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Introduction

e This course is about applications of differential geometry in signal processing

e What is differential geometry ?

— generalization of differential calculus to manifolds

e What is a manifold ?
— smooth curved set
— no vector space structure, no canonical coordinate system

— looks locally like an Euclidean space, but not globally




e General idea

Manifold

Introduction

Not a manifold




Introduction

e Example: graph of f(z,y) =1 — x? — y?
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{(z,y,2) :




Introduction

e Example: n X n orthogonal matrices

A Ran

(X : X"X=1I,}




Introduction

e Example: n X m matrices with rank r

A RnXm

{X : rank X =1}

e Note: n X m matrices with rank < r is not a manifold



Introduction

e Example: n X m matrices with prescribed singular values s;

A RnXm

{X :




Introduction

e Example: n X n symmetric matrices s.t. Ammax has multiplicity k

A Ran




Introduction
e Not all manifolds are “naturally” embedded in an Euclidean space

e Example: set of k-dimensional subspaces in R™ (Grassmann manifold)

AR

Manifold




Introduction

e How is differential geometry useful ?
— systematic framework for nonlinear problems (generalizes linear algebra)

— elegant geometric re-interpretations of existing solutions
e Karmakar's algorithm for linear programming
e Sequential Quadratic Programming methods in optimization
e Rao distance between pdf's in parametric statistical families
e Jeffrey's noninformative prior in Bayesian setups
e Cramér-Rao bound for parametric estimation with ambiguities

® ... many more

— suggests new powerful solutions



Introduction

e Where has differential geometry been applied ?
— Optimization on manifolds
— Kendall's theory of shapes
— Random matrix theory
— Information geometry
— Geometrical interpretation of Jeffreys' prior
— Performance bounds for estimation problems posed on manifolds
— Doing statistics on manifolds (generalized PCA)

— ... a lot more (signal processing, econometrics, control, etc)



Application: optimization on manifolds

e Unconstrained problem

min f(x)

rxeR™

e Line-search algorithm: =41 = xx + ardg
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o d, = —Vf(xy) [gradient], d, = —V?f(zr) 1V f(xi) [Newton], others ...



Application: optimization on manifolds

e Constrained problem
min f(z)

e Re-interpreted as an unconstrained problem on manifold M

e Geodesic-search algorithm: 511 = exp,, (agdy)




Application: optimization on manifolds
e Works for abstract spaces (e.g. Grassmann manifold)
e Theory provides generalization of gradient, Newton direction (not obvious)
e Closed-form solutions for important manifolds (e.g. orthogonal matrices)
e Geodesic-search is not the only possibility:
— optimization in local coordinates

— generalization of trust-region methods

e Innumerous applications:

— blind source separation, image processing, rank-reduced Wiener filter,. ..



Application: optimization on manifolds

e Example: Signal model

y[t] = Qzt]| + wlt] t=1,2,...,T

— @Q: unknown orthogonal matrix (Q ' Q = Iy)

— x|[t]: known landmarks

— w[t] © N (0,5)

¢ Maximum-Likelihood estimate:

Q" = arg B p(Y; Q)

— O(NN)= group of N x N orthogonal matrices
- Y = [y[l] y[2] - y[T]} matrix of observations

— X = [33[1] x[2] - ;c[T]] matrix of landmarks



Application: optimization on manifolds

e Optimization problem: Orthogonal Procrustes rotation

* = arg min Y —QX|2_
Q ngO(N) H Q Hz 1
. Twe—1AD Tsv—11pD
= t > Ryrp —t > Ryy
arg min r{Q Q } r{Q y }

— Ry = 7 21y yllal]” and Rew = 7 Y12, alt]aft]

e The eigenstructure of X controls the Hessian of the objective:

Amax(Z71
r(ZTH) = ( 1) is the condition number of 371
Amin(z_ )




