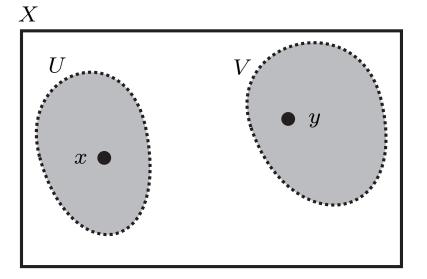
is continuous

 \Box Definition [Locally Euclidean] A topological space X is said to be locally Euclidean of dimension n if every point of X has a neighborhood homeomorphic to an open subset of \mathbb{R}^n

* Intuition: around each point X looks like \mathbb{R}^n , but not globally

 \Box Definition [Chart] Let X be locally Euclidean of dimension n. A chart on X is a pair (U, φ) where $U \subset X$ is open and $\varphi : U \to \varphi(U) \subset \mathbb{R}^n$ is a homeomorphism

 \Box Definition [Hausdorff space] A topological space X is said to be Hausdorff if for every $x \neq y$ there exist open neighborhoods U of x and V of y such that $U \cap V = \emptyset$



Examples:

- $\triangleright \mathbb{R}^n$ (or $\mathbb{R}^{m \times n}, \mathbb{C}^n, \mathbb{C}^{m \times n}$) are Hausdorff spaces
- $\triangleright X = \{a, b, c\}, T = \{\emptyset, \{a, b\}, X\}$ is not Hausdorff (Intuition: too few open sets)

 \Box Lemma [Elementary properties of Hausdorff spaces] Let X be a Hausdorff space.

- (a) Every singleton set $\{x\}$ is closed in X
- (b) The limits of convergent sequences in X are unique

 \Box Definition [Second countable space] A topological space X is said to be second countable if it admits a countable basis

 \Box Important example: \mathbb{R}^n (or $\mathbb{R}^{m \times n}$, \mathbb{C}^n , $\mathbb{C}^{m \times n}$) are second countable. A countable basis for \mathbb{R}^n :

 $\mathcal{B} = \{B^n_{\epsilon}(x_0) : \epsilon \in \mathbb{Q}^+, \text{ coordinates of } x_0 \text{ in } \mathbb{Q}\}\$

 \Box Definition [Cover/Subcover] Let X be a topological space. A class $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ of open sets is said to cover X if $X = \bigcup_{\alpha \in A} U_{\alpha}$. A subcover of \mathcal{U} is a subclass $\mathcal{V} \subset \mathcal{U}$ which still covers X

 \Box Lemma [Fundamental property of second countable spaces] Let X be a second countable space. Then every open cover of X admits a countable subcover

 \Box Lemma [Second countable spaces allow simple characterization of closures] Let X be a second countable topological space. Let $A \subset X$. Then, $x_0 \in \overline{A}$ if and only if there exists a sequence $x_n \in A$ such that $x_n \to x_0$.

▷ Proof: (⇒) Let $x_0 \in \overline{A}$ and $\mathcal{V} = \{V_1, V_2, V_3, ...\}$ the collection of basic open sets containing x_0 . Define the shrinking sequence: $U_1 = V_1$, $U_2 = V_1 \cap V_2$, $U_3 = V_1 \cap V_2 \cap V_3$, Take a point $x_n \in A$ in each U_n (this can be done because each U_n is an open set containing $x_0 \in \overline{A}$). We have $x_n \to x_0$ (why?). (⇐) For the reverse direction, let U be an open set containing x_0 . Since $x_n \to x_0$, there is a $x_N \in A$ in U. Thus, $A \cap U \neq \emptyset$ □ \Box Lemma [Second countable spaces simplify detection of continuous maps] Let $f: X \to Y$ be a map between topological spaces. Assume X is second countable. Then, f is continuous if and only if $x_n \to x_0$ implies $f(x_n) \to f(x_0)$.

▷ Proof: (⇒) Let U be an open set containing $f(x_0)$. By hypothesis, $V = f^{-1}(U)$ is open. Since $x_n \to x_0$, the tail of x_n is in V. Thus, the tail of $f(x_n)$ is in $f(V) \subset U$. (⇐) Let F be a closed set. Suppose $A = f^{-1}(F)$ is not closed. Then there exists $x_0 \in \overline{A}$ such that $x_0 \notin A$. Let $x_n \in A$ with $x_n \to x_0$. We have $f(x_n) \in f(A) \subset F$ for all n and $f(x_0) \in Y - F$ (open set). Thus, $f(x_n) \nleftrightarrow f(x_0)$ (contradiction) \Box

 \Box Definition [Topological manifold of dimension n] A topological manifold of dimension n is a second countable Hausdorff space that is locally Euclidean of dimension n.

 \Box Important example: \mathbb{R}^n is an *n*-dimensional topological manifold

 \Box Lemma [Open subsets of manifolds are manifolds] If U is an open subset of an n-dimensional topological manifold, then the subspace U is an n-dimensional topological manifold

 \Box Example: $GL(n, \mathbb{R})$ is an n^2 -dimensional topological manifold

 \Box Lemma [Topological manifolds] Let X and Y be homeomorphic topological spaces. Then, X is an *n*-dimensional topological manifold if and only if Y is an *n*-dimensional topological manifold