Nonlinear Signal Processing (2004/2005)

```
jxavier@isr.ist.utl.pt
```


The Tangent Bundle

Definition [Tangent vector] Let M be a smooth manifold and let p be a point of M. A tangent vector to M at p is a map

$$
X_{p}: C^{\infty}(M) \rightarrow \mathbb{R} \quad f \mapsto X_{p} f
$$

which satisfies

$$
\begin{aligned}
X_{p}(a f+b g) & =a\left(X_{p} f\right)+b\left(X_{p} g\right) & & {[\text { linearity }] } \\
X_{p}(f g) & =\left(X_{p} f\right) g(p)+f(p)\left(X_{p} g\right) & & {[\text { Leibniz rule }] }
\end{aligned}
$$

for all $a, b \in \mathbb{R}$ and $f, g \in C^{\infty}(M)$.

Example 1 [Euclidean space] Let $M=\mathbb{R}^{n}$ and $a \in M$. Choose a vector $v=\left(v^{1}, v^{2}, \ldots, v^{n}\right) \in \mathbb{R}^{n}$. The map

$$
X_{a}: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R} \quad f \mapsto \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} f(a)
$$

is a tangent vector to \mathbb{R}^{n} at a.
The tangent vector X_{a} is also written as

$$
\left.v^{i} \frac{\partial}{\partial x^{i}}\right|_{a} .
$$

Definition [Tangent space] Let M be a smooth manifold and let p be a point of M. The tangent space to M at p is denoted by $T_{p} M$ and is a vector space under the operations

$$
\begin{aligned}
\left(X_{p}+Y_{p}\right) f & =X_{p} f+Y_{p} f \\
\left(a X_{p}\right) f & =a\left(X_{p} f\right)
\end{aligned}
$$

for all $a \in \mathbb{R}$ and $X_{p}, Y_{p} \in T_{p} M$.

Example 1 [Euclidean space] The tangent space $T_{a} \mathbb{R}^{n}$ is finite-dimensional (dimension n). The map

$$
\mathbb{R}^{n} \rightarrow T_{a} \mathbb{R}^{n} \quad v=\left.\left(v^{1}, v^{2}, \ldots, v^{n}\right) \mapsto v^{i} \frac{\partial}{\partial x^{i}}\right|_{a}
$$

provides an isomorphism.
The ordered set

$$
\left\{\left.\frac{\partial}{\partial x^{1}}\right|_{a},\left.\frac{\partial}{\partial x^{2}}\right|_{a}, \ldots,\left.\frac{\partial}{\partial x^{n}}\right|_{a}\right\}
$$

is called the canonical basis of $T_{a} \mathbb{R}^{n}$.

Example 2 [Tangent space to a vector space] Let V be a finite-dimensional vector space and $p \in V$. The tangent space $T_{p} V$ is finite-dimensional (n-dimensional). The map

$$
\left.V \rightarrow T_{p} V \quad v \mapsto \frac{d}{d t} f(p+t v)\right|_{t=0}
$$

provides an isomorphism. This identification is written as $V \simeq T_{p} V$.

- This identification is used in practice as follows. For example, consider $\mathrm{S}(n, \mathbb{R})$, the set of $n \times n$ symmetric matrices with real entries. Note that $S(n, \mathbb{R})$ is an $n(n+1) / 2$-dimensional vector space, hence a smooth manifold with the same dimension.
Let $S_{0} \in \mathrm{~S}(n, \mathbb{R})$ and consider a tangent vector $\Delta_{S_{0}} \in T_{S_{0}} \mathrm{~S}(n, \mathbb{R})$. Note that, by definition, $\Delta_{S_{0}}$ is a certain kind of differential operator on $\mathrm{S}(n, \mathbb{R})$.
However, the identification

$$
T_{S_{0}} \mathrm{~S}(n, \mathbb{R}) \simeq \mathrm{S}(n, \mathbb{R})
$$

allows you to represent $\Delta_{S_{0}}$ by a much nicer object: a symmetric matrix! Within this representation, if you have to compute later the action of $\Delta_{S_{0}}$ on a given smooth function $f: \mathrm{S}(n, \mathbb{R}) \rightarrow \mathbb{R}$ you calculate

$$
\Delta_{S_{0}} f=\left.\frac{d}{d t} f\left(S_{0}+t \Delta_{S_{0}}\right)\right|_{t=0}
$$

