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Submanifolds

Theorem [Inverse Function Theorem] Let U and V be open subsets of
R

n and F : U → V a smooth map. Let p ∈ U . If
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is nonsingular, then there exist neighborhoods U0 ⊂ U of p and V0 ⊂ V of
q = F (p) such that F : U0 → V0 is a diffeomorphism. Furthermore, we have

DF−1(y0) = (DF (x0))
−1 ,

where x0 = F−1(y0), for each y0 ∈ V0.

� Intuition: the bijectivity of DF (p) carries over locally to F

R
n

R
n U V

p F (p)

U0 V0

F

1



Example 1 [Inverse function theorem as a generalization of the lin-
ear case] Let

F : R
n → R

n F (x) = Ax,

where A : n × n is nonsingular. By simple linear algebra, the linear
map F is (globally) bijective.

Note that
DF (p) = A

for any p ∈ R
n.

Example 2 [Simple illustration] Consider the smooth map

F : R
2 → R

2 F (x, y) =
(
x2 + y2, xy

)
.

Then,

DF (1, 0) =

[
2x 2y
y x

]
(x,y)=(1,0)

=

[
2 0
0 1

]
is non-singular, which means that F is a diffeomorphism near (1, 0).

Note that F is not a bijective map: F (1, 1) = F (−1,−1).

Theorem [Implicit Function Theorem] Let W ⊂ R
n × R

k be an open
set and F : W → R

k,

(x, y) =
(
x1, . . . , xn, y1, . . . , yk

) F�−→ F (x, y) =
(
F 1(x, y), . . . , F k(x, y)

)
a smooth map. Let (p, q) =

(
p1 . . . , pn, q1, . . . , qk

) ∈ W with F (p, q) = 0 and
suppose that

DyF (p, q) =
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is nonsingular. Then, there exist neighborhoods U0 of p and V0 of q and a
smooth map Φ : U0 → V0 such that U0 × V0 ⊂ W and

(x, y) ∈ U0 × V0, F (x, y) = 0 if and only if y = Φ(x).

Furthermore, we have DΦ(p) = − (DyF (p, q))−1 DxF (p, q), where

DxF (p, q) =
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Example 1 [Implicit function theorem as a generalization of the
linear case] Let

F : R
n × R

k → R
k F

([
x
y

])
=

[
A B

] [x
y

]
,

where A : k × n and the matrix B : k × k is nonsingular.

By simple linear algebra,

F (x, y) = 0 if and only if y = −B−1Ax.

That is,
F (x, y) = 0 if and only if y = Φ(x),

where
Φ : R

n → R
k Φ(x) = −B−1Ax.

Note that
B = DyF (p, q) and DxF (p, q) = A

for all (p, q) ∈ R
n × R

k.

Example 2 [Simple eigenvalues are smooth] Let X0 ∈ M(n,R) be a
symmetric matrix and u0 be an unit-norm eigenvector associated with
the simple eigenvalue λ0:

X0u0 = λ0u0 and uT
0 u0 = 1.

Then, there exists a neighborhood U0 ⊂ M(n,R) of X0, a neighborhood
V0 ⊂ R

n × R of (u0, λ0) and a smooth map

Φ : U0 → V0 Φ(X) = (u(X), λ(X)),

such that u(X0) = u0, λ(X0) = λ0, and

Xu(X) = λ(X)u(X) and u(X)Tu(X) = 1,

for all X ∈ U0. The derivative of the map Φ at X0 is given by

DΦ(X0) =

[
uT

0 ⊗ (λ0In −X0)
+

uT
0 ⊗ uT

0

]
.
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Example 3 [Signal processing application: asymptotic performance
analysis] Consider the data model

y[k] = θs[k] + w[k], k = 1, 2, . . . , K,

where y[k] = (y1[k], y2[k], . . . , yn[k]) ∈ R
n is the observation vector at

the kth time instant, K is the number of data samples available,

θ ∈ Sn−1
+ (R) = {x = (x1, . . . , xn) ∈ R

n : ‖x‖ = 1 and xn > 0}
is a deterministic parameter (the channel), s[k] ∈ R is a zero-mean,
unit-power Gaussian random variable and w[k] ∈ R

n is a random vec-
tor distributed as w ∼ N (0, σ2In). Here, N (µ,Σ) stands for the nor-
mal (Gaussian) distribution with mean µ and covariance matrix Σ. We
assume that the source s[k] and the observation noise w[k] are inde-
pendent. Also, both are white random processes (independent from
sample to sample).

You can view this data model as a simplified version of a multiple
sensor system: an array of n sensors (or antennas) observe a Gaussian
source s in a Gaussian background environment. Each data vector y
represents an array snapshot. The parameter θi represents the gain of
the channel established between the source s and the ith sensor.

y1[k]
θ1

θ2

y2[k]

y3[k]

s[k]θ3

θn

yn[k]

We assume the multi-channel vector θ = (θ1, θ2, . . . , θn) is unknown
and we want to estimate it from the available sample. Once θ is known
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(estimated), we can return to the data and estimate the source s (by
“reverting” the action of the channel).

The maximum-likelihood (ML) estimate of θ,

θ̂K = argmax
θ ∈ Sn−1

+ (R)
p(y1, . . . , yK ; θ),

is easily seen to be given by the unit-norm eigenvector (with last co-
ordinate positive) which is associated with the maximum eigenvalue of
the sample covariance matrix

R̂K =
1

K

K∑
k=1

y[k]y[k]T .

Thus, θ̂K = φ(R̂K), where φ stands for the map just described.

In this example, we are interested in evaluating the performance of this
estimator. The performance index is the mean-square error (MSE) of
the estimate

MSE = E

{∥∥∥θ̂K − θ
∥∥∥2

}
.

