Nonlinear Signal Processing 2006-2007

Geodesics and Distance (Ch.6, "Riemannian Manifolds", J. Lee, Springer-Verlag)

Instituto Superior Técnico, Lisbon, Portugal

João Xavier

jxavier@isr.ist.utl.pt

Lecture's key-points

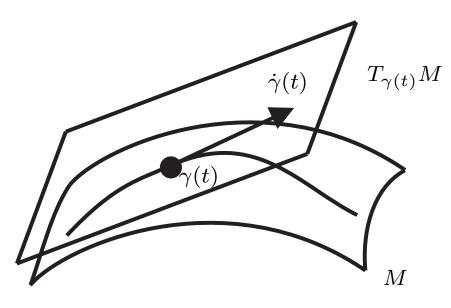
 \Box A distance minimizing curve is a geodesic

 \Box A geodesic is a locally minimizing curve

□ Geodesically complete spaces coincide with complete metric spaces

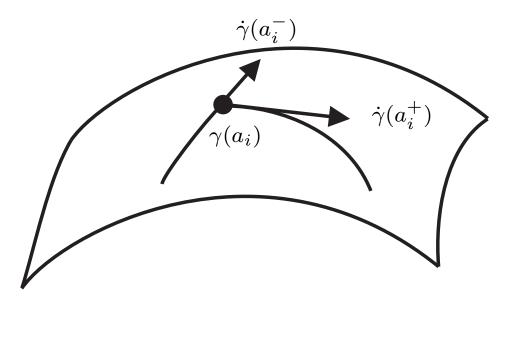
 \Box Definition [Length of a curve segment] Let M be a Riemannian manifold and let γ : $[a,b] \to M$ be a smooth curve segment. The length of γ is given by

$$L(\gamma) = \int_{a}^{b} |\dot{\gamma}(t)| \, dt = \int_{a}^{b} \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle} \, dt$$

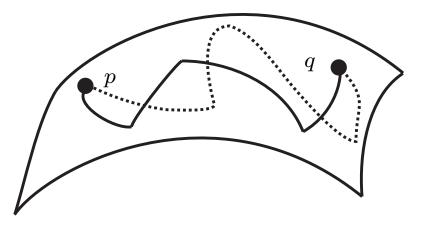


 \Box Definition [Regular curve] Let M be a Riemannian manifold. A regular curve is a smooth curve $\gamma : I \subset \mathbb{R} \to M$ such that $\dot{\gamma}(t) \neq 0$ for all $t \in I$

 \Box Definition [Admissible curve] Let M be a Riemannian manifold. A continuous map $\gamma : [a, b] \to M$ is called an admissible curve if is there exists a subdivision $a = a_0 < a_1 < \ldots < a_k = b$ such that $\gamma|_{[a_i, a_{i+1}]}$ is a regular curve



 \Box Definition [Riemannian distance function] Let M be a <u>connected</u> Riemannian manifold. The Riemannian distance d(p,q) between $p,q \in M$ is the infimum of the lengths of all admissible curves from p to q



□ Lemma [Riemannian distance function] The topology induced by the Riemannian distance coincides with the manifold topology

 \Box Definition [Minimizing curve] An admissible curve $\gamma\,:\,[a,b]\to M$ is said to be minimizing if

 $L(\gamma) \le L(\widetilde{\gamma})$

for any other admissible curve $\widetilde{\gamma}$ with the same endpoints

□ **Theorem [Minimizing curves are geodesics]** Every minimizing curve is a geodesic when it is given a unit-speed parameterization

□ Example (a geodesic is not necessarily a minimizing curve): the curve

$$\gamma : [0,\theta] \to \mathsf{S}^{n-1}(\mathbb{R}) \qquad \gamma(t) = (\cos t, \sin t, 0, \dots, 0)$$

is a geodesic.

However, γ is not a minimizing curve when $\theta > \pi$

 \Box Example (minimizing curves may not exist): consider the Riemannian manifold $M = \mathbb{R}^2 - \{0\}$. There is not a minimizing curve from p = (-1, 0) to q = (1, 0)

 \Box Example (minimizing curve between points might not be unique): on the unit-sphere Sⁿ⁻¹(\mathbb{R}), there are several minimizing curves from the North pole to the South pole

 \Box Example (Riemannian distance on the unit-sphere): if $S^{n-1}(\mathbb{R})$ is viewed as a Riemannian submanifold of \mathbb{R}^n then

$$d(p,q) = \operatorname{acos}\left(p^\top q\right)$$

for all $p, q \in S^{n-1}(\mathbb{R})$

□ Theorem [Riemannian geodesics are locally minimizing] Let M be a Riemannian manifold and $\gamma : [a, b] \to M$ a geodesic. Then, for any $t_0 \in]a, b[$, there exists a $\epsilon > 0$ such that $\gamma|_{[t_0 - \epsilon, t_0 + \epsilon]}$ is minimizing

 \Box Definition [Geodesically complete manifolds] A Riemannian manifold M is said to be geodesically complete if for all $X_p \in T_p M$ there exists a geodesic $\gamma : \mathbb{R} \to M$ such that $\gamma(0) = p, \ \dot{\gamma}(0) = X_p$

 \Box Theorem [Hopf-Rinow] A connected Riemannian manifold M is complete if and only if it is complete as a metric space (i.e., Cauchy sequences converge)

 \Box Corollary If there exists one point $p \in M$ such that Exp is defined on all of T_pM , then M is complete

 \Box Corollary M is complete if and only if any two points in M can be joined by a minimizing geodesic segment

 \Box Corollary If M is compact, then M is complete

Example (geodesically complete manifolds): the following manifolds are geodesically complete, because they are connected and compact

- \triangleright the Stiefel manifold O(n,p) (p < n) (includes the unit-sphere)
- \triangleright the special orthogonal group $\mathsf{SO}(n)$
- \triangleright the Grassmann manifold $\mathsf{G}(n,p)$