Note that in the above equation, the symbol $\Delta_{S_{0}}$ is given two different meanings (which come from the identification): in the left hand-side it represents an element of $T_{S_{0}} \mathrm{~S}(n, \mathbb{R}$) (a certain differential operator) whereas in the right hand-side it represents an element of $\mathrm{S}(n, \mathbb{R})$ (an $n \times n$ symmetric matrix).
To illustrate: consider the smooth function

$$
f: \mathrm{S}(n, \mathbb{R}) \rightarrow \mathbb{R} \quad f(S)=\operatorname{tr}\left(S^{2}\right)-\operatorname{tr}(S)
$$

Let $\Delta_{S_{0}} \in T_{S_{0}} \mathrm{~S}(n, \mathbb{R}) \simeq \mathrm{S}(n, \mathbb{R})$. Then,

$$
\begin{aligned}
\Delta_{S_{0}} f & =\left.\frac{d}{d t} f\left(S_{0}+t \Delta_{S_{0}}\right)\right|_{t=0} \\
& =\frac{d}{d t} \operatorname{tr}\left(\left(S_{0}+t \Delta_{S_{0}}\right)^{2}\right)-\left.\operatorname{tr}\left(S_{0}+t \Delta_{S_{0}}\right)\right|_{t=0} \\
& =\frac{d}{d t} \operatorname{tr}\left(S_{0}^{2}\right)-\operatorname{tr}\left(S_{0}\right)+t \operatorname{tr}\left(S_{0} \Delta_{S_{0}}+\Delta_{S_{0}} S_{0}-\Delta_{S_{0}}\right)+\left.t^{2} \Delta_{S_{0}}^{2}\right|_{t=0} \\
& =\operatorname{tr}\left(S_{0} \Delta_{S_{0}}+\Delta_{S_{0}} S_{0}-\Delta_{S_{0}}\right) .
\end{aligned}
$$

- For another example, consider

$$
\mathrm{L}(n, \mathbb{R})=\left\{X \in \mathrm{M}(n, \mathbb{R}): X_{i j}=0 \text { for } i<j\right\}
$$

the set of $n \times n$ lower-triangular matrices with real entries. Note that $\mathrm{L}(n, \mathbb{R})$ is an $n(n+1) / 2$-dimensional vector space, hence a smooth manifold with the same dimension.
Let $L_{0} \in \mathrm{~S}(n, \mathbb{R})$ and consider a tangent vector $\Delta_{L_{0}} \in T_{L_{0}} \mathrm{~L}(n, \mathbb{R})$. The identification

$$
T_{L_{0}} \mathrm{~L}(n, \mathbb{R}) \simeq \mathrm{L}(n, \mathbb{R})
$$

allows you to represent $\Delta_{L_{0}}$ by a nice object: a lower-triangular matrix ! Again, with respect to this representation, if you have to compute later the action of $\Delta_{L_{0}}$ on a given smooth function $f: \mathrm{L}(n, \mathbb{R}) \rightarrow \mathbb{R}$ you calculate

$$
\Delta_{L_{0}} f=\left.\frac{d}{d t} f\left(L_{0}+t \Delta_{L_{0}}\right)\right|_{t=0}
$$

Definition [Push-forward] Let $F: M \rightarrow N$ be a smooth map between smooth manifolds. For each $p \in M$, we define the push-forward map

$$
F_{*}: T_{p} M \rightarrow T_{F(p)} N \quad\left(F_{*} X_{p}\right) f=X_{p}\left(F^{*} f\right)
$$

where $F^{*} f=f \circ F$ is the pull-back of $f \in C^{\infty}(N)$ by F (note that $F^{*} f \in$ $\left.C^{\infty}(M)\right)$.

Note that F_{*} is a linear map:

$$
F_{*}\left(a X_{p}+b Y_{p}\right)=a F_{*}\left(X_{p}\right)+b F_{*}\left(Y_{p}\right)
$$

for all $a, b \in \mathbb{R}$ and $X_{p}, Y_{p} \in T_{p} M$.