Since it is difficult to obtain the exact distribution of the statistic θ̂K ,
we resort to an asymptotic analysis. That is, we let K (the sample size)

converge to infinity and obtain the limiting distribution of θ̂K . For any
finite K, the asymptotic study provides us with an approximation for
the MSE.

A fundamental tool in asymptotic analysis is the δ-method: let xK ∈ R
n

denote a sequence of random vectors satisfying

√
K (xK − µ)

d→ N (0,Σ),

where
d→ stands for convergence in distribution (as K → +∞), and let

f : R
n → R

m denote a map which is of class C1 (continuous partial
derivatives) in a neighborhood of µ. Then,

√
K (f(xK)− f(µ))

d→ N (
0, Df(µ)ΣDf(µ)T

)
,
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where Df(µ) stands for the derivative of f at the point µ. In words,
differentiable maps f transform asymptotically Gaussian random se-
quences xK in asymptotically Gaussian random sequences f(xK).

In our context, it can be shown (trivial application of the central limit
theorem) that

√
K

(
vec

(
R̂K

)
− vec(R)

)
d→ N (0,Σ) ,

for a certain covariance matrix Σ (known, but not explicited here) and
where

R = E
{
y[k]y[k]T

}
= θθT + σ2In

denotes the correlation matrix corresponding to our data model. Fur-
thermore, note that the maximum eigenvalue of R is λmax = 1 + σ2.
The previous example has shown that φ is smooth in a neighborhood
of R and its derivative is given by

Dφ(R) = θT ⊗ (λmaxIn −R)+.

Thus, we have
√
K

(
θ̂K − θ

)
d→ N (

0, Dφ(R)ΣDφ(R)T
)
,

from which follows the approximation (for a given K)

θ̂K − θ ∼ N
(
0,

1

K
Dφ(R)ΣDφ(R)T

)
.

That is,

MSE = E

{∥∥∥θ̂K − θ
∥∥∥2

}

= tr

(
E

{(
θ̂K − θ

)(
θ̂K − θ

)T
})

� 1

K
tr
(
Dφ(R)ΣDφ(R)T

)
.

Figure 1 shows the results from a simulation example where: the ob-
servation vector y has dimension n = 10, θ = (1/

√
n, . . . , 1/

√
n), the

signal-to-noise ratio

SNR =
E
{‖θs‖2}

E
{‖w‖2} =

1

nσ2
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is fixed at 10 dB and the sample size K is varied between Kmin = 10
and Kmax = 100. As can be seen, the asymptotic analysis provides a
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Figure 1: MSE of θ̂K : predicted (solid,squares) and observed (dashed)

good approximation of the MSE of the ML estimate θ̂K (of course, the
approximation gets tighter as K → ∞).

Theorem [Rank theorem] Let U ⊂ R
n and V ⊂ R

m be open sets, and
F : U → V a smooth map with constant rank k, that is, rank (DF (x)) = k
for each x ∈ U . Let p ∈ U . Then, there exist neighborhoods U0 ⊂ U of p
and V0 ⊂ V of q = F (p) and diffeomorphisms ϕ : U0 → Û0 and ψ : V0 → V̂0

such that

ψ ◦ F ◦ ϕ−1
(
x1, . . . , xk, xk+1, . . . , xn

)
=

(
x1, . . . , xk, 0, . . . , 0

)
.

The neighborhoods U0 and V0 can be chosen such that: (i) Û0 = Cn
ε (0) and

V̂0 = Cm
ε (0) or (ii) Û0 = Bn

ε (0) and V̂0 = Bm
ε (0), for any chosen ε > 0.

� Intuition: looks like a nonlinear generalization of the SVD for linear
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maps

U

U0

p
q

V

V0

ϕ ψ

Cn
ε (0)

Cm
ε (0)

ψ ◦ F ◦ ϕ−1

F

Definition [Rank of a smooth map, immersions, submersions] Let
F : M → N be a smooth map between smooth manifolds. The rank of
F at p ∈ M is the dimension of the linear subspace ImF∗(TpM) ⊂ TF (p)N .

Equivalently, it is the rank of the Jacobian matrix rankDF̂ (ϕ(p)) in any
smooth chart.

We say that F has constant rank k if the rank of F at any p ∈ M is k.
The smooth map F : M → N is called an immersion if F∗ is injective at

every point. Equivalently, if rankF = dimM at every point.
The smooth map F : M → N is called a submersion if F∗ is surjective
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at every point. Equivalently, if rankF = dimN at every point.

Example 1 [An immersion of the unit-sphere] Consider the map

F : Sn−1(R) → M(n,R) F (u) = uuT .

We already know that F is smooth. The map F is also an immersion.

Example 2 [A submersion onto the unit-sphere] Consider the map

F : R
n − {0} → Sn−1(R) F (x) =

x

‖x‖ .

We already know that F is smooth. The map F is also a submersion.

Example 3 [Product manifolds] Let M and N be smooth manifolds.

For fixed q ∈ N , the inclusion map

ιq : M → M ×N ι(p) = (p, q)

is an immersion.

The projection map

πM : M ×N → M πM(p, q) = p

is a submersion.

Lemma [Composition of immersions and submersions] The compo-
sition of immersions is an immersion. The composition of submersions is a
submersion.

Theorem [Inverse function theorem for manifolds] Let F : M → N
be a smooth map between manifolds. Let p ∈ M and suppose F∗ : TpM →
TF (p)N is an isomorphism (equivalently, a bijective linear map). Then there
exist neighborhoods U0 of p and V0 of F (p) such that F |U0 : U0 → V0 is a
diffeomorphism.
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� Intuition: the bijectivity of F∗ transpires locally to F

F∗ : TpM → TF (p)N

U0 V0
p

M NF : M → N

(local diffeomorphism)

(isomorphism)

F (p)

TpM
TF (p)N

� Remark that the inverse map F−1 : V0 → U0 is smooth

Example 1 [Cholesky decomposition is a diffeomorphism]The Cholesky
decomposition asserts that for any P ∈ P(n,R) there is an unique
L ∈ L+(n,R) such that

P = LLT .