Application: optimization on manifolds

e Example: N =5, T =100, ¥ = diag(1,1,1,1,1), s(X~1) =1

0 5 10 15 20 25 30
Iteration

o—projected gradient [1=gradient geodesic descent ©=Newton geodesic descent



Application: optimization on manifolds

e Example: N =5, T = 100, ¥ = diag(0.2,0.4,0.6,0.8,1), k(X~1) =5

0 5 10 15 20 25 30
Iteration

o—projected gradient [1=gradient geodesic descent ©=Newton geodesic descent



Application: optimization on manifolds

e Example: N =5, T = 100, £ = diag(0.02,0.05,0.14, 0.37,1), x(Z~1) = 50

10 ¢ T T

|
0 5 10 15 20 25 30
Iteration

o—projected gradient [1=gradient geodesic descent ©=Newton geodesic descent



Application: Kendall’'s theory of shapes

4 N 9.,@
3 o oo &
8 9 9 o 6 &
9 @@g@@ - d¢ de...e
@ @ @ g.o‘ ° Q"~° ~,o'..e 0Q,
° 9 o S L e | &R
QOO0 O a O'.QQ é o, :p..G
: © o ® 4 o)
0-00Q, 0 ©
; { ®, 0
¢ Q’@ .
o oo oe 9
&0 QO'@ OO
q..0 9.0

Manifold (quotient space)

e Applications:

— Morph one shape into another, statistics ( “mean” shape), clustering, ...



Application: random matrix theory

e Basic statistics: transformation of random objects in Euclidean spaces

(& is a random vector in R™

< x ~ px(x) N y ~ py (y) = px (F~1(y)) J(v)
F : R™ — R™ smooth, bijective J(y) = det(DF(lF_l(y)))

| y=F(z)

—_




Application: random matrix theory

e Generalization: transformation of random objects in manifolds M, N

(
x is a random point in M

x ~ Qx (exterior form)

F : M — N smooth, bijective

y = F(x)

\

e The answer is provided by the calculus of exterior differential forms




Application: random matrix theory

e Example: decoupling a random vector in amplitude and direction

N = R+_|_ X Sn_l
={(R,u) : R>0,|ul| =1}

o Answer: z ~px(z) = p(R,u)=px(Ru)R""!



Application: random matrix theory

e Example: decoupling a random matrix by the polar decomposition X = P(Q)

M = GL(n) N =51, x0(n)
= {X eR™" ; |X|#£0) ={(P,Q): P~0,QTQ=In}

e Answer: X ~px(X) = p(P,Q)=...(known)



Application: random matrix theory

e Example: decoupling a random symmetric matrix by eigendecomposition

X =QAQ"

N = 0(n) x D(n)
={XeR™" . X=XT} ={(Q,A) : QTQ = I, A : diag}

e Answer: X ~px(X) = p(Q,A)=...(known)

e Technicality: in fact, the range of F' is a quotient of an open subset of NV



Application: random matrix theory

e Many more examples:
— Cholesky decomposition (e.g., leads to Wishart distribution)
— LU
— QR
— SVD



Application of RMT: coherent capacity of multi-antenna systems

e Scenario: point-to-point single-user communication with multiple Tx antennas
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Application of RMT: coherent capacity of multi-antenna systems

e Data model: y = Hx + n with y,n € CNr, H € CNr*XNt 5 ¢ CNt
— N;

number of Tx antennas

— N,

number of Rx antennas

Assumption: n; i CN(0,1)

e Decoupled data model:

— SVD: H = UXVH with U € U(N;), V € U(Nt), & = Diag(o1,

..,0¢,0),
(o1, ..

.,0¢) = nonzero singular values of H, f = min {N,, N¢}

— Transform the data: §=U"y, 2 =VHzandn =U"n

— Equivalent diagonal model: §y = Xz +n



Application of RMT: coherent capacity of multi-antenna systems

e Interpretation: The matrix channel H is equivalent to f parallel scalar channels




Application of RMT: coherent capacity of multi-antenna systems

e Assumption: channel matrix H is random and known only at the Rx

e Channel capacity:

C=  max I(z;(y,H))
p(z),E{||z||?2<P}

I = mutual information

e Solution:

f
C =Eg {Zlog (l—l— (P/Nﬂd?)}

1=1

Recall: (o1,...,0f) = random singular values of H, f = min {N,, N¢}



Application of RMT: coherent capacity of multi-antenna systems

e H is random and H = UXV#H (SVD)

N XNy U(N,) x D(f) x U(Ny)

e Capacity: when [H;;] e CN(0,1)

C = /Oo log(1 + (P/N¢)X) fil i (LI~ T (A))ZN9~Te= > dA
0 o (k+g— "

g = max {N,, Nt} and LézLaguerre polynomials



Application: information geometry

e Problem: given a parametric statistical family F = {p(x;0) : 0 € ©} assign
a distance function d : F X F — R

e Example: F = {N(0,%) : 6 € © =R™} (covariance X is fixed)

e Naive choice: d : ®© x© — R d(0,n) = |0 — ||

e This method does not produce “intrinsic” distances (parameter invariant)



