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Lecture’s key-points

� Topology = structure attached to a set to make sense of continuity issues:

⊲ convergence of sequences

⊲ continuity of maps

⊲ . . .

� Does not give access to smoothness issues:

⊲ differential of a functional

⊲ derivative of a map

⊲ . . .
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� Definition [Topology] A topology on a set X is a collection T of subsets of X s.t.:

(a) ∅ and X are elements of T

(b) T is closed under finite intersections:

U1, . . . , Un ∈ T ⇒ U1 ∩ · · · ∩ Un ∈ T

(c) T is closed under arbitrary unions:

{Uα}α∈A
⊂ T ⇒

⋃

α∈A

Uα ∈ T

where A is any index set (may be infinite, not countable)

� Toy examples: X = {a, b, c}

⊲ T = {∅, {b}, {a, b}, X} is a topology on X

⊲ T = {∅, {a, b}, X} is a topology on X

⊲ T = {∅, {a}, {c}, X} is not a topology on X



'

&

$

%

� Two extreme examples: for given X

⊲ (trivial topology) T = {∅, X}

⊲ (discrete topology) T = 2X=collection of all subsets of X

� A set X can accept many topologies

� Definition [Topological space] A pair (X, T ) consisting of a set X and a topology

T on X is called a topological space.

⊲ The elements of T are called open sets by definition

⊲ If T is understood from the context, we simply say X is a topological space

� Important example: (Rn, T ) with T as the collection of all usual open sets in Rn
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� Important example: Rm×n = {X : X is a m × n matrix with real entries}

⊲ We use Rm×n ≃ Rmn

⊲ To illustrate: R3×2 ≃ R6

X =







x11 x12

x21 x22

x31 x32







≃ vec(X) =















x11

x21

x31

x12

x22

x32
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� Important example: Cn

⊲ We use Cn ≃ R2n

⊲ To illustrate: C3 ≃ R6

z =







z1

z2

z3







=







x1 + iy1

x2 + iy2

x3 + iy3







≃ ι(z) =















x1

y1

x2

y2

x3

y3
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� Important example: Cm×n = {Z : Z is a m × n matrix with complex entries}

⊲ We use Cm×n ≃ Cmn ≃ R2mn

⊲ To illustrate: C3×2 ≃ C6 ≃ R12

Z =







z11 z12

z21 z22

z31 z32







=







x11 + iy11 x12 + iy12

x21 + iy21 x22 + iy22

x31 + iy31 x32 + iy32







≃ vec(Z) =















z11

z21

z31

z12

z22

z32















≃ ι(vec(Z)) =
































x11

y11

x21

y21

x31

y31

x12

y12

x22

y22

x32

y32
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� Example: subspace topologies

⊲ (X, T ) is a topological space

⊲ U is an open set (that is, U ∈ T )

⊲ let TU = {V ∈ T : V ⊂ U} = {W ∩ U : W ∈ T }

⊲ then (U, TU ) is a topological space

(X, T ) (old)

U
(U, TU ) (new)

� Hereafter, this construction is summarized by saying that “U is a subspace of X”

∗ Intuition: the new topological space is “genetically” compatible with the old one
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� Definition [Convergent sequence] Let X be a topological space. A sequence

{xn : n = 1, 2, 3, . . .} of points in X is said to converge to x ∈ X if for every open

set U containing x there exists N such that xi ∈ U for all i ≥ N

X

U

x1

x2

xN

xN+1

x

� xn → x means any open neighborhood U of x contains the tail of {xn}



'

&

$

%

� Important example: in Rn (or Rm×n, Cn, Cm×n), life proceeds as usual

� Funny example: in a trivial space, every sequence converges to every point
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� Definition [Continuous maps] If X and Y are topological spaces, a map

f : X → Y is said to be continuous if for every open set U ⊂ Y ,

f−1(U) = {x ∈ X : f(x) ∈ U}

is open in X

X Y

f−1(U) ∈ TX U ∈ TY

f

� f is continuous iff it pulls back open sets in Y to open sets in X
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� Important example: in Rn (or Rm×n, Cn, Cm×n), life proceeds as usual