Thus, we can define a map

Cholesky : P(n,R) → L+(n,R)

which, given a positive-definite matrix P, computes its Cholesky factor
L such that P = LLT .

The purpose of this example is to show that the map Cholesky is smooth.

We already know that the map

F : L+(n,R) → P(n,R) F (L) = LLT

is bijective (linear algebra) and smooth. Remark that the map Cholesky
is the inverse map of F .

Also, by exploiting the isomorphisms

TL0L
+(n,R) � L(n,R) and TF (L0)P(n,R) � S(n,R),
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we have computed a representation of the push-forward map F∗ :
TL0L

+(n,R) → TF (L0)P(n,R) as

F∗ : L(n,R) → S(n,R) F∗(∆) = ∆LT
0 + L0∆

T .

Now, as soon as we show that F∗ is an isomorphism, we can use the
last theorem to conclude that Cholesky = F−1 is smooth (because it is
smooth on a neighborhood of any given point P0 = F (L0) ∈ P(n,R)).

To prove that the linear map F∗ is bijective it suffices to prove that F∗
is injective because dim L(n,R) = dim S(n,R) (thus, the surjectivity of
F∗ will follow automatically).

To prove that F∗ is injective, we must show that KerF∗ = {0}. So, let
∆ ∈ L(n,R) satisfy F∗(∆) = 0, that is,

∆LT
0 + L0∆

T = 0.

Pre-multiplying by L−1
0 and post-multiplying by

(
LT

0

)−1
both sides of

the equation yields (
L−1

0 ∆
)
+

(
L−1

0 ∆
)T

= 0.

Note that L−1
0 is a lower-triangular matrix and Ψ = L−1

0 ∆ also (product
of two lower-triangular matrices). But,

Ψ + ΨT = 0 and Ψ : lower-triangular ⇒ Ψ = 0.

As a consequence, ∆ = L0Ψ = 0.

We conclude that the map Cholesky is smooth. In fact, it is a diffeo-
morphism (because its inverse F is also smooth).

Theorem [Rank theorem for manifolds] Suppose that the smooth map
F : M → N has constant rank k, with dimM = m and dimN = n. Then,
for any given p ∈ M , there exist smooth charts (U,ϕ) containing p and (V, ψ)

containing F (p) such that the coordinate representation F̂ = ψ ◦ F ◦ ϕ−1 is
given by

F̂
(
x1, x2, . . . , xk, xk+1, . . . , xm

)
=

(
x1, x2, . . . , xk, 0, . . . , 0︸ ︷︷ ︸

n− k zeros

)
.
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U p q

N
V

M

ϕ ψ

Cn
ε (0)

Cm
ε (0)

F̂ = ψ ◦ F ◦ ϕ−1

F

Theorem [Constant rank and immersions, submersions and diffeo-
morphisms] Let F : M → N be a smooth map of constant rank.

(a) If F is injective, then it is an immersion

(b) If F is surjective, then it is a submersion

(c) If F is bijective, then it is a diffeomorphism

Example 1 [An immersion of the unit-circle] Consider the map

F : S1(R) → M(2,R) F (u) =
[
u Ju

]
,
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where

J =

[
0 −1
1 0

]
acts on vectors in R

2 by rotating them by π/2 radians in the counter-
clockwise direction.

The map F is smooth (why?). The goal of this example is to show that
F is an immersion, without computing in coordinates.

Note that F is injective. If we prove that F has constant rank, we are
done (see last theorem). Let p, q ∈ S1(R). We must show that the two
linear maps

F∗p : TpS
1(R) → TF (p)M(2,R) and F∗q : TqS

1(R) → TF (q)M(2,R)

have the same rank.

The trick consists in noting that, for any fixed rotation Q ∈ SO(2), we

have F ◦ LQ = L̂Q ◦ F or, equivalently, the commutative diagram:

S1(R) S1(R)

M(2,R) M(2,R)

LQ

FF

L̂Q

where
LQ : S1(R) → S1(R) LQ(u) = Qu

and
L̂Q : M(2,R) → M(2,R) L̂Q(X) = QX.

Note that both LQ and L̂Q are smooth (why?). In fact they are dif-

feomorphisms because their inverse maps correspond to LQT and L̂QT ,
respectively, which are smooth.

Now, choose Q such that LQ(p) = q. The previous diagram induces
the next one, expressed in terms of push-forwards:
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TpS
1(R) TqS

1(R)

TF (p)M(2,R) TF (q)M(2,R)

LQ∗

F∗qF∗p

L̂Q∗

Equivalently:
L̂Q∗ ◦ F∗p = F∗q ◦ LQ∗.

Since L̂Q∗ and LQ∗ are isomorphisms,

rank
(
L̂Q∗ ◦ F∗p

)
= rank (F∗p) and rank (F∗q ◦ LQ∗) = rank (F∗q) .

The conclusion is rank (F∗p) = rank (F∗q) .

Definition [Local section] Let π : M → N be a smooth map between
smooth manifolds. A smooth local section of π is a pair (V, σ) where V ⊂ N
is open and σ : V → M is a smooth map satisfying π ◦ σ = idV .
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p q

M

N

π−1(p)
π−1(q)

σ(p)

σ(q)

V

σ π

� Intuition: σ is a smooth choice of a representative in each fiber of π
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Lemma [Properties of submersions: part I] Let π : M → N be a
smooth map between smooth manifolds. Suppose π is a submersion. Then,
π is an open map. Moreover, for every p ∈ M , there exists a local section
(V, σ) of π such that p ∈ σ(V ).