Example 1 [Interpretation of push-forwards in Euclidean spaces]

 Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth map. Let $p \in \mathbb{R}^{n}$ and $q=F(p) \in \mathbb{R}^{m}$. Consider the canonical basis for the tangent spaces $T_{p} \mathbb{R}^{n}$ and $T_{q} \mathbb{R}^{m}$ given by$$
\left\{\left.\frac{\partial}{\partial x^{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x^{n}}\right|_{p}\right\} \quad \text { and } \quad\left\{\left.\frac{\partial}{\partial y^{1}}\right|_{q}, \ldots,\left.\frac{\partial}{\partial y^{m}}\right|_{q}\right\}
$$

respectively.
With respect to those bases, the linear operator $F_{*}: T_{p} \mathbb{R}^{n} \rightarrow T_{q} \mathbb{R}^{m}$ is given by the derivative matrix of $F=\left(F^{1}, \ldots, F^{m}\right)$ at p :

$$
D F(p)=\left(\begin{array}{cccc}
\frac{\partial F^{1}}{\partial x^{1}}(p) & \frac{\partial F^{1}}{\partial x^{2}}(p) & \cdots & \frac{\partial F^{1}}{\partial x^{n}}(p) \\
\frac{\partial F^{2}}{\partial x^{1}}(p) & \frac{\partial F^{2}}{\partial x^{2}}(p) & \cdots & \frac{\partial F^{2}}{\partial x^{n}}(p) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F^{m}}{\partial x^{1}}(p) & \frac{\partial F^{m}}{\partial x^{2}}(p) & \cdots & \frac{\partial F^{m}}{\partial x^{n}}(p)
\end{array}\right) .
$$

Equivalently, this means that, under the canonical identifications

$$
T_{p} \mathbb{R}^{n} \simeq \mathbb{R}^{n} \quad \text { and } \quad T_{F(p)} \mathbb{R}^{m} \simeq \mathbb{R}^{m}
$$

corresponding to

$$
\left.a^{i} \frac{\partial}{\partial x^{i}}\right|_{p} \mapsto\left(a^{1}, a^{2}, \ldots, a^{n}\right) \quad \text { and }\left.\quad b^{j} \frac{\partial}{\partial y^{j}}\right|_{F(p)} \mapsto\left(b^{1}, b^{2}, \ldots, b^{m}\right),
$$

respectively, the push-forward $F_{*}: T_{p} \mathbb{R}^{n} \rightarrow T_{F(p)} \mathbb{R}^{m}$ is represented by the linear map

$$
F_{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad F_{*}(\Delta)=D F(p) \Delta
$$

Lemma [Properties of push-forwards] Let $F: M \rightarrow N$ and $G: N \rightarrow P$ be smooth maps between smooth manifolds.
(a) $(G \circ F)_{*}=G_{*} \circ F_{*}: T_{p} M \rightarrow T_{G(F(p))} P$
(b) $\mathrm{id}_{M *}=\mathrm{id}_{T_{p} M}: T_{p} M \rightarrow T_{p} M$
(c) If F is a diffeomorphism, then $F_{*}: T_{p} M \rightarrow T_{F(p)} N$ is an isomorphism.

Proposition [Tangent vectors are "local" objects] Let M be a smooth manifold and $p \in M$. If $f, g \in C^{\infty}(M)$ coincide on some open subset containing p, then $X_{p} f=X_{p} g$.

Proposition [Tangent spaces to open submanifolds] Let M be a smooth manifold, $U \subset M$ an open submanifold and $\iota: U \rightarrow M$ the inclusion map. For any $p \in U$, the map $\iota_{*}: T_{p} U \rightarrow T_{p} M$ is an isomorphism. In particular, $T_{p} M=\iota_{*}\left(T_{p} U\right)$. This identification is written as $T_{p} U \simeq T_{p} M$ and $\iota_{*} X_{p} \simeq X_{p}$.