⊲ f : Rn → R, f(x, y, z) = 3x2z − 2y3 + 5xy2z

⊲ f : Rm×n → Rmk×nk , f(X) = X[k], mk =




m

k



, nk =




n

k





To illustrate: for

A =







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34







A[2] =

















det

[

a11 a12

a21 a22

]

det

[

a11 a13

a21 a23

]

det

[

a11 a14

a21 a24

]

· · · det

[

a13 a14

a23 a24

]

det

[

a11 a12

a31 a32

]

det

[

a11 a13

a31 a33

]

det

[

a11 a14

a31 a34

]

· · · det

[

a13 a14

a33 a34

]

det

[

a21 a22

a31 a32

]

det

[

a21 a23

a31 a33

]

det

[

a21 a24

a31 a34

]

· · · det

[

a23 a24

a33 a34

]
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� Application: Rank≥k(m, n, R) =
{
X ∈ Rm×n : rank(X) ≥ k

}
is open because

⊲ f : Rm×n → Rmk×nk is continuous

⊲ U = Rmk×nk − {0} is open

⊲ Rank≥k(m, n, R) = f−1(U)

� Special cases:

⊲ General Linear group

GL(n, R) = {X ∈ Rn×n : det(X) 6= 0} = Rank≥n(n, n, R)

⊲ k-frames in Rn

F(n, k, R) =
{

X ∈ Rn×k : rank(X) = k
}

= Rank≥k(n, k, R)
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� Important example: if U is a subspace of X, then

ι : U → X, ι(x) = x

is continuous

∗ Intuition: the “genetic” compatibility makes the natural link ι : U → X continuous

� Example: the topologies really matter

⊲ X = {a, b, c}

⊲ T1 = {∅, {b}, {a, b}, X}

⊲ T2 = {∅, {a, b}, X}

Then,

⊲ The map id : (X, T1) → (X, T2) is continuous

⊲ The map id : (X, T2) → (X, T1) is not continuous
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� Lemma [Elementary properties of continuous maps] Let X, Y , and Z be

topological spaces.

(a) Any constant map f : X → Y is continuous

(b) The identity map id : X → X is continuous

(c) If f : X → Y and g : Y → Z are continuous, so is g ◦ f : X → Z

� Application:

⊲ f : X → Y is continuous

⊲ U is a subspace of X

⊲ Then, f |U : U → Y is continuous

To illustrate: f : GL(n, R) → R, f(X) = tr(X) is continuous

� Lemma [Local criterion for continuity] A map f : X → Y between topological

spaces is continuous if and only if each point of X has a neighborhood on which the

restriction of f is continuous

∗ Intuition: continuity is a local property
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� Definition [Homeomorphism] If X and Y are topological spaces, a

homeomorphism from X to Y is a continuous bijective map f : X → Y with

continuous inverse

∗ Intuition: X, Y are the “same” topological space (Y is simply another label for X)

� Example: X =
]
−π

2
, π

2

[
and Y = R are homeomorphic

� Definition [Open map] If X and Y are topological spaces, a map f : X → Y is

said to be an open map if for any open set U ⊂ X, the image set f(U) is open in Y

X Y

U : open
f(U): open

f

� f is open iff it pushes forward open sets in X to open sets in Y



'

&

$

%

� Examples:

⊲ f : Rn+m → Rn, f(x, y) = x is open

⊲ f : R → R, f(x) = x2 is not open because f(] − 1, 1[) = [0, 1[

� Definition [Closed set] A subset F of a topological space X is said to be closed if

its complement X − F is open

� Example:

Rank≤k(m, n, R) =
{
X ∈ Rm×n : rank(X) ≤ k

}

is closed because

Rank≤k(m, n, R) = Rm×n − Rank≥k+1(m, n, R)
︸ ︷︷ ︸

open
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� Lemma [Elementary properties of closed sets] Let X be a topological space.