Lemma [Properties of submersions: part II] Let M,N,P be smooth
manifolds and π : M → N be a surjective submersion. Then, a map F :
N → P is smooth if and only if F̂ = F ◦ π is smooth.

M

N P

π

F

F̂

� Intuition: smoothness of the “hard” map F can be investigated through
the easier map F̂

Example 1 [An immersion of the unit-sphere] Consider the map

F : Sn−1(R) → M(n,R) F (u) = uuT .

We already know that F is smooth. Here is an alternative proof of
smoothness of F : use the facts that

π : R
n − {0} → Sn−1(R) π(x) =

x

‖x‖
is a surjective submersion,

F̂ : R
n − {0} → M(n,R) F̂ (x) =

xxT

‖x‖2 .

is clearly smooth and F̂ = F ◦ π.

Definition [Embedded submanifold] Let M be an n-dimensional smooth
manifold. A subset S ⊂ M is called an embedded k-submanifold of M if,
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for each point p ∈ S, there is a smooth chart (U,ϕ) centered at p with
ϕ(U) = Cn

ε (0) and

ϕ(U ∩ S) = {(x1, x2, . . . , xk, xk+1, . . . , xn) : xk+1 = xk+2 = · · · = xn = 0}.
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M

U

p

ϕ

ϕ(U) = Cn
ε (0) ϕ(U ∩ S)

S

� Intuition: the subset S ⊂ M can be flattened (locally)

� Intuition: generalization of a linear subspace S of a vector space M
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M = R
2

Troublemaker

S is not an embedded submanifold of R
2

S

Example 1 [Linear subspaces] If S ⊂ R
n is a linear subspace with (linear)

dimension k. Then, S is an embedded k-submanifold of R
n.

As an application, the linear subspace of symmetric matrices

S(n,R) = {X ∈ M(n,R) : X = XT}
is an embedded n(n+ 1)/2-submanifold of M(n,R).

Similarly, the linear subspace of skew-symmetric matrices

K(n,R) = {X ∈ M(n,R) : X = −XT}
is an embedded n(n− 1)/2-submanifold of M(n,R).

Definition [Embedding submanifolds are local constructions] Let M
be a smooth manifold. The subset S ⊂ M is a embedded submanifold of M
if and only if each p ∈ S has a neighborhood U ⊂ M such that S ∩ U is an
embedded submanifold of U .

Lemma [Open subsets are embedded submanifolds] Let U ⊂ M be
an open subset of the n-dimensional smooth manifold M . Then, U is an
embedded n-submanifold of M .
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Example 1 [Positive definite matrices] The set of positive definite ma-
trices

P(n,R) = {X ∈ S(n,R) : X � 0}
is an embedded n(n+ 1)/2-submanifold of S(n,R).

Definition [Embedding] A smooth map F : N → M between smooth
manifolds is said to be an embedding if it is an immersion and a topological
embedding (a homeomorphism of N onto its image Ñ = F (N), viewed as a
subspace of M).

Lemma [Useful criterion for detecting embeddings] Let the smooth
map F : M → N be an injective immersion. If M is compact, F is an
embedding.

Example 1 [An embedding of the unit-circle] Consider the map

F : S1(R) → M(2,R) F (u) =
[
u Ju

]
,

where

J =

[
0 −1
1 0

]
.

We already know that F is a smooth immersion. Since S1(R) is com-
pact, F is an embedding.

Theorem [Embedded submanifolds are smooth manifolds] Let the
subset S ⊂ M be an embedded k-dimensional submanifold of M , where
dimM = n.

Then, as a subspace of M , S is a topological manifold of dimension k and
it has an unique smooth structure such that the inclusion map ι : S → M
is a smooth embedding.

With this smooth structure on S, let (U,ϕ) be a smooth chart in M with
ϕ(U) = Cn

ε (0) and

ϕ(U ∩ S) = {(x1, x2, . . . , xk, xk+1, . . . , xn) : xk+1 = xk+2 = · · · = xn = 0}.
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Then, (S ∩ U, π̂ ◦ ϕ) is a smooth chart in S, where

π̂(x1, . . . , xk, xk+1, . . . , xn) = (x1, . . . , xk).

Theorem [Smooth embeddings provide embedded submanifolds]
The image of a smooth embedding is an embedded submanifold.

Example 1 [SO(2) is an embedded submanifold of M(2,R)] The subset

SO(2) =

{[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]}

is an embedded submanifold of M(2,R) because SO(2) = F (S1(R))
where F is the embedding

F : S1(R) → M(2,R) F (u) =
[
u Ju

]
, J =

[
0 −1
1 0

]
.

Lemma [Composition of embeddings] The composition of embeddings
is an embedding.

Theorem [Constant-rank level set theorem] Let F : M → N be a
smooth map with constant rank k. Then, for each c ∈ ImF , the level set

F−1(c) = {p ∈ M : F (p) = c}

is a closed, embedded submanifold of dimension dimM − k.

Example 1 [Stiefel] Let

O(n,m) = {X ∈ M(n,m,R) : XTX = Im}

be the set of n×m orthonormal frames in R
n.
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The goal of this example is to show that O(n,m) is an embedded sub-
manifold of M(n,m,R). The manifold O(n,m) is known as the Stiefel
manifold.

Note that O(n,m) ⊂ F(n,m,R) where

F(n,m,R) =
{
X ∈ M(n,m,R) : det(XTX) �= 0

}
= {X ∈ M(n,m,R) : rank(X) = m}

is the set of n × m frames in R
n. Remark that F(n,m,R) is an open

subset of M(n,m,R).