Example 1 [Tangent spaces to open submanifolds of vector spaces]
Let V be a finite-dimensional vector space, hence a smooth manifold. Let U be an open submanifold of V and $p \in U$. The last proposition offers the isomorphism

$$
T_{p} U \simeq T_{p} V
$$

On the other hand, we also have the isomorphism

$$
T_{p} V \simeq V
$$

Concatenating the two isomorphisms we have

$$
T_{p} U \simeq V
$$

That is, any tangent vector $\Delta_{p} \in T_{p} U$ can be represented by an element of the vector space V. Within this representation, the action of Δ_{p} on a smooth function $f: U \rightarrow \mathbb{R}$ is given by

$$
\Delta_{p} f=\left.\frac{d}{d t} f\left(p+t \Delta_{p}\right)\right|_{t=0}
$$

- As an example, consider the set

$$
\mathrm{P}(n, \mathbb{R})=\{X \in \mathrm{~S}(n, \mathbb{R}): X \text { is positive-definite }\}
$$

Note that $\mathrm{P}(n, \mathbb{R})$ is an open submanifold of the smooth manifold $\mathrm{S}(n, \mathbb{R})$. Let $P_{0} \in \mathrm{P}(n, \mathbb{R})$. We have the isomorphism

$$
T_{P_{0}} \mathrm{P}(n, \mathbb{R}) \simeq \mathrm{S}(n, \mathbb{R})
$$

which means that any tangent vector $\Delta_{P_{0}} \in T_{P_{0}} \mathrm{P}(n, \mathbb{R})$ can be represented by a symmetric matrix ! Again, within this representation, if you have to compute the action of $\Delta_{P_{0}}$ on a given smooth function $f: \mathrm{P}(n, \mathbb{R}) \rightarrow \mathbb{R}$ you calculate

$$
\Delta_{P_{0}} f=\left.\frac{d}{d t} f\left(P_{0}+t \Delta_{P_{0}}\right)\right|_{t=0}
$$

- For another example, consider

$$
\mathrm{L}^{+}(n, \mathbb{R})=\left\{X \in \mathrm{~L}(n, \mathbb{R}): L_{i i}>0 \text { for all } i\right\}
$$

Note that $\mathrm{L}^{+}(n, \mathbb{R})$ is an open submanifold of the smooth manifold $\mathrm{L}(n, \mathbb{R})$. For $L_{0} \in \mathrm{~L}^{+}(n, \mathbb{R})$ we have the isomorphism

$$
T_{L_{0}} \mathrm{~L}^{+}(n, \mathbb{R}) \simeq \mathrm{L}(n, \mathbb{R})
$$

meaning that any tangent vector $\Delta_{L_{0}} \in T_{L_{0}} \mathrm{~L}^{+}(n, \mathbb{R})$ can be represented by a lower-triangular matrix !

Example 2 [Cholesky decomposition] The Cholesky decomposition asserts that for any $P \in \mathrm{P}(n, \mathbb{R})$ there is an unique $L \in \mathrm{~L}^{+}(n, \mathbb{R})$ such that

$$
P=L L^{T}
$$

In this example, we consider the map

$$
F: \mathrm{L}^{+}(n, \mathbb{R}) \rightarrow \mathrm{P}(n, \mathbb{R}) \quad F(L)=L L^{T}
$$

We already know that F is bijective. The map F is also smooth (why?). The goal of this example is to compute the push-forward map

$$
F_{*}: T_{L_{0}} \mathrm{~L}^{+}(n, \mathbb{R}) \rightarrow T_{F\left(L_{0}\right)} \mathrm{P}(n, \mathbb{R})
$$

at a given point $L_{0} \in \mathrm{~L}^{+}(n, \mathbb{R})$. Thanks to the isomorphisms

$$
T_{L_{0}} \mathrm{~L}^{+}(n, \mathbb{R}) \simeq \mathrm{L}(n, \mathbb{R}) \quad \text { and } \quad T_{F\left(L_{0}\right)} \mathrm{P}(n, \mathbb{R}) \simeq \mathrm{S}(n, \mathbb{R})
$$

the push-forward can be represented by a linear map

$$
F_{*}: \mathrm{L}(n, \mathbb{R}) \rightarrow \mathrm{S}(n, \mathbb{R})
$$

We want to find out this linear map.
Let $\Delta_{L_{0}} \in T_{L_{0}} \mathrm{~L}^{+}(n, \mathbb{R}) \simeq \mathrm{L}(n, \mathbb{R})$. Note that

$$
F_{*}\left(\Delta_{L_{0}}\right) \in T_{F\left(L_{0}\right)} \mathrm{P}(n, \mathbb{R}) \simeq \mathrm{S}(n, \mathbb{R})
$$

is characterized by its action on smooth functions $f: \mathrm{P}(n, \mathbb{R}) \rightarrow \mathbb{R}$ as follows:

$$
F_{*}\left(L_{0}\right) f=\left.\frac{d}{d t} f\left(F\left(L_{0}\right)+t F_{*}\left(\Delta_{L_{0}}\right)\right)\right|_{t=0}
$$