Application: information geometry

e Re-parameterization § = Af: F = {N(A_lé\, ) feco= R”}

5/3 4/3

e Example: 6 = (0,0),7 = (-3,3),A=(1,1),A = / /

4/3 5/3
A (v A A
. A
? ................................................................................... '

A n
¢ O
L > O —
¢ 6

d(0,\) < d(6,n) d(0, ) > d(0,7)



Application: information geometry

F
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Application: information geometry
e Rao suggested the information metric to obtain distances between pdf's

e Differential geometric interpretation: The Fisher Information Matrix is

adopted as the Riemannian tensor on ©

T, @) = TTIO)T

1(0) = —Eg { V3 log p(x;0) }

V= V(v )
][]

length(c) = [7]e(t)] dt

e Insight: A parametric statistical family is an autonomous geometrical object



Application: information geometry

e Information distance:

d(0,n) = inf {length(c) : cis a curve on © connecting 0 to n}

e The information distance is invariant to reparameterizations

.
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i reparameterization -
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d(ea 77) — d(@, ﬁ) R

e Link with Kullback-Leibler distance: dyx| (6,1) = % d(0,n)* + O (d(8,n)?)



e Example: F = {N(6,X) : 6 € © =R"
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Application: information geometry

(covariance X is fixed)

0,n) = \/(9 —n)TX~1(0 —n) [Mahalanobis distance]

.
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Euclidean distance
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Application: information geometry

e Example: F = {N(p,X)
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Application: geometrical interpretation of Jeffreys’ prior

e Problem: given a parametric statistical family F = {p(x;0) : 6 € ©} assign

a non-informative prior p(0) for the parameter 6

e Example: F = {p(z;0) ~ N (0,6%) : 0 € © =(1/2,1)}
e Naive choice (uniform distribution):

p(0) A

Prob(A) = 0.73

» 0

¥[%
w
—

1
2

e This method does not produce “intrinsic” priors (parameter invariant)



Application: geometrical interpretation of Jeffreys’ prior

e With 6 =sin(y): F = {p(z;v) ~ N(0,sin?*(y)) : y €' = (7/6,7/2)}

p(y) A

Prob(“A") = 0.5!

» 7

B
el
0|3 fmmmmmmmmmmmaaa

o Jeffreys' prior: p(6) oc y/det(I(0)) where I1(8) is the Fisher information matrix



Application: geometrical interpretation of Jeffreys’ prior

e For the current example: p(0) % and p(vy) o cotg(vy)

p(0) A

I

o3
w[3

Prob(A) = Prob(“A”) = 0.79



Application: geometrical interpretation of Jeffreys’ prior

e Differential geometric interpretation: Jeffreys' prior is simply the Riemannian

volume element induced by the Fisher metric!

e Insight: A parametric statistical family is an autonomous geometrical object

carrying its own “uniform” prior (applies equal mass to sets of equal area)

Area(A) = Area(B) = Prob(6 € A) = Prob(6 € B)



Application: performance bounds

e Classical setup for Cramér-Rao Bound (CRB):
— £ = R"™ is the observation space and y € €2 is the observed data point
— F ={fg : 0 € ©} is a given parametric family of positive pdf's
— 0 : Q — O is an unbiased estimator of 0, i.e, Eo {é\(Y)} =0, Yoco

— © denotes an open subset of the Euclidean space RP

e CRB inequality:
Covy (5) = 1(6)"1
— Covy <§) = Eg { <§(Y) — 9) (@(Y) — 9) T} is the covariance matrix of 6

— I(0) =Ep{VgIn f(Y;0) Vgln f(Y;0)T} is the Fisher Information Matrix
(FIM)



Application: performance bounds

e Distance lower bound:
Covg (0) = 1(0)™" = varg (8) > tr (1(0)7)
~ ~ 2 ~
— varyg (9) — Ey {d (0, H(Y)) } is the variance of the estimator 6

—d (9,§(y)) = HH — g(y)H is the Euclidean distance between 6 and g(y)
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Application: performance bounds
e In practice, we need extensions of the CRB

e Extension 1: there are deterministic constraints on the parameter 0

— Example (6 is an orthogonal matrix): 2 = R"*™ O = O(n)
e Parameter space © becomes a submanifold of an Euclidean space