We will show that O(n,m) is an embedded submanifold of F(n,m,R)
and, since F(n,m,R) is embedded in M(n,m,R), it will follow that
O(n,m) is embedded in M(n,m,R).

The prove that O(n,m) is embedded in F(n,m,R) we start by noting
that O(n,m) is a level set of the smooth map

F : F(n,m,R) → M(m,R) F (X) = XTX.

Indeed, O(n,m) = F−1(Im).

If we show that F has constant rank, we are done. The rest of the
proof establishes this.

Choose A ∈ F(n,m,R) arbitrarily. We have the isomorphisms

TAF(n,m,R) � M(n,m,R) and TF (A)M(n,R) � M(n,R).

In terms of this isomorphisms, the push-forward F∗A : TAF(n,m,R) →
TF (A)M(m,R) is represented by the linear map

F∗A : M(n,m,R) → M(m,R) F∗A(∆) = ∆TA+ AT∆.

Note that the rank of F at A is given by

rankF∗A = nm− dim KerF∗A.

Choose another B ∈ F(n,m,R). Similarly, the push-forward at B is
represented by the linear map

F∗B : M(n,m,R) → M(m,R) F∗B(∆) = ∆TB +BT∆
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and we have
rankF∗B = nm− dim KerF∗B.

The next step is to prove that dim KerF∗A ≤ dim KerF∗B. Let G ∈
GL(n,R) be chosen such that B = G−TA and consider the linear map

L : M(n,m,R) → M(n,m,R) L(∆) = G∆.

Then,
L(KerF∗A) ⊂ KerF∗B.

Indeed, if ∆ ∈ KerF∗A. Then, L(∆) ∈ KerF∗B because

F∗B (L(∆)) = L(∆)TB +BTL(∆)

= (G∆)TB +BT (G∆)

= ∆T (GTB) + (BTG)∆

= ∆TA+ AT∆

= 0.

Since L is injective, this shows that dim KerF∗A ≤ dim KerF∗B.

Reversing the roles A � B yields the opposite inequality dim KerF∗B ≤
dim KerF∗A.

We conclude that F has constant rank:

rankF∗A = nm− dim KerF∗A = nm− dim KerF∗B = rankF∗B.

To actually compute the rank of F we pick a nice point (lots of zeros
in it):

A =

[
Im

0

]
.

Then,

KerF∗A =

{[
∆1

∆2

]
: ∆T

1 +∆1 = 0

}

=

{[
∆1

∆2

]
: ∆1 ∈ K(m,R), ∆2 ∈ M(n−m,m,R)

}
.
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We conclude that

dim KerFA∗ = dim K(m,R) + dim M(n−m,m,R)

=
m(m− 1)

2
+ (n−m)m.

Thus, O(n,m) is an embedded submanifold of M(n,m,R) and

dim O(n,m) =
m(m− 1)

2
+ (n−m)m.

Special cases:

• (Unit-sphere) For Sn−1(R) = O(n, 1), we have

dim Sn−1(R) = n− 1

• (Orthogonal group) For O(n) = O(n, n), we have

dim O(n) =
n(n− 1)

2
.

Example 2 [Special orthogonal group SO(n)] Since SO(n) is an open
subset of the smooth manifold O(n), it is an embedded submanifold of
O(n) and dim SO(n) = dim O(n) = n(n− 1)/2.

Since O(n) is embedded in M(n,R), we conclude that SO(n) is an em-
bedded submanifold of M(n,R).

Example 3 [Matrices with fixed rank] Consider the subset of n × m
matrices with rank k

Rank=k(n,m,R) = {X ∈ M(n,m,R) : rankX = k}.

To simplify notation we set R = Rank=k(n,m,R). We show that R is
an embedded submanifold of M(n,m,R).

Let

X0 =

[
A B
C D

]
∈ R where A : k × k.
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Without loss of generality we assume det(A) �= 0 (the general case
X0 ∈ R can be reverted into this canonical format through pre- and
post-multiplication by suitable permutation matrices).

Define the set

U =

{[
X11 X12

X21 X22

]
: det(X11) �= 0 where X11 : k × k

}
.

Note that U is an open subset containing X0. We show that U ∩ R is
embedded in U .

This is established by noting that

X ∈ U ∩R ⇔ rank

([
X11 X12

X21 X22

])
= k, det(X11) �= 0

⇔ rank

([
X11 X12

X21 X22

] [
I −X−1

11 X12

0 I

])
= k, det(X11) �= 0

⇔ rank

([
X11 0
X21 X22 −X21X

−1
11 X12

])
, det(X11) �= 0

⇔ X22 −X21X
−1
11 X12 = 0, det(X11) �= 0.

This means that U ∩R = F−1(0) where

F : U → M(n− k,m− k,R) F (X) = X22 −X21X
−1
11 X12.

We now show that F has constant rank. In fact, we show that F is a
submersion.

We have

F∗ : TX0U � M(n,m,R) → TF (X0)M(n−k,m−k,R) � M(n−k,m−k,R)

with

F∗

([
∆11 ∆12

∆21 ∆22

])
= ∆22 + map depending linearly on ∆11,∆12,∆21.

Thus, for any given Ψ ∈ M(n− k,m− k,R) we have

F∗

([
0 0
0 Ψ

])
= Ψ.

This shows that F∗ is surjective (that is, F is a submersion).
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Lemma [Identifications for tangent spaces] Let F : M → N be a
smooth map with constant rank k. Let c ∈ ImF . Thus, the level set S =
F−1(c) is an embedded submanifold of M and the dimension of S is d =
dimM − k.

Since the inclusion ι : S → M is an embedding (in particular, an im-
mersion), it follows that, for any p ∈ S, the push-forward ι∗ : TpS → TPM
is injective and

ι∗(TpS) ⊂ TpM

is a d-dimensional subspace of TpM . We usually make the identification
TpS � ι∗(TpS).

