Nonlinear Signal Processing (2004/2005)

jxavier@isr.ist.utl.pt

Smooth Manifolds

Definition [Coordinate chart] Let M be a topological n-manifold. A coordinate chart on M is a pair (U, φ) where U is an open subset of M and $\varphi : U \to \widehat{U}$ is a homeomorphism from U to an open subset $\widehat{U} = \varphi(U) \subset \mathbb{R}^n$. If (U, φ) is a coordinate chart, U is called the coordinate domain and φ is the second instance.

is the coordinate map. The components x^i of $\varphi = (x^1, x^2, \dots, x^n)$ are called local coordinates on U.

Definition [Smooth maps in Euclidean spaces] Let $F : U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a map defined on an open subset $U \subset \mathbb{R}^n$. The map F is said to be smooth if all the component functions of $F = (F^1, F^2, \ldots, F^m)$ have continuous partial derivatives of all orders.

Definition [Diffeomorphisms in Euclidean spaces] Let $F : U \to V$ be a map defined on open subsets U, V of \mathbb{R}^n . The map F is said to be a diffeomorphism if it is bijective, smooth and its inverse map $F^{-1} : V \to U$ is smooth.

Definition [Smooth compatibility of charts] Let M be a topological manifold. Two charts (U, φ) and (V, ψ) on M are said to be smoothly compatible if either $U \cap V = \emptyset$ or $\psi \circ \varphi^{-1}$: $\varphi(U \cap V) \to \psi(U \cap V)$ is a diffeomorphism.

Definition [Smooth atlas, maximal smooth atlas] Let M be a topological manifold. A smooth atlas \mathcal{A} on M is a collection of smoothly compatible charts whose domains cover M.

A smooth atlas \mathcal{A} is said to be maximal if it does not exist a smooth atlas $\widetilde{\mathcal{A}}$ strictly larger that \mathcal{A} ($\mathcal{A} \subset \widetilde{\mathcal{A}}$ and $\mathcal{A} \neq \widetilde{\mathcal{A}}$).

Definition [Smooth manifold] A smooth manifold is a pair (M, \mathcal{A}) where M is a topological manifold and \mathcal{A} is a maximal smooth atlas on M.

 \triangleright Intuition: A smooth manifold is a topological manifold which can be covered by coordinate charts which fit nicely together.

Theorem [Maximal smooth atlas] Let M be a topological manifold. If \mathcal{A} is a smooth atlas on M, then there exists an unique maximal smooth atlas on M which contains \mathcal{A} .

 \triangleright Analogy: a straight-line through the origin can be specified by a single non-zero point (you don't need to furnish <u>all</u> points).

Stack of all coordinate charts of M

- **Example 1** [Obvious example] $M(n, m, \mathbb{R}) \simeq \mathbb{R}^{nm}$ is a smooth manifold of dimension nm.
- **Example 2** [Vector space] A vector space of dimension n is a smooth manifold of dimension n. Examples: any linear subspace in \mathbb{R}^n and $\mathsf{S}(n,\mathbb{R}).$

Example 3 [Unit-sphere] The unit-sphere

$$S^{n-1}(\mathbb{R}) = \{x \in \mathbb{R}^n : ||x|| = 1\}$$

is a smooth manifold of dimension n-1.

Definition [Smooth chart] Let (M, \mathcal{A}) be a smooth manifold. Any coordinate chart (U, φ) contained in the given maximal smooth atlas \mathcal{A} is called a smooth chart.

Lemma [Existence of special smooth charts] Let (M, \mathcal{A}) be a smooth manifold of dimension m. If (U, φ) is a smooth chart and $V \subset U$ is an open subset, then $(V, \varphi|_V)$ is a smooth chart.

Let $p \in M$ and let $\varepsilon > 0$ be given. Then, there exists a smooth chart (U,φ) containing p such that $\varphi(U) = B_{\varepsilon}^{m}(0)$ or $\varphi(U) = C_{\varepsilon}^{m}(0)$, where

$$B_{\varepsilon}^{m}(0) = \left\{ (x_1, x_2, \dots, x_m) \in \mathbb{R}^m : \sum_{i=1}^m x_i^2 < 1 \right\}$$

 $C^m_{\varepsilon}(0) = \{ (x_1, x_2, \dots, x_m) \in \mathbb{R}^m : |x_i| < \varepsilon, \text{ for all } i \}.$

(Note: a smooth chart (U, φ) is said to be centered at $p \in U$ if $\varphi(p) =$ $(0, \ldots, 0)).$

▷ Intuition: A smooth manifold contains a lot of smooth charts, many of them nice.

Lemma [Open submanifold] Let (M, \mathcal{A}) be a smooth *n*-manifold and $W \subset M$ an open subset. Then, $\mathcal{A}_W = \{(U, \varphi) \in \mathcal{A} : U \subset W\}$ is a smooth atlas on the topological *n*-manifold W (W is given the subspace topology).

Theorem [Product manifolds] Let (M, \mathcal{A}_M) and (N, \mathcal{A}_N) be smooth manifolds of dimension m and n. Then,

$$\mathcal{A}_{M \times N} = \{ (U \times V, \varphi \times \psi) : (U, \varphi) \in \mathcal{A}_M, (V, \psi) \in \mathcal{A}_N \}$$

is a smooth atlas on $M \times N$ and it is called the smooth (canonical) product atlas on the topological (m + n)-manifold $M \times N$.

References

[1] J. Lee, Introduction to Smooth Manifolds, Springer-Verlag, 2000.