Now, take a smooth function $f: \mathrm{P}(n, \mathbb{R}) \rightarrow \mathbb{R}$. We have

$$
\begin{aligned}
F_{*}\left(\Delta_{L_{0}}\right) f & =\Delta_{L_{0}}\left(F^{*} f\right) \\
& =\Delta_{L_{0}}(f \circ F) \\
& =\left.\frac{d}{d t}(f \circ F)\left(L_{0}+t \Delta_{L_{0}}\right)\right|_{t=0} \\
& =\left.\frac{d}{d t} f\left(\left(L_{0}+t \Delta_{L_{0}}\right)\left(L_{0}+t \Delta_{L_{0}}\right)^{T}\right)\right|_{t=0} \\
& =\left.\frac{d}{d t} f\left(L_{0} L_{0}^{T}+t\left(L_{0} \Delta_{L_{0}}^{T}+\Delta_{L_{0}} L_{0}^{T}\right)+t^{2} \Delta_{L_{0}}^{2}\right)\right|_{t=0} \\
& =\left.\frac{d}{d t} f\left(L_{0} L_{0}^{T}+t\left(L_{0} \Delta_{L_{0}}^{T}+\Delta_{L_{0}} L_{0}^{T}\right)\right)\right|_{t=0}
\end{aligned}
$$

We conclude that

$$
F_{*}\left(\Delta_{L_{0}}\right)=L_{0} \Delta_{L_{0}}^{T}+\Delta_{L_{0}} L_{0}^{T}
$$

Example 3 [Smooth charts provide local bases for tangent spaces]
Let M be an n-dimensional smooth manifold and (U, φ) a smooth chart on M. Since $\varphi: U \subset M \rightarrow \varphi(U) \subset \mathbb{R}^{n}$ is a diffeomorphism, the map

$$
\varphi_{*}: T_{p} U \simeq T_{p} M \rightarrow T_{\varphi(p)} \varphi(U) \simeq T_{\varphi(p)} \mathbb{R}^{n}
$$

is a linear isomorphism. Thus,

$$
\left\{\varphi_{*}^{-1}\left(\left.\frac{\partial}{\partial x^{1}}\right|_{\varphi(p)}\right), \varphi_{*}^{-1}\left(\left.\frac{\partial}{\partial x^{2}}\right|_{\varphi(p)}\right), \ldots, \varphi_{*}^{-1}\left(\left.\frac{\partial}{\partial x^{n}}\right|_{\varphi(p)}\right)\right\}
$$

is a basis for $T_{p} U \simeq T_{p} M$.

For example, consider the unit-circle

$$
\mathbf{S}^{1}(\mathbb{R})=\left\{\left(x^{1}, x^{2}\right) \in \mathbb{R}^{2}:\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}=1\right\}
$$

and the point $p=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.
The point p is contained in the smooth chart (U, φ), where

$$
U=\left\{\left(x^{1}, x^{2}\right) \in \mathrm{S}^{1}(\mathbb{R}): x^{2}>0\right\}
$$

and

$$
\varphi: U \rightarrow(-1,1) \quad \varphi\left(x^{1}, x^{2}\right)=x^{1}
$$

The one-dimensional tangent space $T_{\varphi(p)} \mathbb{R}$ is spanned by

$$
\left.\frac{d}{d t}\right|_{t=\frac{1}{2}}
$$

Thus, the one-dimensional tangent space $T_{p} \mathrm{~S}^{1}(\mathbb{R})$ is spanned by

$$
E_{1 p}=\varphi_{*}^{-1}\left(\left.\frac{d}{d t}\right|_{t=\frac{1}{2}}\right) .
$$

Example 4 [Computation of $X_{p} f$ in coordinates] Let M be an n dimensional smooth manifold and (U, φ) containing $p \in M$. Let $X_{p} \in$ $T_{p} M$ be given by

$$
X_{p}=a^{i} E_{i p} \quad \text { where } \quad E_{i p}=\varphi_{*}^{-1}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{\varphi(p)}\right) .
$$