In the current setup, we have ι∗ (TpS) = KerF∗p. Thus,

TpS � KerF∗p.

TpS

p
S

ι∗ : TpS → TpM

ι∗(TpS)

M
TpM

� TpS after being push-forwarded by ι∗ appears as a subspace of TpM

Example 1 [Unit-sphere] The unit-sphere Sn−1(R) is a level set of the
constant-rank map

F : R
n − {0} → R F (x) = xTx.

Indeed, Sn−1(R) = F−1(1). Thus, we have

TpS
n−1(R) � KerF∗p
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for any p ∈ Sn−1(R).

Using the identifications

TpR
n − {0} � R

n and TF (p)R � R

the push-forward F∗p : TpR
n − {0} → TF (p)R is represented by the

linear map
F∗p : R

n → R F∗p(δ) = δTp+ pT δ.

Hence,
TpS

n−1(R) � KerF∗p = {δ ∈ R
n : pT δ = 0}.

p

TpS
2(R) � ι∗ (TpS

2(R)) ⊂ TpM

δ = (δ1, . . . , δn) ∈ R
n � δ1 ∂

∂x1

∣∣∣∣
p

+ · · ·+ δn ∂
∂xn

∣∣∣∣
p

∈ TpM

Example 2 [Orthogonal group] The orthogonal group O(n) is a level set
of the constant-rank map

F : GL(n,R) → M(n,R) F (X) = XTX.
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Indeed, O(n) = F−1(In). Thus, we have

TQO(n) � KerF∗Q

for any Q ∈ O(n).

Using the identifications

TQGL(n,R) � M(n,R) and TF (Q)M(n,R) � M(n,R)

the push-forward F∗Q : TQGL(n,R) → TF (Q)M(n,R) is represented by
the linear map

F∗Q : M(n,R) → M(n,R) F∗Q(∆) = ∆TQ+QT∆.

Thus,
TQO(n) � KerF∗Q = {QK : K ∈ K(n,R)},

where
K(n,R) = {X ∈ M(n,R) : X = −XT}

is the set of n× n skew-symmetric matrices.

We also use the compact notation TQO(n) � QK(n,R).

Proposition [Restricting the domain and/or range of smooth maps]
Let F : M → N be a smooth map.

If A is an embedded submanifold of M , then the map

F |A : A → N F |A(p) = F (p)

is smooth.
If B is an embedded submanifold of N and F (M) ⊂ B, then the map

F |B : M → B F |B(p) = F (p)

is smooth.
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Example 1 [An immersion of the unit-sphere] Consider the map

F : Sn−1(R) → M(n,R) F (u) = uuT .

The map F is smooth because:

Step 1:
F̂ : R

n → M(n,R), F̂ (x) = xxT

is clearly smooth

Step 2: Sn−1(R) is an embedded submanifold of R
n

Step 3: F = F̂ |Sn−1(R)

Example 2 [A submersion onto the unit-sphere] Consider the map

F : R
n − {0} → Sn−1(R) F (x) =

x

‖x‖ .

The map F is smooth because:

Step 1:

F̂ : R
n − {0} → R

n, F̂ (x) =
x

‖x‖
is clearly smooth

Step 2: Sn−1(R) is an embedded submanifold of R
n

Step 3: F = F̂ |Sn−1(R)

Example 3 [Concatenating the techniques] Consider the map

F : O(n) → Sn−1(R) F (X) = F ([x1 x2 · · · xn ]) = x1.

The map F is smooth because:

Step 1:

F̂ : M(n,R) → R
n, F̂ (X) = F ([x1 x2 · · · xn ]) = x1

is clearly smooth

Step 2: O(n) is an embedded submanifold of M(n,R), hence,

F̂ |O(n) : O(n) → R
n, F̂ |O(n)(X) = x1
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M(n,R)

O(n)

F̂
R

n

F̂ |O(n)

ιO(n)

is smooth

Step 3: Sn−1(R) is an embedded submanifold of R
n and F̂ |O(n) (O(n)) ⊂

Sn−1(R); hence,

F = F̂ |Sn−1(R)
O(n)

is smooth

O(n) Sn−1(R)

R
n

F̂ |O(n) ιSn−1(R)

F

Example 4 [Using identifications for computations] Let F : A → B
be a smooth map between smooth manifolds. Assume that A and B
are embedded in M and N , respectively. Suppose that there exists a
smooth map F̂ : M → N such that the following diagram commutes
(i.e., ιB ◦ F = F̂ ◦ ιA)

M N

A B

F̂

ιBιA

F

For any p ∈ A, we have the corresponding diagram in terms of the
push-forwards
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ιA∗(TpA) ⊂ TpM ιB∗(TF (p)B) ⊂ TF (p)N

TpA TF (p)B

F̂∗

ιB∗ιA∗

F∗

This means that we can represent the push-forward map F∗ : TpA →
TF (p)B by the push-forward map

F̂∗ : ιA∗(TpA) → ιB∗(TF (p)B).

Example 5 [An immersion of the unit-sphere] Consider the map

F : Sn−1(R) → M(n,R) F (x) = xxT .

We have the commutative diagram

R
n

Sn−1(R)

F̂
M(n,R)

F
ιSn−1(R)

It is easy to obtain the push-forward of F̂ at any point p ∈ R
n:

F̂∗ : TpR
n � R

n → TF̂ (p)M(n,R) � M(n,R) F̂ (δ) = δpT + pδT .

On the other hand,

TpS
n−1(R) � {δ ∈ R

n : pT δ = 0}.