(a) X and ∅ are closed

(b) if F1, . . . , Fn are closed, then F1 ∪ · · · ∪ Fn is closed

(c) if {Fα}α∈A
is any collection of closed sets, then

⋂

α∈A
Fα is closed

� Lemma [Characterization of continuous maps through closed sets] A map

between topological spaces is continuous if and only if the inverse image of every

closed set is closed

X Y

f−1(F ): closed
F :closed

f

� f is continuous iff it pulls back closed sets in Y to closed sets in X

� Example: Rank≤k(m, n, R) = f−1
k+1({0}) is closed in Rm×n
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� Definition [Closed map] If X and Y are topological spaces, a map f : X → Y is

said to be a closed map if for any closed set F ⊂ X, the image set f(F ) is closed in Y

� Example: f : Rn+m → Rn, f(x, y) = x is not closed

� Definition [Elementary topological concepts] Let X be a topological space and

A ⊂ X.

⊲ the closure of A in X, written A or cl(A), is

A =
⋂

{B : A ⊂ B and B is closed in X}

∗ Intuition: A is the “smallest” closed set containing A

⊲ the interior of A, written Int A, is

Int A =
⋃

{C : C ⊂ A and C is open in X}

∗ Intuition: Int(A) is the “largest” open set contained in A
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⊲ the exterior of A, written Ext A, is

Ext A = X − A

⊲ the boundary of A, written ∂A, is

∂A = X − (Int A ∪ Ext A)

� Example: X = R2, A =] − 1, 1] × [−1, 1]

⊲ A = [−1, 1] × [−1, 1]

⊲ Int A =] − 1, 1[×] − 1, 1[

⊲ Ext A = (R − [−1, 1]) × R
⋃

R × (R − [−1, 1])

⊲ ∂A = [−1, 1] × {±1}
⋃

{±1} × [−1, 1]



'

&

$

%

� Lemma [Characterization of closure] Let X be a topological space and A ⊂ X. A

point x ∈ A if and only if every open set containing x intersects A

� Example: X = Rn×n, A = GL(n, R), A = Rn×n

� Lemma [Characterization of boundary] Let X be a topological space and A ⊂ X.

A point x is in the boundary of A if and only if every open set containing x contains

both a point of A and a point of X − A

� Example: X = Rm×n, A = Rank=k(m, n, R), ∂A = Rank≤k(m, n, R)
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� Definition [Basis] Let (X, T ) be a topological space. A basis for X is a class B of

open sets (thus, B ⊂ T ) with the property that every non-empty open set in X is a

union of sets in the class B. That is, if U ⊂ X is open and non-empty, we can write

U =
⋃

α∈A

Bα for some Bα ∈ B.

The sets in a basis are called basic open sets.

∗ Intuition: basis=“DNA” of T , basic open sets=building blocks of all open sets

X

U

Bα

� The (strange) open set U is an union of basic (nice) sets Bα
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� Examples:

⊲ T is a basis for itself (useless remark in practice)

⊲ B = { ]a, b[⊂ R : a < b} is a basis for R

⊲ B = {Bn
ǫ (x0) ⊂ Rn : ǫ > 0, x0 ∈ Rn} is a basis for Rn, where

Bn
ǫ (x0) = {x ∈ Rn : ‖x − x0‖2 < ǫ}

⊲ B = {Cn
ǫ (x0) ⊂ Rn : ǫ > 0, x0 ∈ Rn} is a basis for Rn, where

Cn
ǫ (x0) = {x ∈ Rn : ‖x − x0‖∞ < ǫ}

UU
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� Lemma [Bases simplify the detection of continuous maps and open maps] Let X

and Y be topological spaces. Let BX be a basis for X and BY be a basis for Y .