()=Euclidean space

©=parameter space




Application: performance bounds

e Extension 2: model has intrinsic ambiguities (e.g., over-parameterized)

e Simple example: © = R?
— Observation model: y = ||6]| + AWGN

{ pdf’'s over R}




Application: performance bounds

e Introduce equivalence relation on ©: 61 ~ 02 < ||61] = ||62]]

{ pdf’'s over R}
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©/ ~ is the “right” parameter space



Application: performance bounds

e Key-idea: Riemannian manifold theory unifies treatment of
— Extension 1: Parametric estimation with constraints

— Extension 2: Parametric estimation over quotient spaces



Application: performance bounds

e Classical Euclidean setup:

RP 4

e Cramér-Rao Bound (CRB):

AN

varg <9> = Eg {d (975(5”))2} > tr (1(6)~1)



Application: performance bounds

e Riemannian setup:

e Intrinsic Variance Lower Bound (IVLB):

varg (5) — E, {d (9,5(1/))2} > VLB



Application: performance bounds

e Theorem (IVLB). Suppose:
— The sectional curvature of © is upper bounded by C' > 0
— + some technical conditions
Then,
(N . ifC=0

varg <§) > X

AC +1—2XC + 1 if C>0
\ C?Xg /2

where:

— A = tr It Ig = Fisher tensor
0

e When C =0, IVLB=CRB



Example: inference on SP~!

o SP~1 = {2 c RP : ||z|| = 1} is the unit-sphere in RP

RP A
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e Geometry of ©: d(6,6(y)) = acos(676(y)) and C =1



Example: inference on SP™!
e Observation: y =0 +w € R? (p = 10)
—0eco=-5spr1

— w ~ N(0,0%1,)

e Maximum-likelihood estimator:

e Signal-to-noise ratio:
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Example: inference on SP™!

ML estimator

0 5 10 15

SNR (dB)
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Example: inference on SP~!

SNR (dB)

15



Example: inference on SO(3)

e SO(3) is the special orthogonal group:

SO(3) = {Q cR3*3 . QTQ = I3, det(Q) = 1}

é R3%3 ~ R9

R
o*
.
.
R
A‘

e Geometry of ©: d(6,6(y)) = v2acos(0.5[tr(8T8(y)) — 1]) and C = 1/8



Example: inference on SO(3)
e Observation: Y = X + W ¢ R3*F (k = 10)

— 0 € © = S0O(3): unknown rotation matrix [Procrustean analysis]

— X = [z1 22 --- x| constellation of known k landmarks in R? (XX T = I3)

— W =]wiwsz - wg|, w; e N(0,0213): additive observation noise

e Maximum-likelihood estimator:

e Signal-to-noise ratio:
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Example: inference on SO(3)

ML estimator

SNR (dB)



Example: inference on Grassmann G(4,2)

e Array snapshot: y[t] = Us[t] + w[t] € R*
— U € R**2: unknown orthonormal frame (U'TU = I5)
— s(t) € R2: vector of i.i.d., zero-mean, unit-power, Gaussian sources
— w(t) € R*4: zero-mean, white spatio-temporal Gaussian noise with power o2

— Observation: y = vec([y(1) y(2) --- y(T)]) € RT

e Parameter space: © = {U € R**? : UTU = I} [Stiefel manifold]



Example: inference on Grassmann G(4,2)

e Ambiguous parameterization: y is distributed as N (0, C(U)) where
CU)=Ir® (UU" +02%L,)

C(U) = C(UQ) for QQT = I> = only the 2D-subspace spanned by U is identifiable

e New parameter space: ©* = O/ ~ where U ~ V iff U = VQ with QQ'T = I

0* =0/ ~= G(4,2)




Example: inference on Grassmann G(4,2)
e O* can be given the structure of a Riemannian manifold

e Geodesic distance on O™ ;

d([U],[V]) = V2 \/(aCOS(Ul))2 + (acos(02))?

where 01,02 are the singular values of U'v

e Bound on sectional curvature:

C=1

—~

e [U] is the dominant 2D-subspace from the SVD of ]/%; = TL Zle y(Hyt) "



Example: inference on Grassmann G(4,2)

e Example: 7' = 10 data samples

SVD subspace estimator

0 5 10 15 20 25 30 35
SNR (dB)



Application: statistics on manifolds

e Basic data compression: clustering

A
o
o
0%
00 5

: : L= 1 K
e Simple expression for mean-value: © = 7 Y b1 Tk



Application: statistics on manifolds

e Basic data compression: principal component analysis (PCA)

A

e Simple formulas for PCA (eigendecomposition)



Application: statistics on manifolds

e Generalizations:
— What is the mean rotation matrix in {Q1,Q2,...,Qx} C O(n) ?
— What is the mean subspace in {£1,L2,..., Lk} C G(n,k) ?