In conclusion, we can represent the push-forward F∗ : TpS
n−1(R) →

TF (p)M(n,R) by the linear map

F∗ : {δ : pT δ = 0} → M(n,R) F∗(δ) = δpT + pδT .
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As an example, we can exploit the representation above to prove that
the smooth map F is an immersion, that is, F∗ is injective (its kernel
is zero-dimensional):

F∗(δ) = 0 ⇒ δpT + pδT = 0

⇒ pT
(
δpT + pδT

)
= 0

⇒ δT = 0.

We used the facts that pT δ = 0 and pTp = 1.

Example 6 [A submersion onto the unit-sphere] Consider the map

F : R
n − {0} → Sn−1(R) F (x) =

x

‖x‖ .

We have the commutative diagram

R
n − {0} R

nF̂

ιSn−1(R)

F

Sn−1(R)

It is easy to obtain the push-forward of F̂ at any point p ∈ R
n − {0}:

F̂∗ : TpR
n − {0} � R

n → TF̂ (p)R
n � R

n

F̂∗(δ) =
1

‖p‖
(
In − ppT

‖p‖2

)
δ =

1

‖p‖
(
In − F (p)F (p)T

)
δ.

On the other hand,

TF (p)S
n−1(R) � {γ ∈ R

n : F (p)Tγ = 0}.
In conclusion, we can represent the push-forward F∗ : R

n − {0} →
TF (p)S

n−1(R) by the linear map

F∗ : R
n−{0} → {γ : F (p)Tγ = 0} F∗(δ) =

1

‖p‖
(
In − F (p)F (p)T

)
δ.

As an example, we can exploit the representation above to prove that
the smooth map F is a submersion, that is, F∗ is surjective: choose γ
such that F (p)Tγ = 0. Letting δ = ‖p‖ γ, we have F∗(δ) = γ.
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Example 7 [Another submersion onto the unit-sphere] Consider the
map

F : O(n) → Sn−1(R) F (X) = Xe1,

where e1 = (1, 0, . . . , 0)T .

The map F is smooth and we have the commutative diagram where

M(n,R) R
n

O(n) Sn−1(R)

F̂

ιSn−1(R)ιO(n)

F

F̂ (X) = Xe1.

The push-forward of F̂ at any point X0 ∈ M(n,R) is easily obtained:

F̂∗ : TX0M(n,R) � M(n,R) → TF̂ (X0)
M(n,R) � M(n,R)

F̂∗(∆) = ∆e1.

Now, for Q0 = [ q1 q2 · · · qn ] ∈ O(n),

TQ0O(n) � Q0K(n,R)
TF (Q0)S

n−1(R) � {δ ∈ R
n qT

1 δ = 0}

Thus, we can represent the push-forward F∗ : TQ0O(n) → TF (Q0)S
n−1(R)

by the linear map

F∗ : Q0K(n,R) → {δ : qT
1 δ = 0} F∗(Q0K) = Q0Ke1.

Exploiting the representation above, it is straightforward to show that
F∗ is surjective and, therefore, F is a submersion.
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Lemma [Embedded submanifolds of product manifolds] If A is em-
bedded in M and B is embedded in N , then A×B is embedded in M ×N .

Example 1 [Tangent space identifications for product manifolds]
Let (p, q) ∈ M ×N . We have the identification

T(p,q)M ×N � TpM ⊕ TqN

due to the isomorphism

πM∗ × πN∗ : T(p,q)M ×N → TpM ⊕ TqN

πM∗ × πN∗
(
Z(p,q)

)
=

(
πM∗(Z(p,q)), πN∗(Z(p,q))

)
.

N

Mp

q

πN∗

p∗

Z(p,q)

πM∗ ıq∗

πN∗
(
Z(p,q)

)

πM∗
(
Z(p,q)

)
The inverse map is given by

ıq∗⊕p∗ : TpM⊕TqN → T(p,q)M×N ıq∗⊕p∗(Xp, Yq) = ıq∗(Xp)+q∗(Yq),

where
ıq : M → M ×N x �→ (x, q)
p : N → M ×N y �→ (p, y).
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The discussed identification T(p,q)M ×N � TpM ⊕ TqN can be used as
follows. Suppose we have a smooth map F : M × N → P . We want
to compute the push-forward of F at the point (p, q), that is, the linear
map

F∗ : T(p,q)M ×N → TF (p,q)P Z(p,q) �→ F∗(Z(p,q)).

Since T(p,q)M ×N � TpM ⊕ TqN , we know that it can be represented
by a linear map

F∗ : TpM ⊕ TqN → TF (p,q)P (Xp, Yq) �→ F∗(Xp, Yq).

The next diagram illustrates the idea:

TpM ⊕ TqN
ıq∗ ⊕ p∗

T(p,q)M ×N

F∗

TF (p,q)P

F∗ (the identification)

To find out how to represent F∗ by this latter map, we reason as follows:

F∗(Xp, Yq) � F∗ ◦ ıq∗ ⊕ p∗(Xp, Yq)

= F∗(ıq∗Xp + p∗Yq)

= (F ◦ ıq)∗Xp + (F ◦ p)∗Yq

= Fq∗Xp + Fp∗Yq,

where
Fq = F ◦ ıq : M → P x �→ F (x, q)

and
Fp = F ◦ p : M → P y �→ F (p, y).

That is, Fq and Fp correspond to F when we hold fixed the 2nd and
1st argument at q and p, respectively.

For a specific example, let M = N = P = M(n,R) and consider the
smooth map

F : M ×N → P F (X,Y ) = XY.
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The push-forward of F at the point (X0, Y0) can be represented by the
linear map

F∗ : M(n,R)⊕ M(n,R) → M(n,R) F∗(∆,Ψ) = ∆Y0 +X0Ψ.