(a) A map f : X → Y is continuous if and only if f−1(V ) is open for every basic

set V ∈ BY

(b) A map g : X → Y is open if and only if the image g(W ) is open for every

basic set W ∈ BX

� Example (pointwise maximum of continuous functions is continuous): let X be a

topological space and fi : X → R be continuous for i = 1, 2, . . . , n. Then,

f : X → R f(x) = max{f1(x), f2(x), . . . , fn(x)}

is continuous
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� Definition [Locally Euclidean] A topological space X is said to be locally

Euclidean of dimension n if every point of X has a neighborhood homeomorphic to

an open subset of Rn

∗ Intuition: around each point X looks like Rn, but not globally

� Definition [Chart] Let X be locally Euclidean of dimension n. A chart on X is a

pair (U, ϕ) where U ⊂ X is open and ϕ : U → ϕ(U) ⊂ Rn is a homeomorphism

� Definition [Hausdorff space] A topological space X is said to be Hausdorff if for

every x 6= y there exist open neighborhoods U of x and V of y such that U ∩ V = ∅

X

U V

x

y
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� Examples:

⊲ Rn (or Rm×n, Cn, Cm×n) are Hausdorff spaces

⊲ X = {a, b, c}, T = {∅, {a, b}, X} is not Hausdorff (Intuition: too few open sets)

� Lemma [Elementary properties of Hausdorff spaces] Let X be a Hausdorff space.

(a) Every singleton set {x} is closed in X

(b) The limits of convergent sequences in X are unique

� Definition [Second countable space] A topological space X is said to be second

countable if it admits a countable basis

� Important example: Rn (or Rm×n, Cn, Cm×n) are second countable. A countable

basis for Rn:

B = {Bn
ǫ (x0) : ǫ ∈ Q+, coordinates of x0 in Q}



'

&

$

%

� Definition [Cover/Subcover] Let X be a topological space. A class

U = {Uα : α ∈ A} of open sets is said to cover X if X =
⋃

α∈A
Uα. A subcover of

U is a subclass V ⊂ U which still covers X

� Lemma [Fundamental property of second countable spaces] Let X be a second

countable space. Then every open cover of X admits a countable subcover

� Lemma [Second countable spaces allow simple characterization of closures] Let

X be a second countable topological space. Let A ⊂ X. Then, x0 ∈ A if and only if

there exists a sequence xn ∈ A such that xn → x0.

⊲ Proof: (⇒) Let x0 ∈ A and V = {V1, V2, V3, . . .} the collection of basic open sets

containing x0. Define the shrinking sequence: U1 = V1, U2 = V1 ∩ V2,

U3 = V1 ∩ V2 ∩ V3, . . . . Take a point xn ∈ A in each Un (this can be done because

each Un is an open set containing x0 ∈ A). We have xn → x0 (why?). (⇐) For the

reverse direction, let U be an open set containing x0. Since xn → x0, there is a

xN ∈ A in U . Thus, A ∩ U 6= ∅�
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� Lemma [Second countable spaces simplify detection of continuous maps] Let

f : X → Y be a map between topological spaces. Assume X is second countable.

Then, f is continuous if and only if xn → x0 implies f(xn) → f(x0).

⊲ Proof: (⇒) Let U be an open set containing f(x0). By hypothesis, V = f−1(U) is

open. Since xn → x0, the tail of xn is in V . Thus, the tail of f(xn) is in f(V ) ⊂ U .

(⇐) Let F be a closed set. Suppose A = f−1(F ) is not closed. Then there exists

x0 ∈ A such that x0 6∈ A. Let xn ∈ A with xn → x0. We have f(xn) ∈ f(A) ⊂ F

for all n and f(x0) ∈ Y − F (open set). Thus, f(xn) 6→ f(x0) (contradiction) �

� Definition [Topological manifold of dimension n] A topological manifold of

dimension n is a second countable Hausdorff space that is locally Euclidean of

dimension n.

� Important example: Rn is an n-dimensional topological manifold
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� Lemma [Open subsets of manifolds are manifolds] If U is an open subset of an

n-dimensional topological manifold, then the subspace U is an n-dimensional

topological manifold

� Example: GL(n, R) is an n2-dimensional topological manifold

� Lemma [Topological manifolds] Let X and Y be homeomorphic topological

spaces. Then, X is an n-dimensional topological manifold if and only if Y is an

n-dimensional topological manifold