For a smooth function $f: M \rightarrow \mathbb{R}$, we have

$$
\begin{aligned}
X_{p} f & =a^{i} E_{i p} f \\
& =a^{i} \varphi_{*}^{-1}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{\varphi(p)}\right) f \\
& =\left.a^{i} \frac{\partial}{\partial x^{i}}\right|_{\varphi(p)} f \circ \varphi^{-1} \\
& =\left.a^{i} \frac{\partial}{\partial x^{i}}\right|_{\varphi(p)} \widehat{f} \\
& =a^{i} \frac{\partial \widehat{f}}{\partial x^{i}}(\varphi(p))
\end{aligned}
$$

Example 5 [Computation of F_{*} in coordinates] Let $F: M \rightarrow N$ be a smooth map of smooth manifolds $(\operatorname{dim} M=m$ and $\operatorname{dim} N=n)$. Let $p \in M$ and $q=F(p) \in N$. Let (U, φ) and (V, ψ) denote smooth charts around p and q, respectively, with $F(U) \subset V$.

Let $\left\{E_{1 p}, \ldots, E_{m p}\right\}$ and $\left\{F_{1 q}, \ldots, F_{n q}\right\}$ be basis for $T_{p} M$ and $T_{q} N$, respectively, where

$$
E_{i p}=\varphi_{*}^{-1}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{\varphi(p)}\right) \quad \text { and } \quad F_{j q}=\psi_{*}^{-1}\left(\left.\frac{\partial}{\partial y^{j}}\right|_{\psi(q)}\right)
$$

With respect to those bases, the linear operator $F_{*}: T_{p} M \rightarrow T_{q} N$ is given by the derivative matrix of the map $\widehat{F}: \varphi(U) \rightarrow \psi(V), \widehat{F}=$
$\psi \circ F \circ \varphi^{-1}=\left(\widehat{F}^{1}, \ldots, \widehat{F}^{m}\right)$ which represents F in those coordinates :

$$
D \widehat{F}(\varphi(p))=\left(\begin{array}{cccc}
\frac{\partial \widehat{F}^{1}}{\partial x^{1}}(\varphi(p)) & \frac{\partial \widehat{F}^{1}}{\partial x^{2}}(\varphi(p)) & \cdots & \frac{\partial \widehat{F}^{1}}{\partial x^{n}}(\varphi(p)) \\
\frac{\partial \widehat{F}^{2}}{\partial x^{1}}(\varphi(p)) & \frac{\partial \widehat{F}^{2}}{\partial x^{2}}(\varphi(p)) & \cdots & \frac{\partial \widehat{F}^{2}}{\partial x^{n}}(\varphi(p)) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \widehat{F}^{m}}{\partial x^{1}}(\varphi(p)) & \frac{\partial \widehat{F}^{m}}{\partial x^{2}}(\varphi(p)) & \cdots & \frac{\partial \widehat{F}^{m}}{\partial x^{n}}(\varphi(p))
\end{array}\right) .
$$

Definition [Smooth curves] A smooth curve in a smooth manifold M is a smooth map

$$
\gamma:(a, b) \subset \mathbb{R} \rightarrow M \quad t \mapsto \gamma(t)
$$

The tangent vector to γ at $t_{0} \in(a, b)$ is the vector

$$
\dot{\gamma}\left(t_{0}\right)=\gamma_{*}\left(\left.\frac{d}{d t}\right|_{t_{0}}\right) \in T_{\gamma\left(t_{0}\right)} M
$$

Example 1 [Smooth curves in Euclidean spaces] Let

$$
\gamma:(a, b) \rightarrow \mathbb{R}^{n} \quad \gamma(t)=\left(\gamma^{1}(t), \gamma^{2}(t), \ldots, \gamma^{n}(t)\right)
$$

be a smooth curve in \mathbb{R}^{n}.
Thus, $\dot{\gamma}\left(t_{0}\right)$ is an element of $T_{\gamma\left(t_{0}\right)} \mathbb{R}^{n}$ and, therefore, it can be expressed as

$$
\dot{\gamma}\left(t_{0}\right)=\left.c^{i} \frac{\partial}{\partial x^{i}}\right|_{\gamma\left(t_{0}\right)}
$$

for some constants $c^{i} \in \mathbb{R}$. Each constant c^{i} can be found by the usual