Example 2 [Embedded submanifolds of product manifolds] Let A,
B and C be embedded submanifolds of M , N and P , respectively. Let
F : A×B → C be a smooth map. Suppose that there exists a smooth
map F̂ : M ×N → P such that the following diagram commutes

M ×N P

A×B C

F̂

ιCιA×B

F

Note that A× B is embedded in M ×N . Thus, for any given (a, b) ∈
A×B, we already know that we have the following diagram

ιA×B∗
(
T(a,b)A×B

)
ιC∗

(
TF (a,b)C

)

T(a,b)A×B TF (a,b)C

F̂∗

ιC∗ιA×B∗

F∗

which allows us to represent the “hard” linear map

F∗ : T(a,b)A×B → C

by the “easier” one

F̂∗ : ιA×B∗
(
T(a,b)A×B

) ⊂ T(a,b)M ×N → ιC∗
(
TF (a,b)C

) ⊂ TF (a,b)P.

Our goal here is to exploit the tangent space identifications discussed
in the previous example to find out another representation for F∗.
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We start by noting that we have the following two diagrams

M M ×N

A A×B

ı̂b

ιA×BιA

ıb

N M ×N

B A×B

̂a

ιA×BιB

a

where
ıb : A → A×B x �→ (x, b)
ı̂b : M → M ×N x �→ (x, b)
a : B → A×B y �→ (a, y)
̂a : N → M ×N y �→ (a, y).

From this, it follows that

ιA∗ (TaA)⊕ ιB∗ (TbB) ιA×B∗
(
T(a,b)A×B

)

TaA⊕ TbB T(a,b)A×B

ı̂b∗ ⊕ ̂a∗

ιA×B∗ιA∗ × ιB∗

ıb∗ ⊕ a∗

where

ıb∗ ⊕ a∗ : TaA⊕ TbB → T(a,b)A×B (Xa, Yb) �→ ıb∗(Xa) + a∗(Yb)
ı̂b∗ ⊕ ̂a∗ : TaM ⊕ TbN → T(a,b)M ×N (Xa, Yb) �→ ı̂b∗(Xa) + ̂a∗(Yb)
ιA∗ × ιB∗ : TaA⊕ TbB → TaM ⊕ TbN (Xa, Yb) �→ (ιA∗(Xa), ιB∗(Yb))
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The equality

ιA×B∗ ◦ ıb∗ ⊕ a∗ = ı̂b∗ ⊕ ̂a∗ ◦ ιA∗ × ιB∗

expressed in the last diagram can be proved as follows:

ιA×B∗ ◦ ıb∗ ⊕ a∗(Xa, Yb) = ιA×B∗ (ıb∗(Xa) + a∗(Yb))

= ιA×B∗ ◦ ıb∗(Xa) + ιA×B∗ ◦ a∗(Yb)
(a)
= (ιA×B ◦ ıb)∗ (Xa) + (ιA×B ◦ a)∗ (Yb)
(b)
= (̂ıb ◦ ιA)∗ (Xa) + (̂a ◦ ιB)∗ (Yb)

= ı̂b∗ (ιA∗(Xa)) + ̂a∗ (ιB∗(Yb))

= ı̂b∗ ⊕ ̂a∗ (ιA∗(Xa), ιB∗(Yb))

= ı̂b∗ ⊕ ̂a∗ ◦ ιA∗ × ιB∗(Xa, Yb).

In (a), the chain rule for push-forwards was used. In (b), we used the
two commutative diagrams in page 38.

Now, taking the last diagram in page 38 and plugging it on the left of
the last diagram in page 37 yields
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ιA×B∗
(
T(a,b)A×B

)

T(a,b)A×B

F∗ (the identification)

ιA∗ × ιB∗ ιA×B∗

ιA∗ (TaA)⊕ ιB∗ (TbB) ιC∗
(
TF (a,b)P

)

TaA⊕ TbB

F∗

�

ιC∗

F̂∗

�
TF (a,b)C

Since the arrows marked with � denote isomorphisms, this shows that
F∗ can be represented by the linear map

F∗ : ιA∗ (TaA)⊕ ιB∗ (TbB) → ιC∗
(
TF (a,b)C

)
given by

(ιA∗(Xa), ιB∗(Yb)) �→ F̂∗ (̂ıb∗ (ιA∗(Xa)) + ̂a∗ (ιB∗(Yb)))

= F̂b∗ (ιA∗(Xa)) + F̂a∗ (ιB∗(Yb)) ,

where

F̂b : M → P x �→ F̂ (x, b)

F̂a : N → P y �→ F̂ (a, y).

Example 3 [Polar decomposition is a diffeomorphism] Consider the
map

F : P(n,R)× O(n) → GL(n,R) F (P,Q) = PQ.

40



The map F is smooth (why?).

We have the following commutative diagram

M(n,R)× M(n,R) M(n,R)

P(n,R)× O(n) GL(n,R)

F̂

ιGL(n,R)ιP(n,R)×O(n)

F

where

F̂ : M(n,R)× M(n,R) → M(n,R) F̂ (X,Y ) = XY.

Note that P(n,R), O(n) and GL(n,R) are embedded submanifolds of
M(n,R).

Also:
ιP(n,R)∗ (TP0P(n,R)) � S(n,R)
ιO(n)∗ (TQ0O(n)) � Q0K(n,R)
ιGL(n,R))∗ (TX0GL(n,R)) � M(n,R).

Thus, the push-forward

F∗ : T(P0,Q0)P(n,R)× O(n) → TF (P0,Q0)GL(n,R)

can be represented by the linear map

F∗ : S(n,R)⊕Q0K(n,R) → M(n,R) F∗(∆,Ψ) = ∆Q0 + P0Ψ.

Since F∗ is an injective linear map for any (P0, Q0), we conclude that
F is a diffeomorphism.
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