O%‘OO Manifold

@)
@)
@)

e No closed-formulas anymore !



Application: statistics on manifolds

e Generalizations:

— What is the principal curve through {Q1,Q2,...,Qk} C O(n) ?
— What is the principal curve through {£1,Ls,..., Lk} C G(n,k) ?

Manifold

e No closed-formulas anymore !



Application: statistics on manifolds

e Applications:
— Data compression on manifolds (clustering, etc)
— Study of plate tectonics
— Sequence-dependent continuum modeling of DNA
— Encoding of principal diffusion directions in Diffusion Tensor Imaging
— Analysis of shape in medical imaging

— ...Mmany more



Application: statistics on manifolds

e Concepts must be re-formulated:
| K K K
T = glglxk — T = arg min ;Hx—kaQ — T = arg min d(zy, z)?

cR” cR™

e Center-of-mass on a Riemannian manifold: T € arg min,crn Zle d(xy,x)?

d(p, q)=geodesic distance



Application: statistics on manifolds

e Example: 5 points in Grassmann G(6, 3)

T T
! —&— Newton

—6— Gradient
3
o -5
o
=
€
>
£
o
o
ie]
(]
(8]
c
I
o -10
[a)
_15 1
0 1 2 3 4 5 6 7 8 9 10

num. iterations



Application: statistics on manifolds

e By-product: MAP estimation on SE(3)

T T
—H8— Newton

Gradient

|
)]
T

Distance to optimum (L0910)
|
N
o

_15 | | | | | | | 1 |
0 10 20 30 40 50 60 70 80 90 100
num. iterations



Application: statistics on manifolds

e Results for geodesic PCA ...

Manifold

e ...coming soon !



Course’s Table of Contents

e Three main topics:
— Topological manifolds
— Differentiable manifolds

— Riemannian manifolds

e Three layers of structure:

_ Length of curves ; Geodesics ; Distance ; Connections ; etc

Differentiable structure Tangent vectors; Smooth maps; Tensors; Integration ; etc

Topological structure Boundary of sets; Convergent sequences; Continuous maps ; etc

Plain set




Course’s Table of Contents

e Topological manifolds: “Introduction to Topological Manifolds”, J. Lee, Springer-Verlag
— Ch.2: Topological spaces
— Ch.3: New spaces from old

— Ch.4: Connectedness and compacteness

e Smooth manifolds: “Introduction to Smooth Manifolds”, J. Lee, Springer-Verlag
— Ch.2: Smooth maps
— Ch.3: The tangent bundle
— Ch.5: Submanifolds
— Ch.7: Lie group actions
— Ch.8: Tensors
— Ch.9: Differental forms

— Ch.10: Integration on manifolds



Course’s Table of Contents

e Riemannian manifolds: “Riemannian Manifolds”, J. Lee, Springer-Verlag
— Ch.3: Definitions and examples of Riemannian metrics
— Ch.4: Connections

— Ch.5: Riemannian geodesics
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e Topological manifolds

— “Introduction to Topological Manifolds”, J. Lee, Springer-Verlag, 2000

— “Introduction to Topology and Modern Analysis”, G. Simmons, 1963

e Smooth manifolds

— “Introduction to Smooth Manifolds”, J. Lee, Springer-Verlag, 2002

— " An Introduction to Differentiable Manifolds and Riemannian Geometry”, 2nd ed.,
W.Boothby, Academic Press, 1986

— “Manifolds, Tensor Analysis and Applications”, R. Abraham et al., Springer-Verlag, 19383

— “A Comprehensive Introduction to Differential Geometry”, vol.l, M. Spivak, Publish or
Perish, 1979

— ‘“Lectures on Differential Geometry”, S. Chern, W. Chern and K. Lam, World Scientific, 1999

e Riemannian manifolds

— “Riemannian Manifolds”, J. Lee, Springer-Verlag

— “Riemannian Geometry”, M. Carmo, Birkhauser, 1992
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Grading

e Grade = Homework (50%) + Project (50%)

e Homeworks: 3 sets

e Project (individual): 1 of 2 choices
— | assign a paper
— the student proposes a topic

In either case: the output is a public presentation of the project