trick: $c^{i}=\dot{\gamma}\left(t_{0}\right) x^{i}$. That is,

$$
\begin{aligned}
c^{i} & =\dot{\gamma}\left(t_{0}\right) x^{i} \\
& =\gamma_{*}\left(\left.\frac{d}{d t}\right|_{t_{0}}\right) x^{i} \\
& =\left.\frac{d}{d t}\right|_{t_{0}}\left(\gamma^{*} x^{i}\right) \\
& =\left.\frac{d}{d t}\right|_{t_{0}}\left(x^{i} \circ \gamma\right) \\
& =\left.\frac{d}{d t}\right|_{t_{0}} \gamma^{i}(t) \\
& =\frac{d \gamma^{i}}{d t}\left(t_{0}\right) .
\end{aligned}
$$

The conclusion is

$$
\dot{\gamma}\left(t_{0}\right)=\left.\frac{d \gamma^{i}}{d t}\left(t_{0}\right) \frac{\partial}{\partial x^{i}}\right|_{\gamma\left(t_{0}\right)} .
$$

For a specific example, let $\gamma(t)=\left(t^{2}-2, \sin \left(\frac{t}{2}\right), e^{t}\right)$. Then,

$$
\dot{\gamma}(\pi)=\left.2 \pi \frac{\partial}{\partial x^{1}}\right|_{\left(\pi^{2}-2,1, e^{\pi}\right)}+\left.e^{\pi} \frac{\partial}{\partial x^{3}}\right|_{\left(\pi^{2}-2,1, e^{\pi}\right)} .
$$

Lemma [Geometrical interpretation of tangent spaces] Let M be a smooth manifold and $p \in M$. Every $X_{p} \in T_{p} M$ is the tangent vector to some smooth curve in M.

Definition [Tangent bundle] The tangent bundle of a smooth manifold M is the disjoint union of all the tangent spaces of M :

$$
T M=\coprod_{p \in M} T_{p} M .
$$

An element of $T M$ is denoted by (p, X) where $p \in M$ and $X \in T_{p} M$, or, simply by X_{p}.

The canonical projection is the map

$$
\pi: T M \rightarrow M \quad X_{p} \mapsto p .
$$

Lemma [Tangent bundle is a smooth manifold] Let M be an n-dimensional manifold. Then, $T M$ can be given a smooth structure making it a $2 n$ dimensional smooth manifold such that $\pi: T M \rightarrow M$ is a smooth map and, for each smooth chart (U, φ) in $M,\left(\pi^{-1}(U), \Phi\right)$ is a smooth chart in $T M$ where

$$
\Phi: \pi^{-1}(U) \rightarrow \mathbb{R}^{2 n} \quad v^{i} E_{i p} \mapsto\left(\varphi^{1}(p), \ldots, \varphi^{n}(p) ; v^{1}, \ldots, v^{n}\right)
$$

and

$$
E_{i p}=\varphi_{*}^{-1}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{\varphi(p)}\right)
$$

Definition [Smooth vector field] Let M be a smooth manifold. A smooth vector field is a smooth map

$$
X: M \rightarrow T M \quad p \mapsto X_{p}
$$

such that the following diagram commutes

\triangleright Intuition: the vector field X picks a representative in each tangent space

Lemma [Characterization of smooth vector fields] Let M be a smooth manifold and X a vector field on M, that is, a map $X: M \rightarrow T M$ such that $\pi \circ X=\mathrm{id}_{M}$. The following are equivalent:
(a) X is a smooth vector field
(b) The components of X with respect to any chart on M are smooth
(c) The function

$$
X f: M \rightarrow \mathbb{R} \quad p \mapsto X_{p} f
$$

is smooth, for each $f \in C^{\infty}(M)$.

Example 1 [Euclidean space] The vector field

$$
X=\underbrace{-4 x^{1} \cos \left(x^{1}+3 x^{2}\right)}_{\text {smooth }} \frac{\partial}{\partial x^{1}}+\underbrace{\left(e^{x^{1}-x^{2}}+3 x^{2}\right)}_{\text {smooth }} \frac{\partial}{\partial x^{2}}
$$

is smooth.

References

[1] J. Lee, Introduction to Smooth Manifolds, Springer-Verlag, 2000.

